Introduction

Linux has always provided a rich programming environment, and it has only grown rich-
er. Two new compilers, egcs and pgcs, joined the GNU project’s gcc, the original Linux
compiler. In fact, as this book went to press, the Free Software Foundation, custodians of
the GNU project, announced that gcc would be maintained by the creators and maintain-
ers of egcs. A huge variety of editors stand alongside the spartan and much-maligned vi
and emacs’ marvelous complexity. Driven largely by the Linux kernel, GNU’s C library
has evolved so dramatically that a new version, glibc (also known as libc6) has emerged
as the standard C library. Linux hackers have honed the GNU project’s always service-
able development suite into powerful tools. New widget sets have taken their place
beside the old UNIX standbys. Lesstif is a free, source-compatible implementation of
Motif 1.2; KDE, the K Desktop Environment based on the Qt class libraries from
TrollTech, answers the desktop challenge posed by the X Consortium’s CDE (Common
Desktop Environment).

What This Book Will Do for You

In this book, we propose to show you how to program in, on, and for Linux. We’ll

focus almost exclusively on the C language because C is still Linux’s lingua franca.
After introducing you to some essential development tools, we dive right in to

system programming, followed by a section on interprocess communication and network
programming.

After a section devoted to programming Linux’s user interface with both text-based and
graphical tools (the X Window system), a section on specialized topics, including shell
programming, security considerations, and using the GNU project’s gdb debugger,
rounds out the technical discussion. We close the book with three chapters on a topic
normally disregarded in programming books: delivering your application to users. These
final chapters show you how to use package management tools such as RPM, how to
create useful documentation, and discuss licensing issues and options. If we’ve done our
job correctly, you should be well prepared to participate in the great sociological and
technological phenomenon called “Linux.”

Intended Audience

Programmers familiar with other operating systems but new to Linux get a solid intro-
duction to programming under Linux. We cover both the tools you will use and the
environment in which you will be working.

Linux Programming

UNLEASHED

Experienced UNIX programmers will find Linux’s programming idioms very familiar.
What we hope to accomplish for this group is to highlight the differences you will
encounter. Maximum portability will be an important topic because Linux runs on an
ever-growing variety of platforms: Intel 1386, Sun Sparcs, Digital Alphas, MIPS proces-
sors, Power PCs, and Motorola 68000-based Macintosh computers.

Intermediate C programmers will also gain a lot from this book. In general, program-
ming Linux is similar to programming any other UNIX-like system, so we start you on
the path toward becoming an effective UNIX programmer and introduce you to the pecu-
liarities of Linux/UNIX hacking.

Linux Programming Unleashed,
Chapter by Chapter

This is not a C tutorial, but you will get a very quick refresher. You will need to be able
to read and understand C code and understand common C idioms. Our selection of tools
rarely strays from the toolbox available from the GNU project. The reason for this is
simple: GNU software is standard equipment in every Linux distribution.

The first seven chapters cover setting up a development system and using the standard
Linux development tools:

* gcc

* make

* autoconf

* diff

* patch

* RCS

e emacs
The next section introduces system programming topics. If you are a little rusty on the
standard C library, Chapter 9 will clear the cobwebs. Chapter 10 covers Linux’s file
manipulation routines. Chapter 11 answers the question, “What is a process?” and shows
you the system calls associated with processes and job control. We teach you how to get
system information in Chapter 12, and then get on our editorial soapbox in Chapter 13
and lecture you about why error-checking is A Good Thing. Of course, we’ll show you

how to do it, too. Chapter 14 is devoted to the vagaries of memory management under
Linux.

INTRODUCTION

We spend four chapters on various approaches to interprocess communication using
pipes, message queues, shared memory, and semaphores. Four more chapters show you
how to write programs based on the TCP/IP network protocol. After a general introduc-
tion to creating and using programming libraries in Chapter 24 (including the transition
from libc5 to libc6), we cover writing device drivers and kernel modules in Chapter 25,
because considerable programming energy is spent providing kernel support for the latest
whiz-bang hardware device or system services.

User interface programming takes up the next eight chapters. Two chapters cover charac-
ter-mode programming; first the hard way with termcap and termios, and then the easi-
er way using ncurses. After a quick introduction to X in Chapter 28, Chapter 29 focuses
on using the Motif and Athena widget sets. Programming X using the GTK library is
Chapter 30’s subject, followed by Qt (the foundation of KDE) in Chapter 31, and Java
programming in Chapter 32. For good measure, we also cover 3D graphics programming
using OpenGL.

The next section of the book covers three special-purpose topics. Chapter 34 examines
bash shell programming. We deal with security-related programming issues in Chapter
35, and devote Chapter 36 to debugging with gdb.

The book ends by showing you the final steps for turning your programming project over
to the world. Chapter 37 introduces you to tar and the RPM package management tool.
Documentation is essential, so we teach you how to write man pages and how to use
some SGML-based documentation tools in Chapter 38. Chapter 39, finally, looks at the
vital issue of software licensing.

The Linux
Programming Toolkit PART

IN THIS PART

e Overview 7

e Setting Up a Development System 13

e Using GNU cc 39

¢ Project Management Using GNU make 53

¢ Creating Self-Configuring Software with
autoconf 65

e Comparing and Merging Source Files 85
¢ Version Control with RCS 103

e Creating Programs in Emacs 115

Overview

by Kurt Wall

IN THIS CHAPTER

¢ The Little OS That Did 8

The Little OS That Will 8

A Brief History of Linux 9
e Linux and UNIX 9

e Programming Linux 70

Why Linux Programming? 10

The Linux Programming Toolkit

PART |

Linux has arrived, an astonishing feat accomplished in just over eight years! 1998 was
the year Linux finally appeared on corporate America’s radar screens.

The Little OS That Did

It began in March 1998, when Netscape announced that they would release the source
code to their Communicator Internet suite under a modified version of the GNU project’s
General Public License (GPL). In July, two of the world’s largest relational database ven-
dors, Informix and Oracle, announced native Linux ports of their database products. In
August, Intel and Netscape took minority stakes in Red Hat, makers of the market-
leading Linux distribution. IBM, meanwhile, began beta testing a Linux port of DB/2.
Corel Corporation finally ported their entire office suite to Linux and introduced a line of
desktop computers based on Intel’s StrongARM processor and a custom port of Linux.
These developments only scratch the surface of the major commercial interest in Linux.

As this book went to press, Red Hat filed for an initial public offering (IPO) of
their stock. It is a delicious irony that a company that makes money on a free
operating system is going to become a member of corporate America.

I would be remiss if I failed to mention Microsoft’s famous (or infamous) Halloween
documents. These were leaked internal memos that detailed Microsoft’s analysis of the
threat Linux posed to their market hegemony, particularly their server operating system,
Windows NT, and discussed options for meeting the challenge Linux poses.

The Little OS That Will

As a server operating system, Linux has matured. It can be found running Web servers
all over the world and provides file and print services in an increasing number of busi-
nesses. An independent think tank, IDG, reported that Linux installations grew at a rate
of 212 percent during 1998, the highest growth rate of all server operating systems
including Windows NT. Enterprise-level features, such as support for multi-processing
and large file-system support, continue to mature, too. The 2.2 kernel now supports up to
sixteen processors (up from four in the 2.0 series kernels). Clustering technology, known
as Beowulf, enables Linux users to create systems of dozens or hundreds of inexpensive,
commodity personal computers that, combined, crank out supercomputer level process-
ing speed very inexpensively compared to the cost of, say, a Cray, an SGI, or a Sun.

Overview

CHAPTER 1

On the desktop, too, Linux continues to mature. The KDE desktop provides a GUI that
rivals Microsoft Windows for ease of use and configurability. Unlike Windows, however,
KDE is a thin layer of eye candy on top of the operating system. The powerful com-
mand-line interface is never more than one click away. Indeed, as this book went to
press, Caldera Systems released version 2.2 of OpenLinux, which contained a graphical,
Windows-based installation procedure! No less than four office productivity suites exist
or will soon be released: Applixware, Star Office, and Koffice, part of the KDE project,
are in active use. Corel is finishing up work on their office suite, although WordPerfect 8
for Linux is already available. On top of the huge array of applications and utilities avail-
able for Linux, the emergence of office applications every bit as complete as Microsoft
Office establishes Linux as a viable competitor to Windows on the desktop.

M3IINGINQ

A Brief History of Linux

Linux began with this post to the Usenet newsgroup comp.os.minix, in August, 1991,
written by a Finnish college student:
Hello everybody out there using minix-

I'm doing a (free) operating system (just a hobby, won't be
big and professional like gnu) for 386(486) AT clones.

That student, of course, was Linus Torvalds and the “hobby” of which he wrote grew to
what is known today as Linux. Version 1.0 of the kernel was released on March 14,
1994. Version 2.2, the current stable kernel release, was officially released on January 25,
1999. Torvalds wrote Linux because he wanted a UNIX-like operating system that would
run on his 386. Working from MINIX, Linux was born.

Linux and UNIX

Officially and strictly speaking, Linux is not UNIX. UNIX is a registered trademark, and
using the term involves meeting a long list of requirements and paying a sizable amount
of money to be certified. Linux is a UNIX clone, a work-alike. All of the kernel code
was written from scratch by Linus Torvalds and other kernel hackers. Many programs
that run under Linux were also written from scratch, but many, many more are simply
ports of software from other operating systems, especially UNIX and UNIX-like operat-
ing systems.

More than anything else, Linux is a POSIX operating system. POSIX is a family of stan-
dards developed by the Institute of Electrical and Electronic Engineers (IEEE) that define
a portable operating system interface. Indeed, what makes Linux such a high quality
UNIX clone is Linux’s adherence to POSIX standards.

10

The Linux Programming Toolkit

PART |

Programming Linux

As Linux continues to mature, the need for people who can program for it will grow.
Whether you are a just learning to program or are an experienced programmer new to
Linux, the array of tools and techniques can be overwhelming. Just deciding where to
begin can be difficult. This book is designed for you. It introduces you to the tools and
techniques commonly used in Linux programming. We sincerely hope that what this
book contains gives you a solid foundation in the practical matters of programming. By
the time you finish this book, you should be thoroughly prepared to hack Linux.

Why Linux Programming?

Why do people program on and for Linux? The number of answers to that question is
probably as high as the number of people programming on and for Linux. I think,
though, that these answers fall into several general categories.

First, it is fun—this is why I do it. Second, it is free (think beer and speech). Third, it is
open. There are no hidden interfaces, no undocumented functions or APIs (application
programming interfaces), and if you do not like the way something works, you have
access to the source code to fix it.

Finally, and I consider this the most important reason, Linux programmers are part of a
special community. At one level, everyone needs to belong to something, to identify with
something. This is as true of Windows programmers as it is of Linux programmers, or
people who join churches, clubs, and athletic teams. At another, more fundamental level,
the barriers to entry in this community are based on ability, skill, and talent, not money,
looks, or who you know. Linus Torvalds, for example, is rarely persuaded to change the
kernel based on rational arguments. Rather, working code persuades him (he often says
“Show me the code.”).

I am not supposing or proposing that Linux is a meritocracy. Rather, one’s standing in
the community is based on meeting a communal need, whether it is hacking code, writ-
ing documentation, or helping newcomers. It just so happens, though, that doing any of
these things requires skill and ability, as well as the desire to do them. As you participate
in and become a member of Linux’s programming community, we hope, too, that you
will discover that it is fun and meaningful as well. I think it is. In the final analysis,
Linux is about community and sharing as much as it is about making computers do what
you want.

Overview

11

CHAPTER 1

Summary

This chapter briefly recounted Linux’s history, took a whirlwind tour of the state of
Linux and Linux programming today, and made some reasonable predictions about the
future of Linux. In addition, it examined Linux’s relationship to UNIX and took a brief,
philosophical look at why you might find Linux programming appealing.

MIINYINQ

12

Setting Up a
Development
System

by Mark Whitis

IN THIS CHAPTER

¢ Hardware Selection 174
¢ Processor/Motherboard 15

¢ User Interaction Hardware: Video,
Sound, Keyboard, and Mouse 19

¢ Keyboard and Mouse 23

e Communication Devices, Ports, and
Buses 24

e Storage Devices 29

e External Peripherals 30
e Complete Systems 33
e Laptops 34

¢ Installation 34

14

The Linux Programming Toolkit

PART |

Hardware Selection

This section is, of necessity, somewhat subjective. Choice of a system depends largely on
the developer’s individual needs and preferences. This section should be used in conjunc-
tion with the Hardware Compatibility HOWTO, as well as the more specialized HOWTO
documents. The latest version is online at http://metalab.unc.edu/LDP/HOWTO/
Hardware -HOWTO. html; if you do not have Net access, you will find a copy on the
accompanying CD-ROM or in /usr/doc/HOWTO on most Linux systems (if you have one
available). The Hardware HOWTO often lists specific devices that are, or are not, sup-
ported, or refers you to documents that do list them. This section will not try to list spe-
cific supported devices (the list would be way too long and would go out of date very
rapidly) except where I want to share specific observations about a certain device based
on my own research or experience.

Internet access is strongly recommended as a prerequisite to buying and installing a
Linux system. The latest versions of the HOWTO documents can be found on the Net at
Linux Online (http://www.linux.org/) in the Support section. The Projects section has
many useful links to major development projects, including projects to support various
classes of hardware devices. If you do not have Net access, the HOWTO documents are
on the accompanying Red Hat Linux CDs (Disc 1 of 2) in the /doc/HOWTO directory.

Considerations for Selecting Hardware

I will try to give you an idea of what is really needed and how to get a good bang for
your buck rather than how to get the most supercharged system available. You may have
economic constraints or you may prefer to have two or more inexpensive systems instead
of one expensive unit. There are many reasons for having two systems, some of which
include the following:

e To have a separate router/firewall

* To have a separate “crash and burn” system

e To have a system that boots one or more other operating systems

» To have a separate, clean system to test installation programs or packages (RPM or
Debian) if you are preparing a package for distribution

» To have a separate untrusted system for guests if you are doing sensitive work
* To have at least one Linux box to act as a server that runs Linux 24 hours a day
Most of the millions of lines of Linux code were probably largely developed on systems

that are slower than the economy systems being sold today. Excessive CPU power can be
detrimental on a development station because it may exacerbate the tendency of some

Setting Up a Development System 15

CHAPTER 2

developers to write inefficient code. If, however, you have the need and economic
resources to purchase a system more powerful than I suggest here, more power to you
(please pardon the pun). A good developer’s time is very valuable, and the extra power
can pay for itself if it saves even a small percentage of your time. The suggestions in this
chapter will be oriented toward a low- to mid-range development workstation. You can
adjust them upward or downward as appropriate. I do not want you to be discouraged
from supporting the Linux platform, in addition to any others you may currently support,
by economic considerations.

Basic development activities, using the tools described in this book, are not likely to
demand really fast CPUs; however, other applications the developer may be using, or

even developing, may put additional demands on the CPU and memory. Editing and ow
compiling C programs does not require much computing horsepower, particularly since ‘_QE g
. w
make normally limits the amount of code that has to be recompiled at any given time. 5 g @
Compiling C++ programs, particularly huge ones, can consume large amounts of com- = g E

puting horsepower. Multimedia applications demand more computing power than edit
and compile cycles. The commercial Office suites also tend to require large amounts of
memory. If you like to use tracepoints to monitor variables by continuous single step-
ping, that could heavily consume CPU cycles.

Some people will recommend that you choose a system that will meet your needs for the
next two or three years. This may not be a wise idea. The cost of the computing power
and features you will need a year from now will probably drop to the point where it may
be more cost effective for you to buy what you need today, and wait until next year to
buy what you need then. If you do not replace your system outright, you may want to
upgrade it piecemeal as time passes; if that is the case, you don’t want to buy a system
with proprietary components.

Processor/Motherboard

One of the most important features of a motherboard is its physical form factor, or its

size and shape and the locations of key features. Many manufacturers, particularly major
brands, use proprietary form factors, which should be avoided. If you buy a machine that
has a proprietary motherboard and you need to replace it due to a repair or upgrade, you
will find your selection limited (or non-existent) and overpriced. Some manufacturers

undoubtedly use these proprietary designs to lower their manufacturing cost by eliminat-
ing cables for serial, parallel, and other I/O ports; others may have more sinister motives.

The older AT (or baby AT) form factor motherboards are interchangeable, but have very
little printed circuit board real estate along the back edge of the machine on which to

16

The Linux Programming Toolkit

PART |

mount connectors. The case only has holes to accommodate the keyboard and maybe a
mouse connector. The newer ATX standard has many advantages. Although an ATX
motherboard is approximately the same size and shape as a baby AT motherboard (both
are about the same size as a sheet of 8-1/2”x11” writing paper), the ATX design rotates
the dimensions so the long edge is against the back of the machine. An ATX case has a
standard rectangular cutout that accommodates metal inserts, which have cutouts that
match the connectors on a particular motherboard. The large cutout is large enough to
easily accommodate the following using stacked connectors:

e 2 serial ports

| parallel port

 keyboard port

* mouse port

e 2 USB ports

* VGA connector

* audio connectors
Also, ATX moves the CPU and memory where they will not interfere with full-length I/O
cards, although some manufacturers still mount some internal connectors where they will
interfere. Many case manufacturers have retooled. More information about the ATX form

factor can be found at http://www.teleport.com/~atx/. Figure 2.1 illustrates the phys-
ical difference between AT and ATX form factors.

FIGURE 2.1 10

AT versus ATX

motherboard form cPU
factors. Memory

AT ATX

Onboard I/0

A typical Pentium or higher motherboard will have two serial, one parallel, one key-
board, one mouse, IDE, and floppy ports onboard; all of which are likely to work fine
with Linux. It may have additional ports onboard that will have to be evaluated for com-
patibility, including USB, SCSI, Ethernet, Audio, or Video.

Setting Up a Development System

CHAPTER 2

Processor

For the purposes of this section, I will assume you are using an Intel or compatible
processor. The use of such commodity hardware is likely to result in a lower-cost system
with a wider range of software available. There are a number of other options available,
including Alpha and Sparc architectures. Visit http://www.linux.org/ if you are inter-
ested in support for other processor architectures.

Cyrix and AMD make Pentium compatible processors. There have been some compatibi-
lity problems with Cyrix and AMD processors, but these have been resolved. I favor
Socket 7 motherboards, which allow you use Intel, Cyrix, and AMD processors inter-
changeably. There are also some other companies that make Pentium compatible
processors that will probably work with Linux but have been less thoroughly tested. IDT
markets the Centaur C6, a Pentium compatible processor, under the unfortunate name
“Winchip,” which apparently will run Linux, but I don’t see the Linux community lining
up to buy these chips. IBM used to make and sell the Cyrix chips under its own name in
exchange for the use of IBM’s fabrication plant; these may be regarded simply as Cyrix
chips for compatibility purposes. Future IBM x86 processors will apparently be based on
a different core. The Pentium II, Pentium III, Xeon, and Celeron chips will simply be
regarded as Pentium compatible CPUs.

There have been some very inexpensive systems made recently that use the Cyrix
MediaGX processor. These systems integrate the CPU, cache, Video, Audio, motherboard
chipset, and I/O onto two chips. The downside is that you cannot replace the MediaGX
with another brand of processor and that the video system uses system memory for video.
This practice slightly reduces the available system memory and uses processor/memory
bandwidth for screen refresh, which results in a system that is about a third slower than
you would expect based on the processor speed. The advantages are the lower cost and
the fact that all Media GX systems are basically the same from a software point of view.
Therefore, if you can get one Media GX system to work, all others should work. Video
support for the Media GX is provided by SuSE (go to http://www.suse.de/XSuSE/
XSuSE_E.html for more info) and there is a MediaGX video driver in the KGI. Audio
support has not been developed at the time of this writing, although it may be available
by the time this book is published.

My primary development machines have been running Linux for a couple years on Cyrix
P150+ processors (equivalent to a 150MHz Pentium) and upgrading the processor is still

among the least of my priorities. Given current processor prices, you will probably want

to shoot for about twice that speed, adjusting up or down based on your budget and avail-
ability.

17

W31SAS

1N3NdO13INIQ
V d) S5NILLIS

18

The Linux Programming Toolkit

PART |

The Linux community seems to be waiting with interest to see the processor being devel-
oped by Transmeta, the company that hired Linus Torvalds and some other Linux gurus
(including my friend, Jeff Uphoff). The speculation, which is at least partially corroborat-
ed by the text of a patent issued to the company, is that this processor will have an archi-
tecture that is optimized for emulating other processors by using software translators and
a hardware translation cache. It is suspected that this chip may be a very good platform
for running Linux. Linux might even be the native OS supported on this chip under
which other operating systems and processor architectures are emulated.

BIOS

For a basic workstation, any of the major BIOS brands (AWARD, AMIBIOS, or
Phoenix) may suffice. The AMI BIOS has some problems that complicate the use of I/O
cards that have a PCI-to-PCI bridge such as the Adaptec Quartet 4 port ethernet cards.
The AWARD BIOS gives the user more control than does AMIBIOS or Phoenix. A flash
BIOS, which allows the user to download BIOS upgrades, is desirable and is standard on
most modern systems. Older 386 and 486 systems tend not to have a flash BIOS and
may also have the following problems:

* An older BIOS that may not be Y2K compliant
* May not support larger disk drives

e May not support booting off of removable media

Memory

64MB is reasonable for a typical development system. If you are not trying to run X win-
dows, you may be able to get by with only 8MB for a special purpose machine (such as
a crash and burn system for debugging device drivers). Kernel compile times are about
the same (less thanl.5 minutes) with 32MB or 64MB (although they can be much longer
on a system with 8MB). If you want to run multimedia applications (such as a Web
browser), particularly at the same time you are compiling, expect the performance to suf-
fer a bit if you only have 32MB. Likewise, if you are developing applications that con-
sume lots of memory, you may need more RAM. This page was written on a system with
32MB of RAM but one of the other authors’ primary development system has ten times
that amount of memory to support Artificial Intelligence work.

Enclosure and Power Supply

Select an enclosure that matches your motherboard form factor and has sufficient drive
bays and wattage to accommodate your needs. Many case manufacturers have retooled

Setting Up a Development System 19

CHAPTER 2

their AT form factor cases to accommodate the ATX motherboard; if you order an AT
case, you may receive a newer ATX design with an I/O shield that has cutouts for AT
keyboard and mouse ports. For most applications, Mini-Tower, Mid-Tower, or Full-
Tower cases are likely to be the preferred choices. For some applications you may want
server or rack mount designs.

NoTE

The power supply connectors are different for AT and ATX power supplies.

ow

m m

If you are building a mission-critical system, be aware that some power supplies will not % 53
. . . . [y

restore power to the system after a power outage. You may also be interested in a mini- ﬁ Q a

redundant power supply; these are slightly larger than a normal ATX or PS/2 power sup- S E =

=1

ply but some high end cases, particularly rack mount and server cases, are designed to
accommodate either a mini-redundant or a regular ATX or PS/2 supply.

User Interaction Hardware: Video,
Sound, Keyboard, and Mouse

The devices described in this section are the primary means of interacting with the user.
Support for video cards and monitors is largely a function of adequate information being
available from the manufacturer or other sources. Monitors usually require only a hand-
ful of specifications to be entered in response to the Xconfigurator program, but support
for a video card often requires detailed programming information and for someone to
write a new driver or modify an existing one. Sound cards require documentation and
programming support, like video cards, but speakers need only be suitable for use with
the sound card itself.

Video Card

If you only need a text mode console, most VGA video adapters will work fine. If you
need graphics support, you will need a VGA adapter that is supported by Xfree86,
SVGALib, vesafb, and/or KGI.

Xfree86 is a free open-source implementation of the X Windowing System, which is an
open-standard-based windowing system that provides display access to graphical appli-
cations running on the same machine or over a network. Xfree86 support is generally

20

The Linux Programming Toolkit

PART |

necessary and sufficient for a development workstation. For more information, visit
http://www.xfree86.org/. For drivers for certain new devices, check out XFcom
(formerly XSuSE) at http://www.suse.de/XSuSE/.

SVGALib is a library for displaying full screen graphics on the console. It is primarily
used for a few games and image viewing applications, most of which have X Windowing
System versions or equivalents. Unfortunately, SVGALlib applications need root privi-
leges to access the video hardware so they are normally installed suid, which creates
security problems.

GGI, which stands for Generic Graphics Interface, tries to solve the problems of needing
root access, resolve conflicts between concurrent SVGALib and X servers, and provide a
common API for writing applications to run under both X and SVGALIib. A part of GGI,
called KGI, provides low-level access to the framebuffer. GGI has also been ported to a
variety of other platforms so it provides a way of writing portable graphics applications,
although these applications are apparently limited to a single window paradigm.
Documentation is very sparse. This package shows future promise as the common low-
level interface for X servers and SVGALlib and a programming interface for real-time
action games.

OpenGL (and its predecessor GL) has long been the de facto standard for 3D modeling.
OpenGL provides an open API but not an open reference implementation. Mesa provides
an open source (GPL) implementation of an API very similar to OpenGL that runs under
Linux and many other platforms. Hardware acceleration is available for 3Dfx
Voodoo-based cards. For more information on Mesa, visit http://www.mesa3d.org/.
Metrolink provides a licensed OpenGL implementation as a commercial product; visit
http://www.metrolink.com/opengl/ for more information. Frame buffer devices pro-
vide an abstraction for access to the video buffer across different processor architectures.
The Framebuffer HOWTO, at http://www.tahallah.demon.co.uk/programming/
HOWTO - framebuffer-1.0pre3.html, provides more information. Vesafb provides frame
buffer device support for VESA 2.0 video cards on Intel platforms. Unfortunately, the
VESA specification appears to be a broken specification that only works when the CPU
is in real mode instead of protected mode, so switching video modes requires switching
the CPU out of protected mode to run the real mode VESA VGA BIOS code. Such
shenanigans may be common in the MS Windows world and may contribute to the insta-
bility for which that operating system is famous. KGIcon allows the use of KGI support-
ed devices as framebuffer devices.

Setting Up a Development System 21

CHAPTER 2

Tip

Some companies offer commercial X servers for Linux and other UNIX-
compatible operating systems. Among them are Accelerated-X
(http://www.xigraphics.com/) and Metro-X (http://www.metrolink.com/).

AGP (Accelerated Graphics Port) provides the processor with a connection to video
memory that is about four times the speed of the PCI bus and provides the video acceler-
ator with faster access to texture maps stored in system memory. Some AGP graphics
cards are supported under Linux.

W31SAS

1N3NdO13INIQ
V d) S5NILLIS

Tip

To determine which video cards and monitors are supported under Red Hat run
/usr/X11/bin/Xconfigurator --help asroot on an existing system.

You will probably want at least 4MB of video memory to support 1280x1024 at 16bpp
(2.6MB). You will need 8MB to support 1600x1200 at 32bpp. Some 3D games might
benefit from extra memory for texture maps or other features if they are able to use the
extra memory. The X server will use some extra memory for a font cache and to expand
bitmap. If you want to configure a virtual screen that is larger than the physical screen
(the physical screen can scroll around the virtual screen when you move the cursor to the
edge) be sure to get enough memory to support the desired virtual screen size. The
FVWM window manager will create a virtual desktop that is by default four times the
virtual screen size, and will switch screens if you move the cursor to the edge of the
screen and leave it there momentarily; instead of using extra video memory, this feature
is implemented by redrawing the whole screen. The X server may use system memory
(not video memory) for “backing store” to allow it to redraw partially hidden windows
faster when they are revealed. If you use high resolution or pixel depth (16bpp or 32bpp)
screens, be aware that backing store will place additional demands on system memory.

There are some distinct advantages to installing a video card that supports large resolu-
tion and pixel depth in your Linux system. If you intend to make good use of the X serv-
er, this can be invaluable. Since Linux can easily handle many different processes at

22

The Linux Programming Toolkit

PART |

once, you will want to have enough screen real estate to view multiple windows. A video
card that can support 1280x1024 resolution will satisfy this nicely. The other advantage
to a good video card is the pixel depth. Not only do the newer window managers run
more smoothly with the better pixel depth, it is also very useful if you want to use your
system for graphics work. Your monitor also has to be able to support the resolution of
your video card—otherwise you could not take full advantage of the capabilities your
system offers. (The following section discusses monitor selection in more detail.) It is
very important that you check the specifications of your hardware when deciding which
video card/monitor combination to use so that the two will work well together. Also, it is
always important to check out the hardware compatibility lists for Linux.

Monitor

Almost any monitor that is compatible with your video card will work under Linux if
you can obtain the specifications, particularly the vertical and horizontal refresh rates or
ranges supported and the video bandwidth. Note that bigger is not always better. What
matters is how many pixels you can put on the screen without sacrificing quality. I prefer
the 17" monitor I have on my development machine at one office to the very expensive
20" workstation monitor that sits next to it. I prefer many 15" monitors to their 17"
counterparts. If you have trouble focusing up close or want to sit very far away from
your monitor, you may need a large monitor, but otherwise a quality smaller monitor
closer to your head may give you equal or better quality at a lower price.

As discussed in the preceding section, the monitor and video card selections are very
closely related. It is good to test your monitor selection for clarity. One of the main con-
tributing factors to the clarity of a monitor is the dot pitch—the smaller the spacing
between pixels, the better. However, this can boost the price of a monitor. The other issue
here, again, is related to the video card. One monitor tested with different video cards
can have quite different results. A video card aimed more for business use (such as a
Matrox Millenium G200) will often produce a crisper image than a video card that is
intended for game use (such as Diamond V550). This is because some cards are opti-
mized for good 2D, 3D, or crisp text, but are not optimized for all three.

I recommend running your monitor at as close to 60Hz as you can even if it can run at
70Hz or higher. In some cases a monitor may look better at 70Hz, particularly if you are
hyped up on massive doses of caffeine and your monitor has short persistence phosphors,
but I find that usually it looks better at 60Hz. The reason for this is the ubiquitous 60Hz
interference from power lines, transformers, and other sources. Not only can this interfer-
ence be picked up in the cables and video circuitry but it also affects the electron beams
in the monitor’s cathode ray tube (CRT) directly. Shielding is possible but expensive and

Setting Up a Development System

CHAPTER 2

is not likely to be found in computer video monitors. If your image is visibly waving
back and forth, this is likely to be your problem. If the beat frequency (the difference
between the two frequencies) between the 60hz interference and the refresh rate is close
to zero, the effect will slow and become imperceptible. But if the beat frequency is larger
you will have instabilities that will be either very perceptible or more subtle but irritat-
ing. So a beat frequency of 0.1Hz (60Hz versus 60.1Hz) is likely to be fine but a beat
frequency of 10Hz (60Hz versus 70Hz) is likely to be very annoying.

Some countries use a frequency other than 60Hz for their power grid; in those countries,
you would need to match the refresh rate to the local power line frequency to avoid beat
frequency problems. Incidentally, some monitors deliberately make the image wander
around the screen slightly at a very slow rate to prevent burn-in; as long as this is very
slow, it is imperceptible (your own head movements are likely to be far greater).

The video configuration in Linux gives you much latitude in how you want to set up
your hardware. It is important to remember to have your settings within the specified
ranges for your hardware. Pushing the limits can result in poor performance or even the
destruction of your hardware.

Sound Cards

Linux supports a variety of sound cards, particularly Sound Blaster compatible (but not
all sound cards that claim to be compatible are—some use software assisted emulation),
older ESS chip-based cards (688 and 1688), Microsoft Sound System— based cards, and
many Crystal (Cirrus Logic) based cards. Consult the Hardware Compatibility HOWTO
document, Four Front Technologies Web site (at http://www.4front-tech.com/), or
the Linux kernel sources (browsable on the Net at http://metalab.unc.edu/
linux-source/) for more information. Four Front Technologies sells a package that
includes sound drivers for many cards that are not supported by the drivers shipped with
the kernel. Most newer sound cards seem to be PnP devices. Support for PnP cards is
available using the ISAPnP utilities mentioned above or the Four Front drivers.

Keyboard and Mouse

USB keyboards and mice are not recommended at this time; see “USB and Firewire
(IEEE 1394),” later in this chapter for more details. Normal keyboards that connect to a
standard AT or PS/2 style keyboard port should work fine, although the unusual extra
features on some keyboards may not work. Trackball, Glidepoint, and Trackpad pointing
devices that are built in to the keyboard normally have a separate connection to a serial
or PS/2 mouse port and may be regarded as separate mouse devices when considering

23

W31SAS

1N3NdO13INIQ
V d) S5NILLIS

24

The Linux Programming Toolkit

PART |

software support issues. Normal PS/2 and serial mice are supported, including those that
speak Microsoft, Mouse Systems, or Logitech protocols. Mouse support is provided by
the gpm program and/or the X server. Many other pointing devices, including trackballs,
Glidepoints, and Trackpads will work if they emulate a normal mouse by speaking the
same communications protocol; some special features of newer trackpads, such as pen
input and special handling of boarder areas, may not work. Many X applications require
a three-button mouse, but gpm and the X server can be configured to emulate the extra
middle button by chording both buttons on a two-button mouse.

Communication Devices, Ports,
and Buses

This section contains information on various devices that provide communications chan-
nels. These channels can be used to communicate with other computers and with internal
or external peripherals.

The high-speed buses that connect expansion cards to the processor are included here.
Neither the ISA bus nor the PCI bus will be covered in detail, although ISA Plug and
Play devices and PCMCIA cards will have their own subsection since there are some
special considerations. Plain ISA and PCI cards should work fine as long as there is a
driver that supports that specific card. Most IDE controllers will work; for other IDE
devices, see “Storage Devices,” later in this chapter. Devices that connect to a parallel
(printer) port are discussed in their separate categories.

Modems

Most modems, with the exception of brain-dead winmodem types, modems that use the
proprietary Rockwell Protocol Interface (RPI), or modems that depend on a software
component for their functionality will work fine with Linux. Be aware, however, that
there is a real difference between the more expensive professional models and the cheap-
er consumer grade models. Almost any modem will perform well on good quality phone
lines, but on poor quality lines the distinction will become significant. That is why you
will see people on the Net who are both pleased and extremely dissatisfied with the same
inexpensive modems. It requires much more sophisticated firmware and several times as
much processing power to resurrect data from a poor quality connection as it does to
recover data from a good connection.

Serious developers are likely to want a dedicated Internet connection to their small office
or to their home. Some more expensive modems can operate in leased line mode. This
allows you to create a dedicated (permanent) 33.6Kbps leased line Internet connection

Setting Up a Development System

CHAPTER 2

over a unconditioned 2 wire (1 pair) dry loop. This can be handy if ISDN and xDSL are
not available in your area. A dry loop is a leased telephone line with no line voltage,
ringing signal, or dial tone that permanently connects two locations. It is sometimes
referred to as a “burglar alarm pair.” These lines are very inexpensive for short distances.
The average person working in a telco business office has no clue what these terms
mean. Expect to pay $200 or more for a modem that supports this feature.

Your chances of finding a pair of leased line modems that will work at 56K are not very
good since only modems with a digital phone line interface are likely to have the soft-
ware to handle 56K answer mode. I used a pair of leased line capable modems for a cou-
ple years over a wire distance of two or three miles, at a cost of about $15 per month;
more information on how to set this up is available on my Web site (http://

www. freelabs.com/~whitis/unleashed/). It is also possible to run xXDSL over a rela-
tively short distance dry loop (I now use MVL, a variant of DSL which works better on
longer lines and provides 768Kbps, on the same dry loop) even though xDSL is intended
to be used with one of the modems located in the central office; this costs about $13,000
for 16 lines and the equipment is not, as far as I know, readily available in configurations
that are economically viable for a small number of lines. If you can spread the capital
cost over many lines, XDSL can be very economical compared to ISDN or T1 lines. In
my example, a dry loop costs $15 per month and provides a 768K connection versus $75
per month for an ISDN line or $400 per month for a T1 line (these charges are for local
loop only and do not include IP access).

If you want to support incoming (dial-in or answer mode) 56K connections, you will
need a modem with a digital phone line interface. Normally, ISPs use expensive modem
racks that have a T1 line interface for this purpose, which is only economically viable if
you are supporting dozens of lines. You might be able to find a modem that functions
both as an ordinary modem and as an ISDN terminal adapter and can produce 56K
answer mode modulation over an ISDN line.

If you want to set up a voice mail or interactive voice response (IVR) system, you will
probably want a modem that is capable of voice operation and is compatible with the
vgetty software. Check the Mgetty+Sendfax with Vgetty Extensions (FAQ) document for
voice modem recommendations.

For fax operation, your software choices include HylaFAX, mgetty+sendfax, and efax. A
modem that supports Class 2.0 FAX operation is preferred over one that can only do
Class 1 fax. Class 1 modems require the host computer to handle part of the real time fax
protocol processing and will malfunction if your host is too busy to respond quickly.
Class 2.0 modems do their own dirty work. Class 2 modems conform to an earlier
version of the Class 2.0 specification, which was never actually released as a standard.

25

W31SAS

1N3NdO13INIQ
V d) S5NILLIS

26

The Linux Programming Toolkit

PART |

The mgetty+sendfax and efax packages come with Red Hat 5.2. HylaFAX comes on the
Red Hat Powertools CD. All three packages can be downloaded off the Internet.
HylaFAX is more complicated to set up but is better for an enterprise fax server since it
is server based and there are clients available for Linux, Microsoft Windows, MacOS,
and other platforms. Table 2.1 summarizes fax capabilities.

TaBLE 2.1 FAX SuPPORT

Class 1 Class 2 Class 2.0
HylaFax Yes Yes Yes
Sendfax No Yes Yes
Efax Yes Yes Support untested

Network Interface Cards

The Tulip chips are considered by many to be the best choice for a PCI-based ethernet
card on a Linux system. They are fairly inexpensive, fast, reliable, and documented.
There have been some problems lately, however. There have been frequent, often slightly
incompatible, revisions to newer chips. The older chips, which were a safer choice, were
discontinued (this is being reversed) and the line was sold to competitor Intel, and there
was a shortage of cards. Many of these problems may be corrected by the time this book
is released, however; check the Tulip mailing list archives for more details. If you need
multiple ethernet interfaces in a single machine, Adaptec Quartet cards provide four
Tulip-based ethernet ports on a single machine. One of my Web pages gives more infor-
mation on using the Quartets under Linux.

For an inexpensive ISA 10MB/s card, the cheap NE2000 clones usually work well.
These cards tie up the CPU a bit more than more sophisticated designs when transferring
data, but are capable of operating at full wire speed. (Don’t expect full wire speed on a
single TCP connection such as an FTP transfer, however—you will need several simulta-
neous connections to get that bandwidth.)

3Com supports their ethernet boards under Linux, and Crystal (Cirrus Logic) offers
Linux drivers for their ethernet controller chips. Most WAN card manufacturers also
seem to provide Linux Drivers. SDL, Emerging Technologies, and Sangoma provide
Linux drivers.

Setting Up a Development System

27

CHAPTER 2

SCSI

Linux supports most SCSI controllers, including many RAID controllers, host adapters,
almost all SCSI disks, most SCSI tape drives, and many SCSI scanners. Some parallel
port-based host adapters are notable exceptions. Advansys supports their SCSI adapters
under Linux; the drivers that ship with the kernel were provided by Advansys. The
Iomega Jaz Jet PCI SCSI controller, which may be available at local retailers, is actually
an Advansys controller and is a good value. It is a good idea not to mix disk drives and
slow devices such as tape drives or scanners on the same SCSI bus unless the controller
(and its driver) and all of the slow devices on the bus support a feature known as “dis-
connect-reconnect”; it is rather annoying to have your entire system hang up for 30 sec-
onds or more while the tape rewinds or the scanner carriage returns. The SCSI HOWTO
has more information on disconnect-reconnect.

Beware of cheap SCSI controllers, particularly those that do not use interrupts.
In my limited experience with boards of this type, they often did not work at all
or would cause the system to hang for several seconds at a time. This may be
due to bugs in the driver for the generic NCR5380/NCR53¢c400 driver although in
at least on case the card was defective. The SCSI controllers | had trouble with
came bundled with scanners or were built-in on certain sound boards.

W31SAS

1N3NdO13INIQ
V d) S5NILLIS

USB and Firewire (IEEE 1394)

USB and Firewire support are being developed. USB support is provided by a package
called UUSBD. It is apparently possible to use a USB mouse if you have a supported
USB controller (although you will need to download and install the code before you can
run X) but keyboards don’t work at the time of this writing. It is probably too early to
plan on using either of these on a development system except for tinkering. Links to
these projects are on linux.org under projects.

Serial Cards (Including Multiport)

Standard PC serial ports are supported, on or off the motherboard. Very old designs that
do not have a 16550A or compatible UART are not recommended but those are likely to
be pretty scarce these days.

28

The Linux Programming Toolkit

PART |

Most intelligent multiport serial cards are supported, often with direct support from the
manufacturer. Cyclades, Equinox, Digi, and GTEK are some of the companies that sup-
port their multiport boards under Linux. Equinox also makes an interesting variation on a
serial port multiplexor that supports 16 ISA Modems (or cards that look exactly like
modems to the computer) in an external chassis.

Most dumb multiport serial cards also work, but beware of trying to put too many dumb
ports in a system unless the system and/or the ports are lightly loaded. Byterunner
(http://www.byterunner.com) supports their inexpensive 2/4/8 port cards under Linux;
unlike many dumb multiport boards, these are highly configurable, can optionally share
interrupts, and support all the usual handshaking signals.

IRDA

Linux support for IRDA (Infrared Data Association) devices is fairly new, so be prepared
for some rough edges. The Linux 2.2 Kernel is supposed to have included IRDA support,
but you will still need the irda-utils even after you upgrade to 2.2. The IRDA project’s
home page is at http://www.cs.uit.no/linux-irda/. I suspect that most laptops that
support 115Kbps SIR IRDA may emulate a serial port and won’t be too hard to get
working.

PCMCIA Cards

Linux PCMCIA support has been around for a while and is pretty stable. A driver will
need to exist for the particular device being used. If a device you need to use is not listed
in the /etc/pcmcia/config file supplied on the install disks for your Linux distribution,
installation could be difficult.

ISA Plug and Play

Although some kernel patches exist for Plug and Play, support for PnP under Linux is
usually provided using the ISAPnP utilities. These utilities do not operate automatically,
as you might expect for plug and play support. The good news is that this eliminates the
unpredictable, varying behavior of what is often referred to more accurately as “Plug and
Pray.” You run one utility, pnpdump, to create a sample configuration file with the various
configurations possible for each piece of PnP hardware, and then you manually edit that
file to select a particular configuration. Red Hat also ships a utility called sndconfig,
which is used to interactively configure some PnP sound cards. Avoid PnP for devices
that are needed to boot the system, such as disk controllers and network cards (for
machines that boot off the network).

Setting Up a Development System

CHAPTER 2

Storage Devices

Linux supports various storage devices commonly used throughout the consumer com-
puter market. These include most hard disk drives and removable media such as Zip,
CD-ROM/DVD, and tape drives.

Hard Disk

Virtually all IDE and SCSI disk drives are supported under Linux. Linux even supports
some older ST506 and ESDI controllers. PCMCIA drives are supported. Many software
and hardware RAID (Reliable Array of Independent Disks) configurations are supported
to provide speed, fault tolerance, and/or very large amounts of disk storage. A full Red
Hat 5.2 with Powertools and Gnome sampler installation and all source RPMs installed,
but not unpacked, will take about 2.5GB of disk space.

Removable Disks

More recent versions of the Linux kernel support removable media including Jaz, L.S120,
Zip, and other drives. Using these drives as boot devices can be somewhat problematic.
My attempts to use a Jaz disk as a boot device were thwarted by the fact that the drive
apparently destroyed the boot disk about once a month; this may have just been a defec-
tive drive. Problems with the LS120 included being unable to use an LS120 disk as a
swap device because of incompatible sector sizes. Also be warned that there are software
problems in writing a boot disk on removable media on one computer and using it to
boot another living at a separate device address (for example, an LS120 might be the
third IDE device on your development system but the first on the system to be booted).

CD-ROM/DVD

Almost all CD-ROM drives will work for data, including IDE, SCSI, and even many
older proprietary interface drives. Some parallel port drives also work, particularly the
Microsolutions Backpack drives (which can be used to install more recent versions of
Red Hat). Some drives will have trouble being used as an audio CD player due to a lack
of standardization of those functions; even fewer will be able to retrieve “red book”
audio (reading the digital audio data directly off of an audio CD into the computer for
duplication, processing, or transmission).

Linux has support for many CD changers. The eject command has an option to select
individual disks from a changer. I found that this worked fine on a NEC 4x4 changer.
Recording of CD-R and CD-RW disks is done using the cdrecord program. The UNIX

29

W31SAS

1N3NdO13INIQ
V d) S5NILLIS

30

The Linux Programming Toolkit

PART |

CD-Writer compatibility list at http://www.guug.de:8080/cgi-bin/winni/lsc.pl
gives more information on which devices are compatible. Be warned that due to limita-
tions of the CD-R drives, writing CDs is best done on very lightly loaded or dedicated
machines; even a brief interruption in the data stream will destroy data, and deleting a
very large file will cause even fast machines to hiccup momentarily. There are GUI front
ends for burning CD’s available, including BurnIT and X-CD-Roast.

Tape Backup

A wide variety of tape backup devices are supported under Linux, as well as various
other types of removable media. Linux has drivers for SCSI, ATAPI (IDE), QIC, floppy,
and some parallel port interfaces. I prefer to use SCSI DAT (Digital Audio Tape) drives
exclusively even though they can cost as much as a cheap PC. I have used Conner
Autochanger DAT drives, and although I could not randomly select a tape in the changer
under Linux, each time I ejected a tape the next tape would automatically be loaded.
Other autochangers might perform differently.

| caution against the use of compression on any tape device; read errors are
common and a single error will cause the entire remaining portion of the tape
to be unreadable.

External Peripherals

The devices in this section are optional peripherals that are normally installed outside the
system unit. From a software perspective, the drivers for these devices usually run in user
space instead of kernel space.

Printer

Printer support under Linux is primarily provided by the Ghostscript package
(http://www.ghostscript.com/). Support for Canon printers is poor, probably due to
Canon’s failure to make technical documentation available. Canon has refused to make
documentation available for the BJC-5000 and BJC-7000 lines (which are their only
inkjet printers that support resolutions suitable for good quality photographic printing).
Most HP printers (and printers that emulate HP printers) are supported, due to HP

Setting Up a Development System 31

CHAPTER 2

making documentation available, except for their PPA-based inkjet printers, for which
they will not release the documentation.

The Canon BJC-5000, Canon BJC-7000, and HP PPA based printers are all partially
brain dead printers that apparently do not have any onboard fonts and rely on the host
computer to do all rasterization. This would not be a problem for Linux systems (except
for the unusual case of a real time system log printer) since Ghostscript is normally used
as a rasterizer and the onboard fonts and other features are not used. Some printers may
be truly brain dead and not have any onboard CPU; these might use the parallel port in a
very nonstandard manner to implement low level control over the printer hardware. The
HP720, HP820Cse, and HP1000 are PPA based printers. Partial support, in the form of a

ppmtopba conversion utility, is available for some PPA printers based on reverse engi- ow

neering. Some Lexmark inkjet printers might be supported, but many others are QE g

Windows-only printers. I have used a Lexmark Optra R+ laser printer with an Ethernet ﬁ ga

interface with Linux. It supports the LPD protocol so it is simply set up as a remote LPD = E E
=

device.

A Linux box can act as a print server for Windows clients or act as a client for a
Windows printer by using the Samba package. A Linux box can act as a print server for
MacOS clients by using the Netatalk package. A Linux box running the ncpfs package
can apparently serve as a print server for NetWare 2.x, 3.x, or 4.x clients with bindery
access enabled, or print to a remote Netware printer. HP printers with JetDirect ethernet
interfaces support LPD and will work as remote printers under Linux.

Ghostscript can run on almost every operating system that runs on hardware with enough
resources to function as a rasterizer. A single ghostscript driver (or PBM translator) is
sufficient to support a printer on virtually every computer, including those running every
UNIX-compatible operating system, MacOS, OS/2, and Windows 3.1, Windows 95,
Windows 98, Windows NT, and many others. Ghostscript can coexist with, replace, or
already is the native printing rasterizer (if any) on these operating systems and can inte-
grate with the queuing system on almost all of these. Ghostscript can produce PBM
(Portable BitMap) files. The use of a PBM translator can avoid various copyright issues
since it does not have to be linked into a GPLed program. Therefore, the failure of print-
er manufacturers to provide Ghostscript drivers or PBM translators is reprehensible.

Tip

More detailed information on printing under Linux can be found in the Linux
Printing HOWTO.

32

The Linux Programming Toolkit

PART |

Scanners

Support for scanners is a bit sparse, although close to 100 different models from a couple
dozen manufacturers are supported by the SANE package; manufacturers who not only
fail to provide drivers themselves but also withhold documentation are culpable for this
state of affairs.

There have been various projects to support individual or multiple scanners under Linux.
These have been eclipsed by the SANE package(http://www.mostang.com/sane/)
which, no doubt, benefited from its predecessors. The name is a play on, and a potshot
at, TWAIN, which passes for a standard in the Microsoft world. In TWAIN, the driver
itself paints the dialog box that appears when you request a scan. This is not a “sane”
way of doing things. It interferes with non-interactive scanning (such as from a command
line, Web cgi, or production scanning applications), interferes with network sharing of a
device, and interferes with making drivers that are portable across many platforms.
SANE is able to do all of these things.

In SANE, the driver has a list of attributes that can be controlled, and the application sets
those attributes (painting a dialog box or parsing arguments as necessary). SANE has
been ported to a variety of platforms including about 18 different flavors of UNIX and
OS/2. SANE provides a level of abstraction for the low level SCSI interfaces, and
abstractions are being worked on for a few other OS specific features (such as fork())
which interfere with portability to some platforms. SANE has not been ported to the
Windows and MAC platforms, although there is no reason this can’t be done. Some have
questioned the need to do this because the manufacturers ship drivers for these operating
systems with most scanners. However, once SANE has been ported to these operating
systems and a TWAIN to SANE shim has been written, there will be no legitimate reason
for anyone to ever write another TWAIN driver again as long as the port and shim are
distributed under license agreements that allow scanner manufacturers to distribute the
software with their products.

Digital Cameras

There are programs to handle many hand-held digital cameras which will run Linux.
Cameras that support compact flash or floppy disk storage of standard JPEG images
should also work using those media to transfer the image data. A new application called
gPhoto (http://gphoto.fix.no/gphoto/) supports about ten different brands of digital
cameras. Some digital cameras may also be supported under the SANE library.

There are software drivers for a variety of Frame Grabbers, TV tuners, and the popular
Quickcam cameras available on the Net. Consult the relevant section of the Hardware
Compatibility HOWTO for links to these resources.

Setting Up a Development System

CHAPTER 2

Home Automation

I will give brief mention to a few gadgets that can be used to control the real world.
There are a couple of programs to control the X10 CM11A (usually sold as part of the
CK11A kit) computer interface module. The X10 system sends carrier current signals
over your household or office power lines to control plug in, wall switch, or outlet mod-
ules that switch individual devices on or off. The X10 carrier current protocol is patented
but well documented; the documentation for the computer interface is available on the
Net. The CM11A may be superseded by the CM14A by the time this gets into print.

Nirvis systems makes a product called the Slink-e, which is an RS-232 device used to
control stereo and video gear using infrared, Control-S, S-link/Control-A1, and Control-
A protocols. It can also receive signals from infrared remotes; this would allow you to
write applications that record and replay remote control signals or respond to remote
controls (handy for presentations). There is no Linux driver available yet, as far as I
know, but the documentation is available from their Web site at
http://www.nirvis.com/. Among other things, this unit can control a Sony 200 disk CD
changer and not just queue up CD’s, but actually poll the track position and the disk seri-
al number (other brands of CD players apparently cannot do this); the company supplies
a Windows based CD player application that works with the Internet CD Database. The
folks at Nirvus have already done the reverse engineering on some of the protocols.

Complete Systems

A number of companies specialize in preinstalled Linux systems. VA Research and
Linux Hardware Solutions are two popular examples; consult the hardware section at
Linux.org for a much more complete list of these vendors.

Corel Computer Corp has versions of their Netwinder systems (which use StrongARM
CPUs) with Linux preinstalled. These are fairly inexpensive systems aimed at the thin
client and Web server market. Cobalt Networks offers the Qube, a Linux-based server
appliance in a compact package that uses a MIPS processor. It appears that SGI will be
supporting Linux on some of their MIPS based workstations.

A few of the major PC brands have recently announced that they will be shipping some
of their servers or workstations reconfigured with Linux, including Dell and Hewlett
Packard. Compaq is now marketing a number of their systems to the Linux community,
although apparently they are not available with Linux preinstalled. IBM has announced
that they will be supporting Linux but it will apparently be up to the authorized reseller
to preinstall it. Rumor has it that many other PC brands will announce preinstalled Linux
systems by the time this book is printed.

33

W31SAS

1N3NdO13INIQ
V d) S5NILLIS

34

The Linux Programming Toolkit

PART |

Laptops

Support for laptops is a bit tricky because laptops have short development cycles, often
use very new semiconductors, and the manufacturers rarely provide technical documenta-
tion. In spite of this, there is information on the Net concerning using Linux on approxi-
mately 300 laptop models. Consult the Hardware Compatibility HOWTO document for
links to pages that have the latest information on support for specific laptop models and
features.

Linux supports a number of electronic pocket organizers. 3Com'’s PalmPilot is
the most popular and best supported.

Linux supports Automatic Power Management (APM). There can be problems with sus-
pend/resume features not working correctly; there can be problems with the graphics
modes being restored properly for X (you may have better luck if you switch to a text
console before suspending) and you may need a DOS partition for the suspend to disk
feature to work. Some laptops do not allow you to have the floppy and the CD-ROM
present simultaneously, which can make installation tricky (although most newer models
probably support booting off of CD-ROM).

Installation

Installation of Red Hat Linux, which is included on 2 CD’s in the back of this book, is
covered in The Official Red Hat Linux Installation Guide, which is available in HTML
on the Net at ftp://ftp.reddat.com/reddat/reddat-5.2/i386/doc/rhmanual/ or on
the enclosed Red Hat Linux CD-ROM in the directory /doc/rhmanual/. If you wish to
use a different distribution, consult the documentation that came with that distribution.

I recommend making a complete log of the machine configuration, the choices made
during the installation, and all commands needed to install any packages you may have
installed later. This is a nuisance at first but becomes very valuable when you want to
install a second system, upgrade, or reinstall a system after a crash or a security compro-
mise. Copy this log file offline and/or offsite or make printouts periodically. I normally
log this information in a file called /root/captains-log as executable shell commands,
as shown in Listing 2.1. If I edit a file, I record the diffs as a “here document” (see the

Setting Up a Development System

35

CHAPTER 2

bash man page) piped into “patch.” One very important thing to log is where you down-
loaded code from; I do this as an ncftp or lynx -source command.

LisTiING 2.1 SamPLE CAPTAINS LOG

First, lets introduce some of the commands we will
be using. The commands marked with "***" will be
covered in detail in later chapters. Refer to the
bash man page or the man page

cat - copies its input to its output

diff - compares two files xx K

patch - applies the changes in a diff ***

ncftp - ftp client program E?ﬁ?
lynx - text mode web broswer zsﬁ |
tar - pack and unpack tar archives Y o E
cd - change current directory E 2 c
make - drives the compilation process *** Z7
echo - display its arguments =102
echo hello, world - says "hello world"

These are some examples of shell magic, see the bash
man page for more details:

I o I F O I I I I I I I I I I I o H I I I I H W WK WK

- marks a comment line
foo=bar - set variable foo equal to bar
export FOO=bar - similar, but subprocesses will inherit value
echo $(foo) - substitute $(foo) into
XXX | Yyy - pipe output of command xxx into command yyy
XXX >Yyyy - redirect the output of command xxx to file yyy
XXX >>yyy - same, but append to file yyy
XXX <yyy - redirect input of command xxx from file yyy
XXX\ - Line continuation character "\"
yyy - .. continuation of above line, i.e XXXyyy
XXX <<\...EOF... - "here document" - runs the program xxx
linet - .. taking input from the following
line2 - .. lines in the script up to the line
...EOF... - .. which begins with "...EOF...";

#Hit#

Gnozzle

#Hi#t#

This is a sample captains-log entry to install
a ficticious package called gnozzle

datestamp produced using "date" command:
Mon Feb 22 21:39:26 EST 1999

continues

The Linux Programming Toolkit

PART |

LiSTING 2.1 CONTINUED

download it

cd /dist

ncftp -r -D ftp://ftp.gnozzle.com/pub/gnozzle-0.63.tar.gz

or...

#lynx -source http://www.gnozzle.com/gnozzle-0.63.tar.gz \
>gnozzle-0.63.tar.gz

Here we unpack the tarball, after first checking
the directory structure

cd /usr/local/src

tar ztvf gnozzle-0.63.tar.gz

tar zxvf gnozzle-0.63.tar.gz

cd gnozzle-0.63/

Here we create a permanent record of changes we

made using a text editor as a patch command. In this
case, we changed the values of CC and PREFIX in the
file Makefile. The patch has one hunk which spans
lines 1 through 7.

the following patch was made like this:
cp Makefile Makefile.orig
emacs Makefile
diff -u Makefile.orig Makefile
beware of mangled whitespace (especially tabs) when
cutting and pasting.
patch Makefile <<\...END.OF.PATCH...
- Makefile.orig Mon Feb 22 21:12:41 1999
+++ Makefile Mon Feb 22 21:13:14 1999
ee -1,7 +1,7 ee
VERSION=0.63
-CC=pcc
+CC=gcc
CFLAGS=-g
-PREFIX=/usr
+PREFIX=/usr/local
BIN=$ (PREFIX)/bin
LIB=$(PREFIX)/bin
MAN=$ (PREFIX)/man/man1
...END.OF.PATCH. ..

oI I W W W W W

Here we build the program and install it

make clean
make
make -n install # see what it would do first

make install

Here we create a new file with a couple lines of text
cat >/etc/gnozzle.conf <<\...EOF...

Setting Up a Development System

CHAPTER 2

gnozzlelib=/usr/local/lib/gnozzle
allow
...EOF...

Here, we append a couple lines to the magic file,

which is used by the some commands to

guess the type of a file, to add the characteristic
signature of a gnozzle data file.

cat >>/usr/share/magic <<\...EOF...

gnozzle

0 long FEDCBA98 Gnozzle data file
...EOF...

#Hit#

Here are some more commands which are useful to create
a logfile of everything which was done, from which you
can extract pertinent details for the captains log.
Their effect may not be apparent unless you have a
Linux box up and running and try them.

the script command runs another shell with all output

I+ I
Bis
Bs

redirected to a file. Not to be confused with a

"shell script" which is a sequence of commands

to be executed by the shell. Do not include "script"
commands in a "shell script".

script install_101.1log

PS4=+++

set -v -x

do diffs so they can easily be extracted from log:
diff -u Makefile.orig Makefile | sed -e "s/~/+++ /"

"D (control-D - end script, and shell)
fgrep +++ install_101.log | sed -e s/ +++//

FoH O I I I I I W W R

If you purchased a machine that has Windows 98 preinstalled, you will want to boot
Windows and examine the resource settings (IO, IRQ, and DMA) for all installed hard-
ware. This information can be very valuable during the Linux installation. Doing so may,
however, prevent you from refusing the terms of the Windows 98 License Agreement and
returning it for a refund.

After you have completed the installation program, you may need to do some other
things that are outlined in the Post Installation section of the Red Hat Manual. There are
two steps that I normally do first, however. First, I reorganize the disk layout to undo the
concessions I made to accommodate the limitations of the Red Hat install program. You
may or may not wish to do this; there are problems with the install program during
upgrades as well. Second, I use a script to disable all unwanted daemons (I tell the install

37

W31SAS

1N3NdO13INIQ
V d) S5NILLIS

38

The Linux Programming Toolkit

PART |

program to enable all daemons to preserve the information about the starting sequence).
Disabling unnecessary services is one of the most important and simplest things you can
do to secure your computer from attack. The scripts to accomplish both of these tasks are
available on my Linux Web pages.

After installation, you may wish to upgrade or install software packages that Red Hat
does not include because of export controls or licensing reasons. You may wish to
upgrade Netscape to a version that supports 128-bit encryption. You may want to install
Adobe Acrobat Reader software to handle PDF files. You may wish to install SSH to per-
mit secure, encrypted remote logins, file transfers, and remote program execution; use of
SSH may require a license fee for some commercial uses. You may wish to upgrade the
Web server to support SSL. And you probably will want to download any upgrades, par-
ticularly security related ones, from the Red Hat FTP site.

Next, you may wish to install any additional applications you know you will need. To
locate RPM versions of these applications, consult the RPM database at
http://rufus.w3.org/. If you are concerned about security, you may not want to install
any binary packages except from a few well trusted sources; instead, inspect and then
install from source RPM’s or the original source tarballs (archives created with the tar
program).

Summary

Careful selection of hardware will simplify installation. As more manufacturers are
forced by the marketplace to act more responsibly by releasing documentation for their
products or, better yet, direct support for Linux, this will be less of an issue. Also, as the
distributions become more robust the support for more types and makes of hardware are
being supported. As a general rule of thumb it is always a good practice to confirm sup-
port for your hardware using the sources available on the Internet, the HOWTQO’s, and
the SuSE’s hardware database. This can save you many headaches and frustrations dur-
ing your install. When installing your development system, it is your turn to further
document your system, lest you find yourself reinventing the wheel. Once you have one
system up and running, you may wish to experiment with hardware that has less stable
support.

Using GNU cc

by Kurt Wall

IN THIS CHAPTER

e Features of GNU cc 40

e A Short Tutorial 40

e Common Command-line Options 43
e Optimization Options 47

¢ Debugging Options 48

e GNU C Extensions 49

40

The Linux Programming Toolkit

PART |

GNU cc (gcce) is the GNU project’s compiler suite. It compiles programs written in C,
C++, or Objective C. gcc also compiles Fortran (under the auspices of g77). Front-ends
for Pascal, Modula-3, Ada 9X, and other languages are in various stages of development.
Because gcc is the cornerstone of almost all Linux development, I will discuss it in some
depth. The examples in this chapter (indeed, throughout the book unless noted other-
wise), are based on gcc version 2.7.2.3.

Features of GNU cc

gcc gives the programmer extensive control over the compilation process. The compila-
tion process includes up to four stages:

e Preprocessing

e Compilation Proper
* Assembly

e Linking

You can stop the process after any of these stages to examine the compiler’s output at
that stage. gcc can also handle the various C dialects, such as ANSI C or traditional
(Kernighan and Ritchie) C. As noted above, gcc happily compiles C++ and Objective C.
You can control the amount and type of debugging information, if any, to embed in the
resulting binary and, like most compilers, gcc can also perform code optimization. gcc
allows you to mix debugging information and optimization. I strongly discourage doing
so, however, because optimized code is hard to debug: Static variables may vanish or
loops may be unrolled, so that the optimized program does not correspond line-for-line
with the original source code.

gcc includes over 30 individual warnings and three “catch-all” warning levels. gcc is
also a cross-compiler, so you can develop code on one processor architecture that will be
run on another. Finally, gcc sports a long list of extensions to C and C++. Most of these
extensions enhance performance, assist the compiler’s efforts at code optimization, or
make your job as a programmer easier. The price is portability, however. I will mention
some of the most common extensions because you will encounter them in the kernel
header files, but I suggest you avoid them in your own code.

A Short Tutorial

Before beginning an in-depth look at gcc, a short example will help you start using gcc
productively right away. For the purposes of this example, we will use the program in
Listing 3.1.

Using GNU cc
i 41

CHAPTER 3

LisTING 3.1 CANONICAL PROGRAM TO DEMONSTRATE gcc USAGE

1 /*

2 * Listing 3.1

3 * hello.c - Canonical "Hello, world!" program 4 4 */
5 #include <stdio.h>

6

7 int main(void)

8 {

9 fprintf(stdout, "Hello, Linux programming world!\n");
10 return 0;

11}

To compile and run this program, type

$ gcc hello.c -o hello
$./hello
Hello, Linux programming world!

The first command tells gcc to compile and link the source file hello.c, creating an exe-
cutable, specified using the -o argument, hello. The second command executes the pro-
gram, resulting in the output on the third line.

A lot took place under the hood that you did not see. gcc first ran hello.c through the
preprocessor, cpp, to expand any macros and insert the contents of #included files. Next,
it compiled the preprocessed source code to object code. Finally, the linker, 1d, created
the hello binary.

20 NND 5NISN

You can re-create these steps manually, stepping through the compilation process. To tell
gcc to stop compilation after preprocessing, use gcc’s -E option:

$ gcc -E hello.c -o hello.cpp

Examine hello.cpp and you can see the contents of stdio.h have indeed been inserted
into the file, along with other preprocessing tokens. The next step is to compile
hello.cpp to object code. Use gcc’s -c¢ option to accomplish this:

$ gcc -x cpp-output -c hello.cpp -o hello.o

In this case, you do not need to specify the name of the output file because the compiler
creates an object filename by replacing .c with .o. The -x option tells gcc to begin com-
pilation at the indicated step, in this case, with preprocessed source code.

How does gcc know how to deal with a particular kind of file? It relies upon file exten-
sions to determine how to process a file correctly. The most common extensions and
their interpretation are listed in Table 3.1.

42

The Linux Programming Toolkit

PART |

TaBLE 3.1 How gcc INTERPRETS FILENAME EXTENSIONS

Extension Type

.C C language source code

.C, .cc C++ language source code

.1 Preprocessed C source code

Jii Preprocessed C++ source code
.S, .s Assembly language source code
.0 Compiled object code

.a, .S0 Compiled library code

Linking the object file, finally, creates a binary:
$ gcc hello.o -o hello

Hopefully, you will see that it is far simpler to use the “abbreviated” syntax we used
above, gcc hello.c -o hello. I illustrated the step-by-step example to demonstrate that
you can stop and start compilation at any step, should the need arise. One situation in
which you would want to step through compilation is when you are creating libraries. In
this case, you only want to create object files, so the final link step is unnecessary.
Another circumstance in which you would want to walk through the compilation process
is when an #included file introduces conflicts with your own code or perhaps with
another #included file. Being able to step through the process will make it clearer which
file is introducing the conflict.

Most C programs consist of multiple source files, so each source file must be compiled
to object code before the final link step. This requirement is easily met. Suppose, for
example, you are working on killerapp.c, which uses code from helper.c. To compile
killerapp.c, use the following command:

$ gcc killerapp.c helper.c -o killerapp

gcc goes through the same preprocess-compile-link steps as before, this time creating
object files for each source file before creating the binary, killerapp. Typing long com-
mands like this does become tedious. In Chapter 4, “Project Management Using GNU
make,” we will see how to solve this problem. The next section will begin introducing
you to the multitude of gcc’s command-line options.

Using GNU cc
i 43

CHAPTER 3

Common Command-line Options

The list of command-line options gcc accepts runs to several pages, so we will only look
at the most common ones in Table 3.2.

TaBLE 3.2 gcc COMMAND-LINE OPTIONS

20 NND 5NISN

Option Description

-0 FILE Specify the output filename; not necessary when compiling
to object code. If FILE is not specified, the default name is
a.out.

-c Compile without linking.

-DF00=BAR Define a preprocessor macro named FO0 with a value of
BAR on the command-line.

- IDIRNAME Prepend DIRNAME to the list of directories searched for
include files.

-LDIRNAME Prepend DIRNAME to the list of directories searched for
library files. By default, gcc links against shared libraries.

-static Link against static libraries.

-1F00 Link against 1ibFO00.

-g Include standard debugging information in the binary.

-ggdb Include lots of debugging information in the binary that
only the GNU debugger, gdb, can understand.

-0 Optimize the compiled code.

-ON Specify an optimization level N, O<=N<= 3.

-ansi Support the ANSI/ISO C standard, turning oftf GNU exten-
sions that conflict with the standard (this option does not
guarantee ANSI-compliant code).

-pedantic Emit all warnings required by the ANSI/ISO C standard.

-pedantic-errors

-traditional

Emit all errors required by the ANSI/ISO C standard.
Support the Kernighan and Ritchie C language syntax

(such as the old-style function definition syntax). If you
don’t understand what this means, don’t worry about it.
Suppress all warning messages. In my opinion, using this
switch is a very bad idea!

continues

44

The Linux Programming Toolkit

PART |

TABLE 3.2 CONTINUED

Option Description

-Wall Emit all generally useful warnings that gcc can provide.
Specific warnings can also be flagged using -W{warning}.

-werror Convert all warnings into errors, which will stop the com-
pilation.

-MM Output a make-compatible dependency list.

-v Show the commands used in each step of compilation.

We have already seen how -c works, but -o needs a bit more discussion. -o FILE tells
gcc to place output in the file FILE regardless of the output being produced. If you do not
specify -o, the defaults for an input file named FILE.SUFFIX are to put an executable in
a.out, object code in FILE.o, and assembler code in FILE.s. Preprocessor output goes to
standard output.

Library and Include Files

If you have library or include files in non-standard locations, the -L{DIRNAME} and
-I{DIRNAME} options allow you to specify these locations and to insure that they are
searched before the standard locations. For example, if you store custom include files in
/usr/local/include/killerapp, then in order for gcc to find them, your gcc invocation
would be something like

$ gcc someapp.c -I/usr/local/include/killerapp

Similarly, suppose you are testing a new programming library, 1ibnew.so (.so is the
normal extension for shared libraries— more on this subject in Chapter 24, “Using
Libraries”) currently stored in /home/fred/1ib, before installing it as a standard system
library. Suppose also that the header files are stored in /home/fred/include.
Accordingly, to link against 1ibnew.so and to help gcc find the header files, your gcc
command line should resemble the following:

$gcc myapp.c -L/home/fred/lib -I/home/fred/include -lnew

The -1 option tells the linker to pull in object code from the specified library. In this
example, I wanted to link against 1ibnew.so. A long-standing UNIX convention is that
libraries are named lib{something}, and gcc, like most compilers, relies on this conven-
tion. If you fail to use the -1 option when linking against libraries, the link step will fail
and gcc will complain about undefined references to “function_name.”

Using GNU cc
i 45

CHAPTER 3

By default, gcc uses shared libraries, so if you must link against static libraries, you have
to use the -static option. This means that only static libraries will be used. The follow-
ing example creates an executable linked against the static ncurses. Chapter 27, “Screen
Manipulation with ncurses,” discusses user interface programming with ncurses:

$ gcc cursesapp.c -lncurses -static

When you link against static libraries, the resulting binary is much larger than using
shared libraries. Why use a static library, then? One common reason is to guarantee that
users can run your program—in the case of shared libraries, the code your program
needs to run is linked dynamically at runtime, rather than statically at compile time. If
the shared library your program requires is not installed on the user’s system, she will get
errors and not be able to run your program.

The Netscape browser is a perfect example of this. Netscape relies heavily on Motif, an
expensive X programming toolkit. Most Linux users cannot afford to install Motif on
their system, so Netscape actually installs two versions of their browser on your system;
one that is linked against shared libraries, netscape-dynMotif, and one that is statically
linked, netscape-statMotif. The netscape “executable” itself is actually a shell script
that checks to see if you have the Motif shared library installed and launches one or the
other of the binaries as necessary.

Error Checking and Warnings

gcc boasts a whole class of error-checking, warning-generating, command-line options.
These include -ansi, -pedantic, -pedantic- errors, and -Wall. To begin with,
-pedantic tells gcc to issue all warnings demanded by strict ANSI/ISO standard C. Any
program using forbidden extensions, such as those supported by gcc, will be rejected.
-pedantic-errors behaves similarly, except that it emits errors rather than warnings.
-ansi, finally, turns off GNU extensions that do not comply with the standard. None of
these options, however, guarantee that your code, when compiled without error using any
or all of these options, is 100 percent ANSI/ISO-compliant.

20 NND 5NISN

Consider Listing 3.2, an example of very bad programming form. It declares main() as
returning void, when in fact main() returns int, and it uses the GNU extension long
long to declare a 64-bit integer.

LisTING 3.2 NoN-ANSI/ISO Source Cobpe

1 /%
2 * Listing 3.2
3 * pedant.c - use -ansi, -pedantic or -pedantic-errors

continues

46

The Linux Programming Toolkit

PART |

LISTING 3.2 CONTINUED

4 */

5 #include <stdio.h>

6

7 void main(void)

8 |

9 long long int i = 01;

10 fprintf(stdout, "This is a non-conforming C program\n");
11

Using gcc pedant.c -o pedant, this code compiles without complaint. First, try to
compile it using -ansi:

$ gcc -ansi pedant.c -o pedant

Again, no complaint. The lesson here is that -ansi forces gcc to emit the diagnostic
messages required by the standard. It does not insure that your code is ANSI C[nd]com-
pliant. The program compiled despite the deliberately incorrect declaration of main().
Now, -pedantic:

$ gcc -pedantic pedant.c -o pedant

pedant.c: In function "main':
pedant.c:9: warning: ANSI C does not support "long long'

The code compiles, despite the emitted warning. With -pedantic- errors, however, it
does not compile. gcc stops after emitting the error diagnostic:
$ gcc -pedantic-errors pedant.c -o pedant

pedant.c: In function "main':
pedant.c:9: ANSI C does not support “long long'

$ 1s
a.out* hello.c helper.h killerapp.c
hello* helper.c killerapp* pedant.c

To reiterate, the -ansi, -pedantic, and -pedantic-errors compiler options do not
insure ANSI/ISO-compliant code. They merely help you along the road. It is instructive
to point out the remark in the info file for gcc on the use of -pedantic:

“This option is not intended to be useful; it exists only to satisfy pedants who would oth-
erwise claim that GNU CC fails to support the ANSI standard. Some users try to use
“-pedantic’ to check programs for strict ANSI C conformance. They soon find that it does
not do quite what they want: it finds some non-ANSI practices, but not all—only those
for which ANSI C requires a diagnostic.”

Using GNU cc
i 47

CHAPTER 3

Optimization Options

Code optimization is an attempt to improve performance. The trade-off is lengthened
compile times and increased memory usage during compilation.

The bare -0 option tells gce to reduce both code size and execution time. It is equivalent
to -01. The types of optimization performed at this level depend on the target processor,
but always include at least thread jumps and deferred stack pops. Thread jump optimiza-
tions attempt to reduce the number of jump operations; deferred stack pops occur when
the compiler lets arguments accumulate on the stack as functions return and then pops
them simultaneously, rather than popping the arguments piecemeal as each called func-
tion returns.

02 level optimizations include all first-level optimization plus additional tweaks that
involve processor instruction scheduling. At this level, the compiler takes care to make
sure the processor has instructions to execute while waiting for the results of other
instructions or data latency from cache or main memory. The implementation is highly
processor-specific. -03 options include all 02 optimizations, loop unrolling, and other
processor-specific features.

Depending on the amount of low-level knowledge you have about a given CPU family,
you can use the -f{flag} option to request specific optimizations you want performed.
Three of these flags bear consideration: -ffastmath, -finline-functions, and
-funroll-loops. -ffastmath generates floating-point math optimizations that increase
speed, but violate IEEE and/or ANSI standards. -finline-functions expands all “sim-
ple” functions in place, much like preprocessor macro replacements. Of course, the com-

20 NND 5NISN

piler decides what constitutes a simple function. -funroll-loops instructs gcc to unroll
all loops that have a fixed number of iterations that can be determined at compile time.
Inlining and loop unrolling can greatly improve a program’s execution speed because
they avoid the overhead of function calls and variable lookups, but the cost is usually a
large increase in the size of the binary or object files. You will have to experiment to see
if the increased speed is worth the increased file size. See the gcc info pages for more
details on processor flags.

NoOTE

For general usage, using -02 optimization is sufficient. Even on small programs,
like the hello.c program introduced at the beginning of this chapter, you will
see small reductions in code size and small increases in performance time.

48

The Linux Programming Toolkit

PART |

Debugging Options
Bugs are as inevitable as death and taxes. To accommodate this sad reality, use gcc’s -g

and -ggdb options to insert debugging information into your compiled programs to facili-
tate debugging sessions.

The -g option can be qualified with a 1, 2, or 3 to specify how much debugging informa-
tion to include. The default level is 2 (-g2), which includes extensive symbol tables, line
numbers, and information about local and external variables. Level 3 debugging informa-
tion includes all of the level 2 information and all of the macro definitions present. Level
1 generates just enough information to create backtracks and stack dumps. It does not
generate debugging information for local variables or line numbers.

If you intend to use the GNU Debugger, gdb (covered in Chapter 36, “Debugging: GNU
gdb”), using the -ggdb option creates extra information that eases the debugging chore
under gdb. However, this will also likely make the program impossible to debug using
other debuggers, such as the DBX debugger common on the Solaris operating system.
-ggdb accepts the same level specifications as -g, and they have the same effects on the
debugging output. Using either of the two debug-enabling options will, however, dramat-
ically increase the size of your binary. Simply compiling and linking the simple hello.c
program I used earlier in this chapter resulted in a binary of 4089 bytes on my system.
The resulting sizes when I compiled it with the -g and -ggdb options may surprise you:
$ gcc -g hello.c -0 hello g

$ 1s -1 hello_g
-PWXI - XTI - X 1 kwall users 6809 Jan 12 15:09 hello_g*

$ gcc -ggdb hello.c -o hello_ggdb

$ 1s -1 hello ggdb

- PWXP - XTI -X 1 kwall users 354867 Jan 12 15:09
hello_ggdb*

As you can see, the -g option increased the binary’s size by half, while the -ggdb option
bloated the binary nearly 900 percent! Despite the size increase, I recommend shipping
binaries with standard debugging symbols (created using -g) in them in case someone
encounters a problem and wants to try to debug your code for you.

Additional debugging options include the -p and -pg options, which embed profiling
information into the binary. This information is useful for tracking down performance
bottlenecks in your code. -p adds profiling symbols that the prof program can read, and
-pg adds symbols that the GNU project’s prof incarnation, gprof, can interpret. The -a
option generates counts of how many times blocks of code (such as functions) are
entered. -save-temps saves the intermediate files, such as the object and assembler files,
generated during compilation.

Using GNU cc

CHAPTER 3

Finally, as I mentioned at the beginning of this chapter, gcc allows you simultaneously to
optimize your code and insert debugging information. Optimized code presents a debug-
ging challenge, however, because variables you declare and use may not be used in the
optimized program, flow control may branch to unexpected places, statements that com-
pute constant values may not execute, and statements inside loops will execute elsewhere
because the loop was unrolled. My personal preference, though, is to debug a program
thoroughly before worrying about optimization. Your mileage may vary.

NoOTE

Do not, however, take “optimize later” to mean “ignore efficiency during the
design process.” Optimization, in the context of this chapter, refers to the com-
piler magic | have discussed in this section. Good design and efficient algorithms
have a far greater impact on overall performance than any compiler optimiza-
tion ever will. Indeed, if you take the time up front to create a clean design and
use fast algorithms, you may not need to optimize, although it never hurts to
try.

GNU C Extensions

GNU C extends the ANSI standard in a variety of ways. If you don’t mind writing bla-
tantly non-standard code, some of these extensions can be very useful. For all of the gory
details, I will direct the curious reader to gcc’s info pages. The extensions covered in this
section are the ones frequently seen in Linux’s system headers and source code.

To provide 64-bit storage units, for example, gcc offers the “long long” type:

long long long_int_var;

NoTE

The “long long” type exists in the new draft ISO C standard.

On the x86 platform, this definition results in a 64-bit memory location named
long_int_var. Another gcc-ism you will encounter in Linux header files is the use of
inline functions. Provided it is short enough, an inline function expands in your code
much as a macro does, thus eliminating the cost of a function call. Inline functions are
better than macros, however, because the compiler type-checks them at compile time. To
use the inline functions, you have to compile with at least -0 optimization.

49

20 NND 5NISN

50

The Linux Programming Toolkit

PART |

The attribute keyword tells gcc more about your code and aids the code optimizer.
Standard library functions, such as exit () and abort (), never return so the compiler can
generate slightly more efficient code if it knows that the function does not return. Of
course, userland programs may also define functions that do not return. gcc allows you
to specify the noreturn attribute for such functions, which acts as a hint to the compiler
to optimize the function.

Suppose, for example, you have a function named die_on_error() that never returns. To
use a function attribute, append __attribute__ ((attribute_name)) after the closing
parenthesis of the function declaration. Thus, the declaration of die_on_error() would
look like:

void die_on_error(void) _ attribute__ ((noreturn));

The function would be defined normally:

void die_on_error(void)

{
/* your code here */
exit(1);

}

You can also apply attributes to variables. The aligned attribute instructs the compiler to
align the variable’s memory location on a specified byte boundary.

int int_var __attribute__ ((aligned 16)) = 0;

will cause gcc to align int_var on a 16-byte boundary. The packed attribute tells gcc to
use the minimum amount of space required for variables or structs. Used with structs,
packed will remove any padding that gcc would ordinarily insert for alignment purposes.

A terrifically useful extension is case ranges. The syntax looks like:
case LOWVAL ... HIVAL:

Note that the spaces preceding and following the ellipsis are required. Case ranges are
used in switch() statements to specify values that fall between LOW VAL and HIVAL:

switch(int_var) {

case 0 ... 2:
/* your code here */
break;

case 3 ... b5:
/* more code here */
break;

default:

/* default code here */

Using GNU cc
8 51

CHAPTER 3

The preceding fragment is equivalent to:

switch(int_var) {

case 1:

case 2:
/* your code here */
break;

case 3:

case 4:

case 5:
/* more code here */
break;

default:
/* default code here */

}

Case ranges are just a shorthand notation for the traditional switch() statement syntax.

Summary

In this chapter, I have introduced you to gcc, the GNU compiler suite. In reality, I have
only scratched the surface, though; gcc’s own documentation runs to several hundred
pages. What I have done is show you enough of its features and capabilities to enable
you to start using it in your own development projects.

20 NND 5NISN

52

Project
Management
Using GNU make

by Kurt Wall

IN THIS CHAPTER

Why make? 54
Writing Makefiles 54
More About Rules 56

Additional make Command-line
Options 61

Debugging make 62
Common make Error Messages 63

Useful Makefile Targets 63

54

The Linux Programming Toolkit

PART |

In this chapter, we take a long look at make, a tool to control the process of building (or
rebuilding) software. make automates what software gets built, how it gets built, and
when it gets built, freeing the programmer to concentrate on writing code.

Why make?

For all but the simplest software projects, make is essential. In the first place, projects
composed of multiple source files typically require long, complex compiler invocations.
make simplifies this by storing these difficult command lines in the makefile, which the
next section discusses.

make also minimizes rebuild times because it is smart enough to determine which files
have changed, and thus only rebuilds files whose components have changed. Finally,
make maintains a database of dependency information for your projects and so can verify
that all of the files necessary for building a program are available each time you start a
build.

Writing Makefiles

So, how does make accomplish these magical feats? By using a makefile. A makefile is
a text file database containing rules that tell make what to build and how to build it. A
rule consists of the following:

* A target, the “thing” make ultimately tries to create
* A list of one or more dependencies, usually files, required to build the target
A list of commands to execute in order to create the target from the specified

dependencies

When invoked, GNU make looks for a file named GNUmakefile, makefile, or Makefile,
in that order. For some reason, most Linux programmers use the last form, Makefile.

Makefile rules have the general form

target : dependency dependency [...]
command
command
[...]

Project Management Using GNU make 55

CHAPTER 4

WARNING

The first character in a command must be the tab character; eight spaces will
not suffice. This often catches people unaware, and can be a problem if your
preferred editor “helpfully” translates tabs to eight spaces. If you try to use
spaces instead of a tab, make displays the message “Missing separator” and
stops.

target is generally the file, such as a binary or object file, that you want created. depen-
dency is a list of one or more files required as input in order to create target. The com-
mands are the steps, such as compiler invocations, necessary to create target. Unless
specified otherwise, make does all of its work in the current working directory.

If this is all too abstract for you, I will use Listing 4.1 as an example. It is the makefile
for building a text editor imaginatively named editor.

LisTING 4.1 SiMPLE MAKEFILE ILLUSTRATING TARGETS, DEPENDENCIES, AND COMMANDS

editor : editor.o screen.o keyboard.o
gcc -0 editor editor.o screen.o keyboard.o

editor.o : editor.c editor.h keyboard.h screen.h
gcc -c editor.c

screen.o : screen.c screen.h
gcc -C screen.c

O~NO O~ WN =

©

10 keyboard.o : keyboard.c keyboard.h
11 gcc -c keyboard.c

12

13 clean :

14 rm editor *.o

DIVIN
NND SNIsN

To compile editor, you would simply type make in the directory where the makefile
exists. It’s that simple.

This makefile has five rules. The first target, editor, is called the default target—this is
the file that make tries to create. editor has three dependencies, editor.o, screen.o,
and keyboard.o; these three files must exist in order to build editor. Line 2 (the line
numbers do not appear in the actual makefile; they are merely pedagogic tools) is the
command that make will execute to create editor. As you recall from Chapter 3, “Using
GNU cc,” this command builds an executable named editor from the three object files.
The next three rules (lines 4—11) tell make how to build the individual object files.

56

The Linux Programming Toolkit

PART |

Here is where make’s value becomes evident: ordinarily, if you tried to build editor
using the command from line 2, gcc would complain loudly and ceremoniously quit if
the dependencies did not exist. make, on the other hand, after seeing that editor requires
these other files, verifies that they exist and, if they don’t, executes the commands on
lines 5, 8, and 11 first, then returns to line 2 to create the editor executable. Of course,
if the dependencies for the components, such as keyboard.c or screen.h don’t exist,
make will also give up, because it lacks targets named, in this case, keyboard.c and
screen.h.

“All well and good,” you’re probably thinking, “but how does make know when to rebuild
a file?” The answer is stunningly simple: If a specified target does not exist in a place
where make can find it, make (re)builds it. If the target does exist, make compares the
timestamp on the target to the timestamp of the dependencies. If one or more of the
dependencies is newer than the target, make rebuilds the target, assuming that the newer
dependency implies some code change that must be incorporated into the target.

More About Rules

In this section, I will go into more detail about writing makefile rules. In particular, I
cover creating and using phony targets, makefile variables, using environment variables
and make’s predefined variables, implicit rules, and pattern rules.

Phony Targets

In addition to the normal file targets, make allows you to specify phony targets. Phony
targets are so named because they do not correspond to actual files. The final target in
Listing 4.1, clean, is a phony target. Phony targets exist to specify commands that make
should execute. However, because clean does not have dependencies, its commands are
not automatically executed. This follows from the explanation of how make works: upon
encountering the clean target, make sees if the dependencies exist and, because clean
has no dependencies, make assumes the target is up to date. In order to build this target,
you have to type make clean. In our case, clean removes the editor executable and its
constituent object files. You might create such a target if you wanted to create and dis-
tribute a source-code tarball to your users or to start a build with a clean build tree.

If, however, a file named clean happened to exist, make would see it. Again, because it
has no dependencies, make would assume that it is up to date and not execute the com-
mands listed on line 14. To deal with this situation, use the special make target .PHONY.

Project Management Using GNU make 57
CHAPTER 4
Any dependencies of the .PHONY target will be evaluated as usual, but make will disregard
the presence of a file whose name matches one of .PHONY’s dependencies and execute the
corresponding commands anyway. Using .PHONY, our sample makefile would look like:
1 editor : editor.o screen.o keyboard.o
2 gcc -0 editor editor.o screen.o keyboard.o
3
4 editor.o : editor.c editor.h keyboard.h screen.h
5 gcc -c editor.c
6
7 screen.o : screen.c screen.h
8 gcc -c screen.c
9
10 keyboard.o : keyboard.c keyboard.h
11 gcc -c keyboard.c
12
13.PHONY : clean
14
15 clean :
16 rm editor *.o
Variables
To simplify editing and maintaining makefiles, make allows you to create and use vari-
ables. A variable is simply a name defined in a makefile that represents a string of text;
this text is called the variable’s value. Define variables using the general form:
VARNAME = some_text [...]
To obtain VARNAME’s value, enclose it in parentheses and prefix it with a $:
$ (VARNAME)
VARNAME expands to the text on the right-hand side of the equation. Variables are usually
defined at the top of a makefile. By convention, makefile variables are all uppercase, c
although this is not required. If the value changes, you only need to make one change = £
instead of many, simplifying makefile maintenance. So, after modifying Listing 4.1 to E 2\
use two variables, it looks like the following: E

LisTING 4.2 USING VARIABLES IN MAKEFILES

1 OBJS = editor.o screen.o keyboard.o
2 HDRS = editor.h screen.h keyboard.h
3 editor : $(OBJS)

continues

58

The Linux Programming Toolkit

PART |

LISTING 4.2 CONTINUED

4 gcc -o editor $(0BJS)

5

6 editor.o : editor.c $(HDRS)
7 gcc -c editor.c

8

9 screen.o : screen.c screen.h
10 gcc -c screen.c

11

12 keyboard.o : keyboard.c keyboard.h
13 gcc -c keyboard.c

14

15 .PHONY : clean

16

17 clean :

18 rm editor $(0BJS)

0BJS and HDRS will expand to their value each time they are referenced. make actually
uses two kinds of variables—recursively-expanded and simply expanded. Recursively-
expanded variables are expanded verbatim as they are referenced; if the expansion con-
tains another variable reference, it is also expanded. The expansion continues until no
further variables exist to expand, hence the name, “recursively-expanded.” An example
will make this clear.

Consider the variables TOPDIR and SRCDIR defined as follows:

TOPDIR /home/kwall/myproject
SRCDIR = $(TOPDIR)/src

Thus, SRCDIR will have the value /home/kwall/myproject/src. This works as expected
and desired. However, consider the next variable definition:

CC = gcc
CC = $(CC) -o

Clearly, what you want, ultimately, is “CC = gcc -0.” That is not what you will get, how-
ever. $(CC) is recursively-expanded when it is referenced, so you wind up with an infi-
nite loop: $(CC) will keep expanding to $(CC), and you never pick up the -o option.
Fortunately, make detects this and reports an error:

*** Recursive variable "CC' references itself (eventually). Stop.

To avoid this difficulty, make uses simply expanded variables. Rather than being expand-
ed when they are referenced, simply expanded variables are scanned once and for all
when they are defined; all embedded variable references are resolved. The definition syn-
tax is slightly different:

CC := gcc -0
CC += -02

Project Management Using GNU make 59

CHAPTER 4

The first definition uses := to set CC equal to gcc -o and the second definition uses += to
append -02 to the first definition, so that CC’s final value is gcc -o -02. If you run into
trouble when using make variables or get the “VARNAME references itself” error mes-
sage, it’s time to use the simply expanded variables. Some programmers use only simply
expanded variables to avoid unanticipated problems. Since this is Linux, you are free to
choose for yourself!

Environment, Automatic, and Predefined
Variables

In addition to user-defined variables, make allows the use of environment variables and
also provides “automatic” variables and predefined variables. Using environment vari-
ables is ridiculously simple. When it starts, make reads every variable defined in its envi-
ronment and creates variables with the same name and value. However, similarly named
variables in the makefile override the environment variables, so beware. make provides a
long list of predefined and automatic variables, too. They are pretty cryptic looking,
though. See Table 4.1 for a partial list of automatic variables.

TABLE 4.1 AUTOMATIC VARIABLES

Variable Description

se The filename of a rule’s target
$< The name of the first dependency in a rule
$” Space-delimited list of all the dependencies in a rule

$? Space-delimited list of all the dependencies in a rule that are newer than
the target

$(@D) The directory part of a target filename, if the target is in a subdirectory

$(@F) The filename part of a target filename, if the target is in a subdirectory

DIVIN
NND SNIsN

In addition to the automatic variables listed in Table 4.1, make predefines a number of
other variables that are used either as names of programs or to pass flags and arguments
to these programs. See Table 4.2.

TABLE 4.2 PREDEFINED VARIABLES FOR PROGRAM NAMES AND FLAGS

Variable Description

AR Archive-maintenance programs; default value = ar

AS Program to do assembly; default value = as

continues

60

The Linux Programming Toolkit

PART |

TABLE 4.2 CONTINUED

Variable Description

cc Program for compiling C programs; default value = cc
CPP C Preprocessor program; default value = cpp

RM Program to remove files; default value = “rm -f”
ARFLAGS Flags for the archive-maintenance program; default = rv
ASFLAGS Flags for the assembler program; no default

CFLAGS Flags for the C compiler; no default

CPPFLAGS Flags for the C preprocessor; no default

LDFLAGS Flags for the linker (1d); no default

If you want, you can redefine these variables in the makefile. In most cases, their default
values are reasonable.

Implicit Rules

In addition to the rules that you explicitly specify in a makefile, which are called explicit
rules, make comes with a comprehensive set of implicit, or predefined, rules. Many of
these are special-purpose and of limited usage, so we will only cover a few of the most
commonly used implicit rules. Implicit rules simplify makefile maintenance.

Suppose you have a makefile that looks like the following:

OBJS = editor.o screen.o keyboard.o
editor : $(0BJS)
cc -0 editor $(0OBJS)

.PHONY : clean

clean :
rm editor $(O0BJS)

oO~NO O~ OND =

The command for the default target, editor, mentions editor.o, screen.o, and key -
board. o, but the makefile lacks rules for building those targets. As a result, make will
use an implicit rule that says, in essence, for each object file somefile.o, look for a cor-
responding source file somefile.c and build the object file with the command gcc -c
somefile.c -0 somefile.o. So, make will look for C source files named editor.c,
screen.c, and keyboard.c, compile them to object files (editor.o, screen.o, and key -
board.o), and finally, build the default editor target.

The mechanism is actually more general than what I described. Object (. o) files can be
created from C source, Pascal source, Fortran source, and so forth. make looks for the

Project Management Using GNU make 61

CHAPTER 4

dependency that can actually be satisfied. So, if you have files editor.p, screen.p, and
keyboard.p, the Pascal compiler will be invoked rather than the C compiler (.p is the
assumed extension of Pascal source files). The lesson here is that if, for some perverse
reason, your project uses multiple languages, don’t rely on the implicit rules because the
results may not be what you expected.

Pattern Rules

Pattern rules provide a way around the limitations of make’s implicit rules by allowing
you to define your own implicit rules. Pattern rules look like normal rules, except that the
target contains exactly one character (%) that matches any nonempty string. The depen-
dencies of such a rule also use % in order to match the target. So, for example, the rule

%.0 : %.C
tells make to build any object file somename.o from a source file somename.c.

Like implicit rules, make uses several predefined pattern rules:

%.0

%.C
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -0 $@

This is the same as the example. It defines a rule that makes any file x.o from x.c. This
rule uses the automatic variables $< and $@ to substitute the names of the first dependen-
cy and the target each time the rule is applied. The variables $(CC), $(CFLAGS), and

$ (CPPFLAGS) have the default values listed in Table 4.2.

Comments

You can insert comments in a makefile by preceding the comment with the hash sign (#).
When make encounters a comment, it ignores the hash symbol and the rest of the line fol-
lowing it. Comments can be placed anywhere in a makefile. Special consideration must
be given to comments that appear in commands, because most shells treat # as a
metacharacter (usually as a comment delimiter). As far as make is concerned, a line that
contains only a comment is, for all practical purposes, blank.

DIVIN
NND SNIsN

Additional make Command-line
Options

Like most GNU programs, make accepts a cornucopia of command-line options. The
most common ones are listed in Table 4.3.

62

The Linux Programming Toolkit

PART |

TaBLE 4.3 CoMMON make COMMAND-LINE OPTIONS

Option Description
-f file Specify an alternatively-named makefile file.
-n Print the commands that would be executed, but

don’t actually execute them.

-Idirname Specify dirname as a directory in which make
should search for included makefiles.

-s Don’t print the commands as they are executed.

-w If make changes directories while executing,
print the current directory names.

-Wfile Act as if file has been modified; use with -n to
see how make would behave if file had been
changed.

-r Disable all of make’s built-in rules.
-d Print lots of debugging information.
-i Ignore non-zero error codes returned by com-

mands in a makefile rule. make will continue
executing even if a command returns a non-zero
exit status.

-k If one target fails to build, continue to build
other targets. Normally, make terminates if a
target fails to build successfully.

-iN Run N commands at once, where N is a
non-zero integer.

Debugging make

If you have trouble using make, the -d option tells make to print lots of extra debugging
information in addition to the commands it is executing. The output can be overwhelm-
ing because the debugging dump will display what make does internally and why. This
includes the following:

* Which files make evaluates for rebuilding

e Which files are being compared and what the comparison results are

e Which files actually need to be remade

* Which implicit rules make thinks it will use

e Which implicit rules make decides to use and the commands it actually executes

Project Management Using GNU make 63

CHAPTER 4

Common make Error Messages

This section lists the most common error messages you will encounter while using make.
For complete documentation, refer to the make manual or info pages.

* No rule to make target ‘target'. Stop The makefile does not contain a
rule telling make how to construct the named target and no default rules apply.

* ‘target' is up to date The dependencies for the named target have not
changed.

e Target ‘target' not remade because of errors An error occurred while
building the named target. This message only appears when using make’s -k option.

e command: Command not found make could not find command. This usually occurs
because command has been misspelled or is not in $PATH.s

e Illegal option - option The invocation of make included an option that it
does not recognize.

Useful Makefile Targets

In addition to the clean target I mentioned previously, several other targets typically
inhabit makefiles. A target named install moves the final binary, any supporting
libraries or shell scripts, and documentation to their final homes in the filesystem and
sets file permissions and ownership appropriately. An install target typically also com-
piles the program and may also run a simple test to verify that the program compiled cor-
rectly. An uninstall target would delete the files installed by an install target.

A dist target is a convenient way to prepare a distribution package. At the very least, the
dist target will remove old binary and object files from the build directory and create an

archive file, such as a gzipped tarball, ready for uploading to World Wide Web pages and c
(%)

FTP sites. ==
> 0

For the convenience of other developers, you might want to create a tags target that m 2
c

creates or updates a program’s tags table. If the procedure for verifying a program is
complex, you will definitely want to create a separate target, named test or check that
executes this procedure and emits the appropriate diagnostic messages. A similar target,
named installtest or installcheck, would be used to validate an installation. Of
course the install target must have successfully built and installed the program first.

64

The Linux Programming Toolkit

PART |

Summary

This chapter covered the make command, explaining why it is useful and showing you
how to write simple but useful makefiles. It also discussed some of the subtleties of make
rules and listed some of make’s helpful command-line options. With this foundation, you
should know enough to use make to manage the process of building and maintaining your
software projects.

Creating Self-
Configuring
Software with
autoconf

by Kurt Wall

IN THIS CHAPTER

¢ Understanding autoconf 66
¢ Built-In Macros 69
¢ Generic Macros 76

e An Annotated autoconf Script 77

66

The Linux Programming Toolkit

PART |

Linux’s mixed origins and the variety of Linux distributions available demand a flexible
and adaptable configuration and build environment. This chapter looks at GNU
autoconf, a tool that enables you to configure your software to adapt to the wide assort-
ment of system configurations in which it may be built, including many non-Linux sys-
tems.

Understanding autoconf

Developing software that runs on a number of different UNIX and UNIX-like systems
requires considerable effort. First, the code itself must be portable. Portable code makes
few assumptions about the hardware on which it may be run or the software libraries
available to it. In addition, if it’s C code, to ensure maximum portability, the code has to
stick to strict ISO/ANSI C, or isolate non-standard C to as few modules as possible.

Second, you need to know a lot about the compile and runtime environments of many
different systems and, possibly, hardware architectures. GNU software, while ubiquitous
on Linux systems and available for a mind-boggling array of other operating systems and
hardware platforms, may not always be available on those systems. In addition, the fol-
lowing conditions may exist:

e The C compiler may be pre-ISO
e Libraries may be missing key features
* System services may function differently

¢ Filesystem conventions will certainly be different

On the hardware side, you may have to deal with big-endian, little-endian, or hybrid data
representation mechanisms. When you get away from Intel’s x86 processors, you have to
deal with, for example, PA-RISC, several varieties of Sparcs, the Motorola chips (in sev-
eral generations) that drive Macintosh and Apple computers, MIPS, Amiga, and, coming
soon to a computer near you, Intel’s Merced or IA64 chip. Finally, you have to write a
generic makefile and provide instructions to your users on how to edit the makefile to fit
local circumstances.

autoconf addresses many of these problems. It generates shell scripts that automatically
configure source code packages to adapt to many different brands of UNIX and UNIX-
like systems. These scripts, usually named configure, test for the presence or absence of
certain features a program needs or can use, and build makefiles based on the results of

Creating Self-Configuring Software with autoconf

67

CHAPTER 5

these tests. The scripts autoconf generates are self-contained, so users do not need to
have autoconf installed on their own systems in order to build software. All they have to
do is type ./configure in the source distribution directory.

To build a configure script, you create a file named configure.in in the root directory
of your source code tree. configure.in contains a series of calls to autoconf macros
that test for the presence or behavior of features your program can utilize or that it
requires. autoconf contains many predefined macros that test for commonly required
features. A second set of macros allows you to build your own custom tests if none of
autoconf’s built-in macros meet your needs. If need be, configure.in can also contain
shell scripts that evaluate unusual or specialized characteristics. Besides the autoconf
package itself (we cover version 2.12), you will need at least version 1.1 of GNU’s m4, a
macro processor that copies its input to output, expanding macros as it goes (autoconf’s
author, David MacKenzie, recommends version 1.3 or better for speed reasons). The lat-
est versions of both packages can be obtained from the GNU Web site, www.gnu.org,
their FTP site, ftp.gnu.org, or from many other locations around the Web. Most Linux
distributions contain them, too.

Building configure.in

Each configure.in file must invoke AC_INIT before any test and AC_OUTPUT after all the
tests. These are the only two required macros. The following is the syntax for AC_INIT:

AC_INIT (unique_file_in_source_dir)

unique_file_in_source_dir is a file present in the source code directory. The call to
AC_INIT creates shell code in the generated configure script that looks for
unique_file_in_source_dir to make sure that it is in the correct directory.

AC_OUTPUT creates the output files, such as Makefiles and other (optional) output files. Its
syntax is as follows:

AC_OUTPUT([file...[,extra_cmds[,init_cmds]]])

file is a space separated list of output files. Each file is created by copying file.in to
file. extra_cmds is a list of commands appended to config.status, which can be used
to regenerate the configure script. init_cmds will be inserted into config.status imme-
diately before extra_cmds.

Juos03ne
HLIM J4VMILi0S

DNI¥NOIANOD
-113S DNILVIE)

68

The Linux Programming Toolkit

PART |

Structuring the File

With few exceptions, the order in which you call autoconf macros does not matter (we
note the exceptions as they occur). That said, the following is the recommended order:

AC_INIT

Tests for programs

Tests for libraries

Tests for header files

Tests for typedefs

Tests for structures

Tests for compiler behavior
Tests for library functions

Tests for system services
AC_OUTPUT

The suggested ordering reflects the fact that, for example, the presence or absence of
libraries has consequences for the inclusion of header files, so header files should be
checked after libraries. Similarly, some system services depend on the existence of par-
ticular library functions, which may only be called if they are prototyped in header files.
You cannot call a function prototyped in a header file if the required library does not
exist. The moral is stick with the recommended order unless you know exactly what you
are doing and have a compelling reason to deviate.

A few words on the layout of configure.in may prove helpful. Use only one macro call

per line, because most of autoconf’s macros rely on a newline to terminate commands.
ituati w r viron vari , vari

In situations where macros read or set environment variables, the variables may be set on

the same line as a macro call.

A single macro call that takes several arguments may exceed the one-call-per-line rule;
use \ to continue the argument list to the next line and enclose the argument list in the m4
quote characters, [and]. The following two macro calls are equivalent:

AC_CHECK_HEADERS([unistd.h termios.h termio.h sgtty.h alloca.h \
sys/itimer.h])

AC_CHECK_HEADERS (unistd.h termios.h termio.h sgtty.h alloca.h sys/timer.h)

Creating Self-Configuring Software with autoconf

69

CHAPTER 5

The first example wraps the arguments in [and] and uses \ (which is interpreted by the
shell, not by m4 or autoconf) to indicate line continuation. The second example is simply
a single long line.

Finally, to insert comments into configure.in, use m4’s comment delimiter, dnl. For
example,

dnl

dnl This is an utterly gratuitous comment

dnl
AC_INIT(some_darn_file)

Helpful autoconf Utilities

In addition to autoconf’s built-in macros, covered in some detail in the next section, the
autoconf package contains several helpful scripts to assist in creating and maintaining
configure.in. To kick start the process, the Perl script autoscan extracts information
from your source files about function calls and included header files, outputting
configure.scan. Before renaming or copying this to configure.in, however, manually
examine it to identify features it overlooked. ifnames functions similarly, looking for the
preprocessor directives #if, #elif, #ifdef and #ifndef in your source files. Use it to
augment autoscan’s output.

Built-In Macros

In many cases, autoconf’s built-in macros will be all that you require. Each set of built-

in tests may be further subdivided into macros that test specific features and more gener-
al tests. This section lists and briefly describes most of the built-in tests. For a complete

list and description of autoconf’s predefined tests, see the autoconf info page.

Tests for Alternative Programs

Table 5.1 describes a group of tests that check for the presence or behavior of particular
programs in situations where you want or need to be able to choose between several
alternative programs. The compilation process is complex, so these macros give you flex-
ibility by confirming the existence of necessary programs or making sure, if they do
exist, that they are properly invoked.

Juos03ne
HLIM J¥VALIOS
DNI¥NOIANOD
-113S DNILVIE)

70

The Linux Programming Toolkit

PART |

TABLE 5.1 ALTERNATIVE PROGRAM TESTS

Test Description

AC_PROG_AWK Checks, in order, for mawk, gawk, nawk, and awk, sets output variable AWK
to the first one it finds

AC_PROG_CC Decides which C compiler to use, sets output variable CC

AC_PROG_CC_C_O Determines whether or not the compiler accepts the -c and -o switches; if
not, defines NO_MINUS_C_MINUS_O

AC_PROG_CPP Sets output variable CPP to the command that executes the C preprocessor

AC_PROG_INSTALL Sets output variable INSTALL to a BSD-compatible install program or to

install-sh
AC_PROG_LEX Looks for flex or lex, setting output variable LEX to the result
AC_PROG_LN_S Sets variable LN_S to 1n -s if system supports symbolic links or to 1n
otherwise

AC_PROG_RANLIB Set output variable RANLIB to ranlib if ranlib exists, to : otherwise

AC_PROG_YACC Checks, in order, for bison, byacc, and yacc, setting output variable YACC
to bison -y, byacc, or yacc, respectively, depending on which it finds

Generally, the macros in Table 5.1 establish the paths to or confirm the calling conven-
tions of the programs with which they are concerned. In the case of AC_PROG_CC, for
example, you would not want to hard code gcc if it is not available on the target system.
AC_PROG_CC_C_0 exists because older compilers (or, at least, non-GNU compilers) do not
necessarily accept -c¢ and -o or use them the same way gcc does. A similar situation
obtains with AC_PROG_LN_S because many filesystem implementations do not support
creating symbolic links.

Tests for Library Functions

Table 5.2 describes tests that look for particular libraries, first to see if they exist, second
to determine any differences in arguments passed to functions in those libraries. Despite
the best laid plans, programming libraries eventually change in such a way that later ver-
sions become incompatible, sometimes dramatically so, with earlier versions. The
macros in Table 5.2 enable you to adjust the build process to accommodate this unfortu-
nate reality. In extreme cases, you can simply throw up your hands in despair and refuse
to build until the target system is upgraded.

Creating Self-Configuring Software with autoconf

CHAPTER 5

TaBLE 5.2 LiBRARY FUNCTION TESTS

Test

Description

AC_CHECK_LIB
(1ib, function [,
action_if_found [,
action_if_not_found,
[, other_libs]]])

AC_FUNC_GETLOADAVG

AC_FUNC_GETPGRP

AC_FUNC_MEMCMP

AC_FUNC_MMAP

AC_FUNC_SETPGRP

AC_FUNC_UTIME_NULL

AC_FUNC_VFORK

AC_FUNC_VRPINTF

Determines if function exists in library 1ib by attempting to

link a C program with lib. Executes shell commands action_
if_found if the test succeeds or adds -11ib to the output

variable LIB if action_if_found is empty. action_if_not found _
adds -lother_libs to the link command

If the system has the getloadavg() function, add the libraries nec-
essary to get the function to LIBS

Tests whether or not getprgrp() takes no argument, in which case
it defines GETPGRP_VOID. Otherwise, getpgrp requires a process ID
argument.

If memcmp () isn’t available, add memcmp .o to LIBOBJS
Set HAVE_MMAP if mmap () is present

Tests whether or not setprgrp() takes no argument, in which case
it defines SETPGRP_VOID. Otherwise, setpgrp requires two process
ID arguments.

If utime(file, NULL) sets file’s timestamp to the present, define
HAVE_UTIME_NULL

If vfork.h isn’t present, define vfork() to be fork()

Defines HAVE_VPRINTF if vprintf () exists

AC_CHECK_LIB is arguably the most useful macro in this group, because it gives you the
option to say, “This program won’t work unless you have the required library.” The other
macros exist to accommodate the divergence between BSD and AT&T UNIX. One
branch had functions or function arguments that differed sharply from the other. Because
Linux has a mixed BSD and AT&T heritage, these macros help you properly configure

your software.

Tests for Header Files

Header tests check for the presence and location of C-style header files. As with the
macros in Table 5.2, these macros exist to allow you to take into account differences

71

Juos03ne

=

>
=
as
Z2wn
2m
[} =
1

wn
o
E
>
o
m
S
=
=)

72

The Linux Programming Toolkit

PART |

between UNIX and C implementations across systems. Believe it or not, many odd or
old UNIX and UNIX-like systems lack an ANSI-compliant C compiler. Other systems
may lack POSIX-compliant system calls. Table 5.3 describes these tests.

TaBLE 5.3 HEADER FILE TESTS

Test Description

AC_DECL_SYS_SIGLIST If signal.h or unistd.h defines sys_syglist, define
SYS_SIGLIST_DECLARED

AC_HEADER_DIRENT Checks for the following header files in order, dirent.h,
sysdir/ndir.h, sys/dir.h, ndir.h, and defines HAVE_DIRENT H,
HAVE_SYS_NDIR_H, HAVE_SYS_DIR_H or HAVE_NDIR_H, respectively,
depending on which header defines DIR

AC_HEADER_STDC Defines STDC_HEADERS if the system has ANSI/ISO C header files

AC_HEADER_SYS_WAIT If the system has a POSIX compatible sys/wait.h, define output
variable HAVE_SYS_WAIT

AC_HEADER_DIRENT attempts to account for the wide variety of filesystems in use on
UNIX and UNIX-like systems. Since most programs rely heavily on filesystem services,
it is useful to know where their header files live and what functions they make available.
AC_HEADER_STDC determines whether ANSI/ISO-compatible header files are available,
not necessarily whether an compliant compiler is present.

Tests for Structures

The structure tests look for certain structure definitions or for the existence and type of
structure members in header files. Reflecting, again, the UNIX family split, different
implementations provide different data structures. The macros Table 5.4 describes give
you an opportunity to adjust your code accordingly.

TaBLE 5.4 STRUCTURE TESTS

Test Description

AC_HEADER_TIME Set output variable TIME_WITH_SYS_TIME if both time.h and
sys/time.h can be included in a program

AC_STRUCT_ST_BLKSIZE Defines output variable HAVE_ST_BLKSIZE if struct stat has a
st_blksize member

AC_STRUCT_ST_BLOCKS Defines output variable HAVE_ST_BLOCKS if struct stat has a mem-
ber st_blocks

Creating Self-Configuring Software with autoconf

CHAPTER 5

Test Description

AC_STRUCT_TIMEZONE Figures out how to get the timezone. Defines HAVE_TM_ZONE if
struct tm has a tm_zone member or HAVE_TZNAME if an array
tzname is found

Tests for typedefs

Table 5.5 describes macros that look for typedefs in the header files sys/types.h and
stdlib.h. These macros enable you to adjust your code for the presence or absence of
certain typedefs that might be present on one system but absent on another.

TABLE 5.5 TYPEDEF TESTS

Test Description

AC_TYPE_GETGROUPS Sets GETGROUPS_T to the gid_t or int, whichever is the base type of
the array passed to getgroups()

AC_TYPE_MODE_T Define mode_t as int if mode_t is undefined

AC_TYPE_PID T Define pid_t as int if pid_t is undefined

AC_TYPE_SIGNAL Define RETSIGTYPE as int if signal.h does not define signal as
(void*)()

AC_TYPE_SIZE T Define size_t as unsigned if size_t is undefined

AC_TYPE_UID T Define uid_t and gid_t as int if uid_t is undefined

Tests of Compiler Behavior

Table 5.6 describes macros that evaluate compiler behavior or peculiarities of particular
host architectures. Given the array of available compilers and the CPUs on which they
run, these macros allow you to adjust your program to reflect these differences and take
advantage of them.

TaBLE 5.6 COMPILER BEHAVIOR TESTS

Test Description

AC_C_BIGENDIAN If words are stored with the most significant bit
first, define WORDS_BIGENDIAN

AC_C_CONST If the compiler does not fully support the const
declaration, define const to be empty

continues

73

Juos03ne
HLIM J¥VALIOS
DNI¥NOIANOD
-113S DNILVIE)

The Linux Programming Toolkit

PART |

TABLE 5.6 CONTINUED

Test Description

AC_C_INLINE If the compiler does not support the keywords
inline, __inline__, or __inline, define inline to be
empty

AC_C_CHAR_UNSIGNED Define CHAR_UNSIGNED if char is unsigned

AC_C_LONG_DOUBLE Define HAVE_LONG_DOUBLE if the host compiler

supports the long double type.

AC_C_CHECK_SIZEOF (type [,cross-size]) Defines output variable SIZEOF_UCtype to be the
size of the C or C++ built in type type

Tests for System Services

Table 5.7 describes macros that determine the presence and behavior of operating system
services and abilities. The services and capabilities that host operating systems provide
varies widely, so your code needs to be able to accommodate the variety gracefully, if
possible.

TABLE 5.7 SYSTEM SERVICES TESTS

Test Description

AC_SYS_INTERPRETER Set shell variable ac_cv_sys_interpreter to yes or no,
depending on whether scripts start with #! /bin/sh

AC_PATH_X Try to find the path to X Window include and library files,

setting the shell variables x_includes and x_libraries to the
correct paths, or set no_x if the paths could not be found

AC_SYS_LONG_FILE_NAMES Define HAVE_LONG_FILE_NAMES if the system supports file-
names longer than 14 characters

AC_SYS_RESTARTABLE_SYSCALLS On systems that support system call restarts of signal
interruptions, define HAVE_RESTARTABLE_SYSCALLS

Strange as it may seem, there are still filesystems, even UNIX filesystems, that limit file-
names to 14 characters, so AC_SYS_LONG_FILE_NAMES allows you to detect such a barbar-
ian filesystem. AC_PATH_X acknowledges that some operating systems do not support the
X Window system.

Creating Self-Configuring Software with autoconf 75

CHAPTER 5

Tests for UNIX Variants

Tests in this class address vagaries and idiosyncrasies of specific UNIX and UNIX-like
operating systems. As the autoconf author states, “These macros are warts; they will be
replaced by a more systematic approach, based on the functions they make available or
the environments they provide (34). Table 5.8 describes these tests.

TAaBLE 5.8 UNIX VARIANT TESTS

Test Description

AC_AIX Define _ALL_SOURCE if the host system is AIX

AC_DYNIX_SEQ Obsolete—use AC_FUNC_GETMNTENT instead

AC_IRIX_SUN Obsolete—use AC_FUNC_GETMNTENT instead

AC_ISC_POSIX Defines _POSIX_SOURCE to allow use of POSIX features

AC_MINIX Defines _MINIX and _POSIX_SOURCE on MINIX systems to allow use of
POSIX features

AC_SCO_INTL Obsolete—use AC_FUNC_STRFTIME instead

AC_XENIX_DIR Obsolete—use AC_HEADER_DIRENT instead

“Why,” you might be asking yourself, “should I concern myself with obsolete macros?”
There are two related reasons. First, you may run across configure.in files that contain
the macros. If you do, you can replace them with the proper macros. Second, they are
obsolete because better, more general macros have been created. That is, their existence
reflects the fact that a large body of extant code exists that still relies upon the peculiari-
ties of operating system implementations and the difference between UNIX
implementations.

Tip

The easiest way to stay up-to-date on macros that have become obsolete is to
monitor the Changelog file in the autoconf distribution, available at the GNU
FTP site and many other locations all over the Internet.

juodolne
HLIM J¥VALIOS
DNI¥NOIANOD
-113S DNILVIE)

76

The Linux Programming Toolkit

PART |

Generic Macros

The autoconf manual describes the following macros as the building blocks for new
tests. In most cases, they test compiler behavior and so require a test program that can be
preprocessed, compiled, and linked (and optionally executed), so that compiler output
and error messages can be examined to determine the success or failure of the test.

AC_TRY_CPP(includes [,action_if_true [,action_if_false]])

This macro passes includes through the preprocessor, running shell commands
action_if_true if the preprocessor returns no errors, or shell commands
action_if_false otherwise.

AC_EGREP_HEADER (pattern, header, action_if_found [,action_if_not_found])

Use this macro to search for the egrep expression pattern in the file header.
Execute shell commands action_if_found if pattern is found, or
action_if_not_found otherwise.

AC_EGREP_CPP(pattern, program, [action_if_ found [,action_if_not_found]])

Run the C program text program through the preprocessor, looking for the egrep
expression pattern. Execute shell commands action_if_found if pattern is
found, or action_if_not_found otherwise.

AC_TRY_COMPILE(includes, function_body, [action_if_found \
[,action_if _not_found]])

This macro looks for a syntax feature of the C or C++ compiler. Compile a test
program that includes files in includes and uses the function defined in
function_body. Execute shell commands action_if_found if compilation suc-
ceeds, or action_if_not_found if compilation fails. This macro does not link. Use
AC_TRY_LINK to test linking.

AC_TRY_LINK(includes, function_body, [action_if_ found \
[,action_if_not_found]])

This macro adds a link test to Ac_TRy_compILE. Compile and link a test program that
includes files in includes and uses the function defined in function_body.
Execute shell commands action_if_found if linking succeeds, or
action_if_not_found if linking fails.

AC_TRY_RUN(program, [action_if true [, action_if false \
[, action_if_cross_compiling]]])

This macro tests the runtime behavior of the host system. Compile, link, and exe-
cute the text of the C program program. If program returns 0, run shell commands
action_if_true, otherwise, run action_if_false. action_if_cross_compiling

Creating Self-Configuring Software with autoconf

CHAPTER 5

is executed instead of action_if_found if a program is being built to run another
system type.

AC_CHECK_PROG

Checks whether a program exists in the current path.
AC_CHECK_FUNC

Checks whether a function with C linkage exists.
AC_CHECK_HEADER

Tests the existence of a header file.
AC_CHECK_TYPE

If a typedef does not exist, set a default value.

An Annotated autoconf Script

In this section, we create a sample configure.in file. It does not configure an actually
useful piece of software, but merely illustrates many of the macros we discussed in the
preceding sections, some we did not, and some of autoconf’s other features.

The following is the beginning of a listing, which is shown in pieces throughout this sec-
tion. A discussion appears after each listing to discuss what is happening.

dnl Autoconfigure script for bogusapp

dnl Kurt Wall <kwall@xmission.com>

dnl

4 dnl Process this file with “autoconf' to produce a “configure'
wscript

w N =

Lines 14 are a standard header that indicates the package to which configure.in corre-
sponds, contact information, and instructions for regenerating the configure script.

5 AC_INIT (bogusapp.c)
6 AC_CONFIG_HEADER(config.h)

Line 6 creates a header file named config.h in the root directory of your source tree that
contains nothing but preprocessor symbols extracted from your header files. By including
this file in your source code and using the symbols it contains, your program should
compile smoothly and seamlessly on every system on which it might land. autoconf cre-
ates config.h from an input file named config.h.in that contains all the #defines you’ll
need. Fortunately, autoconf ships with an ever-so-handy shell script named autoheader
that generates config.h.in. autoheader generates config.h.in by reading config-
ure.in, a file named acconfig.h that is part of the autoconf distribution, and a

77

Juos03ne

N
o
Z
~
(1]
c
=
=
@

-113S DNILVIE)

wn
o
E
>
o
m
S
=
=)

78

The Linux Programming Toolkit

PART |

./acconfig.h in your source tree for preprocessor symbols. The good news, before you
start complaining about having to create another file, is that . /acconfig.h only needs to
contain preprocessor symbols that aren’t defined anywhere else. Better still, they can
have dummy values. The file simply needs to contain legitimately defined C-style pre-
processor symbols that autoheader and autoconf can read and utilize. See the file
acconfig.h on the CD-ROM for an illustration.

7

8 test -z "$LDFLAGS" && LDFLAGS="-I/usr/include" AC_SUBST (CFLAGS)

9
10 dnl Tests for UNIX variants

11 dnl
12 AC_CANONICAL_HOST

AC_CANONICAL_HOST reports GNU’s idea of the host system. It spits out a name of the
form cpu-company-system. On one of my systems, for example, AC_CANONICAL_HOST
reports the box as i586-unknown-linux.

13
14 dnl Tests for programs
15 dnl

16 AC_PROG_CC

17 AC_PROG_LEX

18 AC_PROG_AWK

19 AC_PROG_YACC

20 AC_CHECK_PROG(SHELL, bash, /bin/bash, /bin/sh)

21
22 dnl Tests for libraries
23 dnl

24 AC_CHECK_LIB(socket, socket)

25 AC_CHECK_LIB(resolv, res_init, [echo "res_init() not in
=libresolv"],

26 [echo "res_init() found in libresolv"])

Line 25 demonstrates how to write custom commands for the autoconf macros. The
third and fourth arguments are the shell commands corresponding to action_if_found
and action_if_not_found. Because of m4’s quoting and delimiting peculiarities, it is
generally advisable to delimit commands that use " or ' with m4’s quote characters ([
and]) to protect them from shell expansion.

27
28 dnl Tests for header files
29 dnl

30 AC_CHECK_HEADER (killer.h)
31 AC_CHECK_HEADERS([resolv.h termio.h curses.h sys/time.h fcntl.h \
32 sys/fcntl.h memory.h])

Creating Self-Configuring Software with autoconf

79

CHAPTER 5

Lines 31 and 32 illustrate the correct way to continue multiple line arguments. Use the \
character to inform m4 and the shell of a line continuation, and surround the entire argu-
ment list with m4’s quote delimiters.

33 AC_DECL_SYS SIGLIST
34 AC_HEADER_STDC

35
36 dnl Tests for typedefs
37 dnl

38 AC_TYPE_GETGROUPS

39 AC_TYPE_SIZE_ T

40 AC_TYPE_PID T

41

42 dnl Tests for structures
43 AC_HEADER_TIME

44 AC_STRUCT_TIMEZONE

45
46 dnl Tests of compiler behavior
47 dnl

48 AC_C_BIGENDIAN
49 AC_C_INLINE
50 AC_CHECK_SIZEOF(int, 32)

Line 48 will generate a warning that AC_TRY_RUN was called without a default value to
allow cross-compiling. You may ignore this warning.

51
52 dnl Tests for library functions
53 dnl

54 AC_FUNC_GETLOADAVG
55 AC_FUNC_MMAP

56 AC_FUNC_UTIME_NULL
57 AC_FUNC_VFORK

58
59 dnl Tests of system services
60 dnl

61 AC_SYS_INTERPRETER
62 AC_PATH X
63 AC_SYS_RESTARTABLE_SYSCALLS

Line 63 will generate a warning that AC_TRY_RUN was called without a default value to
allow cross-compiling. You may ignore this warning.

64
65 dnl Tests in this section exercise a few of “autoconf's
=generic macros
66 dnl AR
67 dnl First, let's see if we have a usable void pointer type ggg;
68 dnl gsz2
69 AC_MSG_CHECKING(for a usable void pointer type) gﬁgm
3520
207

80

The Linux Programming Toolkit

PART |

AC_MSG_CHECKING prints “checking” to the screen, followed by a space and the argument
passed, in this case, “for a usable void pointer type.” This macro allows you to mimic the
way autoconf reports its activity to the user, and to let the user know what configure is
doing. It is preferable to an apparent screen lockup.

70 AC_TRY_COMPILE([],

71 [char *ptr;

72 void *xmalloc();

73 ptr = (char *) xmalloc(1);

74 1,

75 [AC_DEFINE(HAVE_VOID POINTER)
=AC_MSG_RESULT (usable void pointer)],

76 AC_MSG_RESULT (no usable void pointer type))

Lines 70-76 deserve considerable explanation. autoconf will embed the actual C code
(71-73) inside a skeletal C program, write the resulting program to the generated con-
figure script, which will compile it when configure runs. configure catches the com-
piler output and looks for errors (you can track this down yourself by looking for
xmalloc in the configure script). Line 75 creates a preprocessor symbol
HAVE_VOID_POINTER (that you would have to put into ./acconfig.h, since it doesn’t exist
anywhere else except your code). If the compilation succeeds, configure will output
#define HAVE_VOID_POINTER 1 to config.h and print the message “usable void point-
er” to the screen; if compilation fails, configure outputs /*#undef HAVE_VOID_POINTER
*/ to config.h and displays “no usable void pointer” to the screen. In your source files,
then, you simply test this preprocessor symbol like so:

#ifdef HAVE_VOID_POINTER
/* do something */

#else
/* do something else */
#endif
77 dnl
78 dnl Now, let's exercise the preprocessor
79 dnl
80 AC_TRY_CPP(math.h, echo 'found math.h', echo 'no math.h?

= - deep doo doo!')
On line 80, if configure finds the header file math.h, it will write “found math.h” to the
screen; otherwise, it informs you that you have a problem.

81

82 dnl

83 dnl Next, we test the linker

84 dnl

85 AC_TRY_LINK([#ifndef HAVE_UNISTD H
86 #include <signal.h>

87 #endif],

Creating Self-Configuring Software with autoconf

81
CHAPTER 5
88 [char *ret = *(sys_siglist + 1);],
89 [AC_DEFINE (HAVE_SYS SIGLIST), AC_MSG_RESULT(got sys_siglist)],
90 [AC_MSG_RESULT(no sys_siglist)])

We perform the same sort of test in lines 85-90 that we performed on lines 70-75.
Again, because HAVE_SYS_SIGLIST is not a standard preprocessor symbol, you have to
declare it in . /acconfig.h.

91 dnl
92 dnl Finally, set a default value for a ridiculous type
93 dnl

94 AC_CHECK_TYPE (short_short_t, unsigned short)

Line 94 simply checks for a (hopefully) non-existent C data type. If it does not exist, we
define short_short_t to be unsigned short. You can confirm this by looking in con-
fig.h for a #define of short_short_t.

95

96 dnl Okay, we're done. Create the output files and get out of here

97 dnl
98 AC_OUTPUT (Makefile)

Having completed all of our tests, we are ready to create our Makefile. AC_OUTPUT’s job
is to convert all of the tests we perform into information the compiler can understand so
that when your happy end user types make, it builds your program, taking into account
the peculiarities of the host system. To do its job, AC_OUTPUT needs a source file named,
in this case, Makefile.in.

Hopefully, you will recall that in the descriptions of autoconf’s macros, I frequently
used the phrase “sets output variable FOO”. autoconf uses those output variables to set
values in the Makefile and in config.h. For example, AC_STRUCT_TIMEZONE defines
HAVE_TZNAME if an array tzname is found. In the config.h that configure creates, you
will find #define HAVE_TZNAME 1. In your source code, then, you could wrap code that
uses the tzname array in a conditional statement such as:
if (HAVE_TZNAME)

/* do something */

else
/* do something else */

Similarly, Makefile.in contains a number of expressions such as “CFLAGS =
@CFLAGS@”. configure replaces each token of the form @output_variable@ in the
Makefile with the correct value, as determined by the tests performed. In this case,

wn

@CFLAGSe holds the debugging and optimization options, which, by default, " ©) QS
are -g -02. 5223
o> RFZ

eI

S_2wn

b

I]

82

The Linux Programming Toolkit

PART |

With the template created, type autoconf in the directory where you created config-
ure.in, which should be the root of your source tree. You will see two warnings (on
lines 48 and 63), and wind up with a shell script named configure in your current work-
ing directory. To test it, type . /configure. Figure 5.1 shows configure while it is exe-
cuting.

kwallghoser srcl$. /configure

FIGURE 5.1
creating cache ,/config,cache

configure while checking host sustem tupe... Invalid configuration “i68-pe-linux-gnu’s machine
R “iE86-pe-linuwe not recoanized
running.

checking for goc... goc
checking uhether the C compiler (gce =I/usr/include) works..

checking uhether the © conpiler (ace —1/uer/include) 1s a creseocongiler... no
checking whether we are using GHU C... ues

checking uhsther gec sccepts g... ues

checking for flex... flex

checking for wurap in 171, yss

checking for gauk... gauk

checking for bison,., bison —u

checking for bash... /bin/sh

checking for socket in —lsocket,., no

checking for res_init in ~lresolv... yes

res_init() not in libresolv

checking how to run the C preprocesser... gec £

checking for killer,h,., no

checking for resolv.h... ues

checking for termio,h,,, ges

checking for curses.h...
checking for sys/time.h, ..
checking for fentlh... ues
checking for sys/fentl.h,.

checking for memory.h. .

checking for sus_siglist declarstion in signsl.h or unistd.h,.. yes
checking for ANST C header files... I

If all went as designed, configure creates Makefile, config.h, and logs all of its activi-
ty to config.log. You can test the generated Makefile by typing make. The log file is
especially useful if configure does not behave as expected, because you can see exactly
what configure was trying to do at a given point. For example, the log file snippet
below shows the steps configure took while looking for the socket () function (see line
24 of configure.in).

configure:979: checking for socket in -lsocket

configure:998: gcc -o conftest -g -02 -I/usr/include conftest.c -lsocket

1>&5

/usr/bin/1ld: cannot open -lsocket: No such file or directory

collect2: 1d returned 1 exit status

configure: failed program was:

#line 987 "configure"

#include "confdefs.h"

/* Override any gcc2 internal prototype to avoid an error. */

/* We use char because int might match the return type of a gcc2
builtin and then its argument prototype would still apply. */

char socket();

int main() {
socket ()
; return 0; }

Creating Self-Configuring Software with autoconf

CHAPTER 5

You can see that linker, 1d, failed because it could not find the socket library, 1ibsocket.
The line numbers in the snippet refer to the configure script line numbers being
executed.

Although it is a bit involved and tedious to set up, using autoconf provides many advan-
tages for software developers, particularly in terms of code portability among different
operating systems and hardware platforms and in allowing users to customize software to
the idiosyncrasies of their local systems. You only have to perform autoconf’s set up
steps once—thereafter, minor tweaks are all you need to create and maintain self-config-
uring software.

Summary

This chapter took a detailed look at autoconf. After a high level overview of autoconf’s
use, you learned about many built-in macros that autoconf uses to configure software to a
target platform. In passing, you also learned a bit about the wide variety of systems that,
while all basically the same, vary just enough to make programming for them a potential
nightmare. Finally, you walked step-by-step through creating a template file, generating a
configure script, and using it to generate a makefile, the ultimate goal of autoconf.

83

Juos03ne

wn
onN
i Yo
sz
>a
e
m

o
sz
=50
T

-113S DNILVIE)

84

Comparing and
Merging Source
Files

by Kurt Wall

IN THIS CHAPTER

e Comparing Files 86
¢ Preparing Source Code Patches 98

86

The Linux Programming Toolkit

PART |

Programmers often need to quickly identify differences between two files, or to merge
two files together. The GNU project’s diff and patch programs provide these facilities.
The first part of this chapter shows you how to create diffs, files that express the differ-
ences between two source code files. The second part illustrates using diffs to create
source code patches in an automatic fashion.

Comparing Files

The diff command is one of a suite of commands that compares files. It is the one on
which we will focus, but first we briefly introduce the cmp command. Then, we cover the
other two commands, diff3 and sdiff, in the following sections.

Understanding the cmp Command

The cmp command compares two files, showing the offset and line numbers where they
differ. Optionally, cmp displays differing characters side-by-side. Invoke cmp as follows:

$ cmp [options] filel [file2]
A hyphen (-) may be substituted for file1 or file2, so cmp may be used in a pipeline. If
one filename is omitted, cmp assumes standard input. The options include the following:
e -c!--print-chars Print the first characters encountered that differ
e -I N}--ignore-initial=N Ignore any difference encountered in the first N bytes

e -1}--verbose Print the offsets of differing characters in decimal format and the
their values in octal format

e -s|--silent|--quiet Suppress all output, returning only an exit code. 0 means
no difference, 1 means one or more differences, 2 means an error occurred.

e -v!--version Print cmp’s version information

From a programmer’s perspective, cmp is not terribly useful. Listings 6.1 and 6.2 show
two versions of Proverbs 3, verses 5 and 6. The acronyms JPS and NIV stand for Jewish
Publication Society and New International Version, respectively.

LisTING 6.1 JPS VERsION oF PROVERBS 3:5-6

Trust in the Lord with all your heart,

And do not rely on your own understanding.
In all your ways acknowledge Him,

And He will make your paths smooth.

Comparing and Merging Source Files

87

CHAPTER 6

LisTING 6.2 NIV VERSION oF PROVERBS 3:5-6

Trust in the Lord with all your heart
and lean not on your own understanding;
in all your ways acknowledge him,

and he will make your paths straight.

A bare cmp produces the following:

=0
=
83
Z>
o=
wz=
oo
SZ
@ &

$ cmp jps niv
jps niv differ: char 38, line 1

Helpful, yes? We see that the first difference occurs at byte 38 one line 1. Adding the -c
option, cmp reports:

$ cmp -c jps niv
jps niv differ: char 38, line 1 is 54 , 12 ~J

Now we know that the differing character is decimal 52, a control character, in this case.
Replacing -c with -1 produces the following:

$ cmp -1 jps niv
38 54 12
39 12 141
40 101 156
41 156 144
42 144 40
43 40 154

148 157 164
149 164 56
150 150 12
151 56 12
cmp: EOF on niv

The first column of the preceding listing shows the character number where cmp finds a
difference, the second column lists the character from the first file, and the third column
the character from the second file. Note that the second to last line of the output
(151 56 12) may not appear on some Red Hat systems. Character 38, for exam-
ple, is octal 54, a comma (,) in the file jps, while it is octal 12, a newline, in the file niv.
Only part of the output is shown to save space. Finally, combining -c and -1 yields the
following:
$ cmp -cl jps niv

38 54 , 12 ~J

39 12 ~J 141 a

40 101 A 156 n

41 156 n 144 d
42 144 d 40

88

The Linux Programming Toolkit

PART |

43 40 154 1

148 157 o 164 t

149 164 t 56 .
150 150 h 12 ~J
151 56 . 12 ~J

cmp: EOF on niv

Using -c1 results in more immediately readable output, in that you can see both the
encoded characters and their human-readable translations for each character that differs.

Understanding the diff Command

The diff command shows the differences between two files, or between two identically
named files in separate directories. You can direct diff, using command line options, to
format its output in any of several formats. The patch program, discussed in the section
“Preparing Source Code Patches” later in this chapter, reads this output and uses it to re-
create one of the files used to create the diff. As the authors of the diff manual say, “If
you think of diff as subtracting one file from another to produce their difference, you
can think of patch as adding the difference to one file to reproduce the other.”

Because this book attempts to be practical, I will focus on diff’s usage from a program-
mer’s perspective, ignoring many of its options and capabilities. While comparing files
may seem an uninteresting subject, the technical literature devoted to the subject is
extensive. For a complete listing of diff’s options and some of the theory behind file
comparisons, see the diff info page (info diff).

The general syntax of the diff command is
diff [options] filel file2

diff operates by attempting to find large sequences of lines common to filei and
file2, interrupted by groups of differing lines, called hunks. Two identical files, there-
fore, will have no hunks and two complete different files result in one hunk consisting of
all the lines from both files. Also bear in mind that diff performs a line-by-line compari-
son of two files, as opposed to cmp, which performs a character-by-character comparison.
diff produces several different output formats. I will discuss each them in the following
sections.

The Normal Output Format

If we diff Listings 6.1 and 6.2 (jps and niv, respectively, on the CD-ROM), the output
is as follows:

$ diff jps niv
1,4c1,4

Comparing and Merging Source Files

89

CHAPTER 6

Trust in the Lord with all your heart,

And do not rely on your own understanding.
In all your ways acknowledge Him,

And He will make your paths smooth.

AN AN ANA

Trust in the Lord with all your heart
and lean not on your own understanding;
in all your ways acknowledge him,

and he will make your paths straight.

=0
=
83
Z>
o=
wz=
oo
SZ
@ &

V V. V V

The output is in normal format, showing only the lines that differ, uncluttered by context.
This output is the default in order to comply with Posix standards. Normal format is
rarely used for distributing software patches; nevertheless, here is a brief description of
the output, or hunk format. The general normal hunk format is as follows:
change_command

< filel line
< filel line...

> file2 line

> file2 line...

change_command takes the form of a line number or a comma- separated range of lines
from file1, a one character command, and a line number or comma-separated range of
lines from file2. The character will be one of the following:

* a—add
e d—delete
e c—change

The change command is actually the ed command to execute to transform file1 into
file2. Looking at the hunk above, to convert jps to niv, we would have to change lines
1-4 of jps to lines 1-4 of niv.

The Context Output Format

As noted in the preceding section, normal hunk format is rarely used to distribute soft-
ware patches. Rather, the “context” or “unified” hunk formats diff produces are the pre-
ferred formats to patches. To generate context diffs, use the -¢, —context=[NUM], or -C
NUM options to diff. So-called “context diffs” show differing lines surrounded by NUM
lines of context, so you can more clearly understand the changes between files. Listings
6.3 and 6.4 illustrate the context diff format using a simple bash shell script that
changes the signature files appended to the bottom of email and Usenet posts. (No line
numbers were inserted into these listings in order to prevent confusion with the line num-
bers that diff produces.)

The Linux Programming Toolkit

PART |

LisTING 6.3 sigrot.1

#!/usr/local/bin/bash

sigrot.sh

Version 1.0

Rotate signatures

Suitable to be run via cron
HERBHHAHBHHHARBRHH AR B HHHBRBH

sigfile=signature

old=$(cat num)
let new=$(expr $old+1)

if [-f $sigfile.$new]; then
cp $sigfile.$new .$sigfile
echo $new > num

else
cp $sigfile.1 .$sigfile
echo 1 > num

fi

LISTING 6.4 sigrot.2

#!/usr/local/bin/bash

sigrot.sh

Version 2.0

Rotate signatures

Suitable to be run via cron
i i

sigfile=signature
srcdir=$HOME/doc/signatures
srcfile=$srcdir/$sigfile

o0ld=$(cat $srcdir/num)
let new=$(expr $old+1)

if [-f $srcfile.$new]; then
cp $srcfile.$new $HOME/.$sigfile
echo $new > $srcdir/num

else
cp $srcfile.1 $HOME/.$sigfile
echo 1 > $srcdir/num

fi

Context hunk format takes the following form:

*xx filel filel1_timestamp
- file2 file2_timestamp

Comparing and Merging Source Files

91

CHAPTER 6

khkkkkhkkkkhkhhkkhkk*k

*** filel_line_range ****

file1l line 2N
filel line... 32
- file2 line_range 23
file2 line o=
file2 line... g'é

Sz

@ &

The first three lines identify the files compared and separate this information from the
rest of the output, which is one or more hunks of differences. Each hunk shows one area
where the files differ, surrounded (by default) by two line of context (where the files are
the same). Context lines begin with two spaces and differing lines begin with a !, +, or -,
followed by one space, illustrating the difference between the files. A + indicates a line in
the file2 that does not exist in file1, so in a sense, a + line was added to file1 to cre-
ate file2. A - marks a line in file1 that does not appear in file2, suggesting a subtrac-
tion operation. A ! indicates a line that was changed between file1 and file2; for each
line or group of lines from file1 marked with !, a corresponding line or group of lines
from file2 is also marked with a !.

To generate a context diff, execute a command similar to the following:
$ diff -C 1 sigrot.1 sigrot.2

The hunks look like the following:

*** gigrot.1 Sun Mar 14 22:41:34 1999
- sigrot.2 Mon Mar 15 00:17:40 1999
*k k% 2’4 *kkk
sigrot.sh
! # Version 1.0
Rotate signatures
-- 2,4 ----
sigrot.sh
! # Version 2.0
Rotate signatures

khkkhkhkhkhkhkkkkkkkk

k 8,19 *kkk

sigfile=signature

! old=$(cat num)
let new=$(expr $o0ld+1)

! if [-f $sigfile.$new]; then
! cp $sigfile.$new .$sigfile
! echo $new > num

else
! cp $sigfile.1 .$sigfile
! echo 1 > num

92

The Linux Programming Toolkit

PART |

fi

- 8,21

sigfile=signature
+ srcdir=$HOME/doc/signatures
+ srcfile=$srcdir/$sigfile

! old=$(cat $srcdir/num)
let new=$(expr $old+1)

! if [-f $srcfile.$new]; then
! cp $srcfile.$new $HOME/.$sigfile
! echo $new > $srcdir/num
else
! cp $srcfile.1 $HOME/.$sigfile
! echo 1 > $srcdir/num

fi**************

NoTE

To shorten the display, -C 1 was used to indicate that only a single line of con-
text should be displayed. The patch command requires at least two lines of con-
text to function properly. So when you generate context diffs to distribute as
software patches, request at least two lines of context.

The output shows two hunks, one covering lines 2—4 in both files, the other covering
lines 8-19 in sigrot.1 and lines 8-21 in sigrot.2. In the first hunk, the differing lines
are marked with a ! in the first column. The change is minimal, as you can see, merely
an incremented version number. In the second hunk, there are many more changes, and
two lines were added to sigrot.2, indicated by the +. Each change and addition in both
hunks is surrounded by a single line of context.

The Unified Output Format

Unified format is a modified version of context format that suppresses the display of
repeated context lines and compacts the output in other ways as well. Unified format
begins with a header identifying the files compared

- file1 filel1_timestamp
+++ file2 file2_timestamp

followed by one or more hunks in the form

@@ filel_range file2_range @@
line_from_either_file
line_from_either_file...

Comparing and Merging Source Files

CHAPTER 6

Context lines begin with a single space and differing lines begin with a + or a -, indicat-
ing that a line was added or removed at this location with respect to file1. The follow-
ing listing was generated with the command diff -U 1 sigrot.1 sigrot.2.

- sigrot.1 Sun Mar 14 2:41:34 1999
+++ sigrot.2 Mon Mar 15 00:17:40 1999
ee -2,3 +2,3 @e

sigrot.sh

-# Version 1.0

+# Version 2.0

Rotate signatures
@@ -8,12 +8,14 @e
sigfile=signature
+srcdir=$HOME/doc/signatures
+srcfile=$srcdir/$sigfile

-0ld=$(cat num)
+0ld=$(cat $srcdir/num)
let new=$(expr $old+1)

-if [-f $sigfile.$new]; then
cp $sigfile.$new .$sigfile
echo $new > num

+if [-f $srcfile.$new]; then

+ cp $srcfile.$new $HOME/.$sigfile

+ echo $new > $srcdir/num

else
cp $sigfile.1 .$sigfile

- echo 1 > num

+ cp $srcfile.1 $HOME/.$sigfile

+ echo 1 > $srcdir/num

fi

As you can see, the unified format’s output is much more compact, but just as easy to
understand without repeated context lines cluttering the display. Again, we have two
hunks. The first hunk consists of lines 2-3 in both files, the second lines 812 in
sigrot.1 and lines 8—14 of sigrot.2. The first hunk says “delete ‘# Version 1.0’ from
file1 and add ‘# Version 2.0’ to file1 to create file2.” The second hunk has three sim-

ilar sets of additions and deletions, plus a simple addition of two lines at the top of the
hunk.

As useful and compact as the unified format is, however, there is a catch: only GNU
diff generates unified diffs and only GNU patch understands the unified format. So, if
you are distributing software patches to systems that do not or may not use GNU diff
and GNU patch, don’t use unified format. Use the standard context format.

93

=0
=

83
Z>
o=
wz=
oo
SZ
@ &

94

The Linux Programming Toolkit

PART |

Additional diff Features

In addition to the normal, context, and unified formats we have discussed, diff can also
produce side-by-side comparisons, ed scripts for modifying or converting files, and an
RCS-compatible output format, and it contains a sophisticated ability to merge files
using an if-then-else format. To generate side-by-side output, use diff’s -y or - -side-
by-side options. Note, however, that the output will be wider than usual and long lines
will be truncated. To generate ed scripts, use the -e or - -ed options. For information
about diff’s RCS and if-then-else capabilities, see the documentation—they are not dis-
cussed in this book because they are esoteric and not widely used.

diff Command-Line Options

Like most GNU programs, diff sports a bewildering array of options to fine tune its
behavior. Table 6.1 summarizes some of these options. For a complete list of all options,
use the command diff --help.

TaABLE 6.1 SELECTED diff OPTIONS

Option Meaning

--binary Read and write data in binary mode

-c}-C NUM| - -context=NUM Produce context format output, displaying
NUM lines of context

-t} - -expand - tabs Expand tabs to spaces in the output

-i!--ignore-case Ignore case changes, treating upper- and

lowercase letters the same
-H| - -speed-large-files Modify diff’s handling of large files
-w| - -ignore-all-space Ignore whitespace when comparing lines
-I REGEXP, --ignore-

matching-1lines=REGEXP Ignore lines that insert or delete lines that
match the regular expression REGEXP

-B} - -ignore-blank-lines Ignore changes that insert or delete blank lines

-b} - -ignore-space-change Ignore changes in the amount of whitespace

-1} - -paginate Paginate the output by passing it through pr

-p| - -show-c-function Show the C function in which a change occurs

-q| - -brief Only report if files differ, do not output the dif-
ferences

-a) - -text Treat all files as text, even if they appear to be

binary, and perform a line-by-line comparison

Comparing and Merging Source Files

CHAPTER 6

Option

Meaning

-u'-U NUM!--unified=NUM

-v|--version

-y|--side-by-side

Produce unified format output, displaying
NUM lines of context

Print diff’s version number

Produce side-by-side format output

Understanding the diff3 Command

diff3 shows its usefulness when two people change a common file. It compares the two
sets of changes, creates a third file containing the merged output, and indicates conflicts

between the changes. diff3’s syntax is:

diff3 [options] myfile oldfile yourfile

oldfile is the common ancestor from which myfile and yourfile were derived.
Listing 6.5 introduces sigrot.3. It is the same as sigrot. 1, except that we added a

return statement at the end of the script.

LISTING 6.5 sigrot.3

#!/usr/local/bin/bash

sigrot.sh

Version 3.0

Rotate signatures

Suitable to be run via cron
RS HH AR B H AR H AR R R

sigfile=signature

old=$(cat num)
let new=$(expr $0ld+1)

if [-f $sigfile.$new]; then
cp $sigfile.$new .$sigfile
echo $new > num

else
cp $sigfile.1 .$sigfile
echo 1 > num

fi

return 0

Predictably, diff3’s output is more complex because it must juggle three input files.
diff3 only displays lines that vary between the files. Hunks in which all three input files

95

=0
=

83
Z>
o=
wz=
oo
SZ
@ &

96

The Linux Programming Toolkit

PART |

are different are called three-way hunks; two-way hunks occur when only two of the
three files differ. Three-way hunks are indicated with ====, while two-way hunks add a
1, 2, or 3 at the end to indicate which of the files is different. After this header, diff3
displays one or more commands (again, in ed style), that indicate how to produce the
hunk, followed by the hunk itself. The command will be one of the following:

file:la—The hunk appears after line 1, but does not exist in file, so it must be
appended after line 1 to produce the other files.

file:rc—The hunk consists of range r lines from file and one of the indicated
changes must be made in order to produce the other files.

To distinguish hunks from commands, diff3 hunks begin with two spaces. For example,
$ diff3 sigrot.2 sigrot.1 sigrot.3

yields (output truncated to conserve space):

1:3c
Version 2.0
2:3cC
Version 1.0
3:3cC
Version 3.0
====1
1:9,10c
srcdir=$HOME/doc/signatures
srcfile=$srcdir/$sigfile
2:8a
3:8a

1:12¢c

old=$(cat $srcdir/num)
2:10c
3:10c

old=$(cat num)

The first hunk is a three-way hunk. The other hunks are two-way hunks. To obtain
sigrot.2 from sigrot.1 or sigrot.3, the lines

srcdir=$HOME/doc/signatures
srcfile=$srcdir/$sigfile

from sigrot.2 must be appended after line 8 of sigrot.1 and sigrot.3. Similarly, to
obtain sigrot.1 from sigrot.2, line 10 from sigrot.1 must be changed to line 12 from
sigrot.1.

Comparing and Merging Source Files

97

CHAPTER 6

As previously mentioned, the output is complex. Rather than deal with this, you can use
the -m or - -merge to instruct diff3 to merge the files together, and then sort out the
changes manually.

$ diff3 -m sigrot.2 sigrot.1 sigrot.3 > sigrot.merged

merges the files, marks conflicting text, and saves the output to sigrot.merged. The
merged file is much simpler to deal with because you only have to pay attention to con-
flicting output, which, as shown in Listing 6.6, is clearly marked with <<<<<<<, |11 1111,
Or >>>>>>>,

=0
=

83
Z>
o=
wz=
oo
SZ
@ &

LisTING 6.6 OuTtpPUT OF diff3's MERGE OPTION

#!/usr/local/bin/bash
sigrot.sh

<<<<<<< sigrot.2

Version 2.0

Piiiin sigrot.1

Version 1.0

Version 3.0

>>>>>>> gigrot.3

Rotate signatures

Suitable to be run via cron
HEHHBHHBHHHHHBH AR HHBHHBH AR R

sigfile=signature
srcdir=$HOME/doc/signatures
srcfile=$srcdir/$sigfile

old=$(cat $srcdir/num)
let new=$(expr $o0ld+1)

if [-f $srcfile.$new]; then
cp $srcfile.$new $HOME/.$sigfile
echo $new > $srcdir/num

else
cp $srcfile.1 $HOME/.$sigfile
echo 1 > $srcdir/num

fi

return 0

<<<<<<< marks conflicts from myfile, >>>>>>> marks conflicts from yourfile, and
trtevtt marks conflicts with oldfile. In this case, we probably want the most recent
version number, so we would delete the marker lines and the lines indicating the 1.0 and
2.0 versions.

98

The Linux Programming Toolkit

PART |

Understanding the sdiff Command

sdiff enables you to interactively merge two files together. It displays the files in side-
by-side format. To use the interactive feature, specify the -o file or - -output file to
indicate the filename to which output should be saved. sdiff will display each hunk, fol-
lowed by a % prompt, at which you type one of these commands, followed by Enter:

* 1—Copy the left-hand column to the output file

e r—Copy the right-hand column to the output file

e el—Edit the left-hand column, then copy the edited text to the output file

* er—Edit the right-hand column, then copy the edited text to the output file

e e—Discard both versions, enter new text, then copy the new text to the output file

» eb—Concatenate the two versions, edit the concatenated text, then copy it to the
output file

e g—Quit

Editing sdiff is left as an exercise for you.

Preparing Source Code Patches

Within the Linux community, most software is distributed either in binary (ready to run)
format, or in source format. Source distributions, in turn, are available either as complete
source packages, or as diff-generated patches. patch is the GNU project’s tool for
merging diff files into existing source code trees. The following sections discuss
patch’s command-line options, how to create a patch using diff, and how to apply a
patch using patch.

Like most of the GNU project’s tools, patch is a robust, versatile, and powerful tool. It
can read the standard normal and context format diffs, as well as the more compact uni-
fied format. patch also strips header and trailer lines from patches, enabling you to apply
a patch straight from an email message or Usenet posting without performing any
preparatory editing.

patch Command-Line Options

Table 6.2 lists commonly used patch options. For complete details, try patch --help or
the patch info pages.

Comparing and Merging Source Files

99
CHAPTER 6
TABLE 6.2 patch OPTIONS
Option Meaning 2n
o o
-c| - -context Interpret the patch file as a context diff [a) E
Z 2>
-e}--ed Interpret the patch file as an ed script) ;
wn
-n} - -normal Interpret the patch file as a normal diff 8 2
. . o Z
-u}--unified Interpret the patch file as a unified diff N o
-d DIR|--directory=DIR Make DIR the current directory for interpreting
filenames in the patch file
-F NUM! - - fuzz=NUM Set the fuzz factor to NUM lines when resolving inexact
matches
-1} --ignore-white-space Consider any sequence of whitespace equivalent to
any other sequence of whitespace
-pNUM| - -strip=NUM Strip NUM filename components from filenames in
the patch file
-s|--quiet Work silently unless errors occur
-R|--reverse Assume the patch file was created with the old and new
files swapped
-t} - -batch Do not ask any questions
--version Display patch’s version information and exit

In most cases, patch can determine the format of a patch file. If it gets confused, howev-
er, use the -c, -e, -n, or -u options to tell patch how to treat the input patch file. As pre-
viously noted , only GNU diff and GNU patch can create and read, respectively, the
unified format, so unless you are certain that only users with access to these GNU utili-
ties will receive your patch, use the context diff format for creating patches. Also recall
that patch requires at least two lines of context correctly to apply patches.

The fuzz factor (-F NUM or - -fuzz=NUM) sets the maximum number of lines patch will
ignore when trying to locate the correct place to apply a patch. It defaults to 2, and can-
not be more than the number of context lines provided with the diff. Similarly, if you are
applying a patch pulled from an email message or a Usenet post, the mail or news client
may change spaces into tabs or tabs into spaces. If so, and you are having trouble apply-
ing the patch, use patch’s -1 or - -ignore-white-space option.

Sometimes, programmers reverse the order of the filenames when creating a diff. The
correct order should be old-file new-file. If the patch encounters a diff that appears

100

The Linux Programming Toolkit

PART |

to have been created in new-file old-file order, it will consider the patch file a
“reverse patch.” To apply a reverse patch in normal order, specify -R or - -reverse to
patch. You can also use -R to back out a previously applied patch.

As it works, patch makes a backup copy of each source file it is going to change,
appending .orig to the end of the file. If patch fails to apply a hunk, it saves the hunk
using the filename stored in the patch file and adding .rej (for reject) to it.

Creating a Patch

To create a patch, use diff to create a context or unified diff, place the name of the older
file before the newer file on the diff command line, and name your patch file by
appending .diff or .patch to the filename. For example, to create a patch based on
sigrot.1 and sigrot.2, the appropriate command line would be

$ diff -c sigrot.1 sigrot.2 > sigrot.patch
to create a context diff, or
$ diff -u sigrot.1 sigrot.2 > sigrot.patch

to create a unified diff. If you have a complicated source tree, one with several subdirec-
tories, use diff’s -r (--recursive) option to tell diff to recurse into each subdirectory
when creating the patch file.

Applying a Patch
To apply the patch, the command would be

$ patch -p0@ < sigrot.patch

The -pNUM option tells patch how many “/”’s and intervening filename components to
strip off the filename in the patch file before applying the patch. Suppose, for instance,
the filename in the patch is /home/kwall/src/sigrot/sigrot.1. -p1 would result in
home/kwall/src/sigrot/sigrot.1; -p4 would result in sigrot/sigrot.1; -p strips off
every part but the final filename, or sigrot.1.

If, after applying a patch, you decide it was mistake, simply add -R to the command line
you used to install the patch, and you will get your original, unpatched file back:

$ patch -p@ -R < sigrot.patch

See, using diff and patch is not hard! Admittedly, there is a lot to know about the
various file formats and how the commands work, but actually applying them is very
simple and straightforward. As with most Linux commands, there is much more you
can learn, but it isn’t necessary to know everything in order to be able to use these
utilities effectively.

Comparing and Merging Source Files

101

CHAPTER 6

Summary

In this chapter, you learned about the cmp, diff, diff3, sdiff, and patch commands. Of
these, diff and patch are the most commonly used for creating and applying source
code patches. You have also learned about diff’s various output formats. The standard
format is the context format, because most patch programs can understand it. What you
have learned in this chapter will prove to be an essential part of your Linux software
development toolkit.

=0
=
83
Z>
o=
wz=
oo
SZ
@ &

102

Version Control
with RCS

by Kurt Wall

IN THIS CHAPTER

e Terminology 104
e Basic RCS Usage 105
e rcsdiff 7170

e Other RCS Commands 1713

104

The Linux Programming Toolkit

PART |

Version control is an automated process for keeping track of and managing changes
made to source code files. Why bother? Because one day you will make that one fatal
edit to a source file, delete its predecessor and forget exactly which line or lines of code
you “fixed”; because simultaneously keeping track of the current release, the next
release, and eight bug fixes manually will become too tedious and confusing; because
frantically searching for the backup tape because one of your colleagues overwrote a
source file for the fifth time will drive you over the edge; because, one day, over your
morning cappuccino, you will say to yourself, “Version control, it’s the Right Thing to
Do.” In this chapter, we will examine RCS, the Revision Control System, a common
solution to the version control problem.

RCS is a common solution because it is available on almost all UNIX systems, not just
on Linux. Indeed, RCS was first developed on real, that is, proprietary, UNIX systems,
although it is not, itself, proprietary. Two alternatives to RCS, which is maintained by the
GNU project, are SCCS, the Source Code Control System, a proprietary product, and
CVS, the Concurrent Version System, which is also maintained by the GNU project.

CVS is built on top of RCS and adds two features to it. First, it is better suited to manag-
ing multi-directory projects than RCS because it handles hierarchical directory structures
more simply and its notion of a project is more complete. Whereas RCS is file-oriented,
as you will see in this chapter, CVS is project-oriented. CVS’ second advantage is that it
supports distributed projects, those where multiple developers in separate locations, both
geographically and in terms of the Internet, access and manipulate a single source reposi-
tory. The KDE project and the Debian Linux distribution are two examples of large pro-
jects using CVS’ distributed capabilities.

Note, however, that because CVS is built on top of RCS, you will not be able to master
CVS without some knowledge of RCS. This chapter introduces you to RCS because it is
a simpler system to learn. I will not discuss CVS.

Terminology

Before proceeding, however, Table 7.1 lists a few terms that will be used throughout the
chapter. Because they are so frequently used, I want to make sure you understand their
meaning as far as RCS and version control in general are concerned.

TaBLE 7.1 VERSION CONTROL TERMS

Term Description

RCS File Any file located in an RCS directory, controlled by RCS and accessed
using RCS commands. An RCS file contains all versions of a particular
file. Normally, an RCS file has a “.v”” extension.

Version Control with RCS

105
CHAPTER 7
Term Description
Working File One or more files retrieved from the RCS source code repository (the
RCS directory) into the current working directory and available for
editing.
Lock A working file retrieved for editing such that no one else can edit it

simultaneously. A working file is “locked” by the first user against edits
by other users.

Revision A specific, numbered version of a source file. Revisions begin with 1.1

and increase incrementally, unless forced to use a specific revision
number.

The Revision Control System manages multiple versions of files, usually but not neces-
sarily source code files (I used RCS to maintain the various revisions of this book). RCS
automates file version storage and retrieval, change logging, access control, release man-
agement, and revision identification and merging. As an added bonus, RCS minimizes
disk space requirements because it tracks only file changes.

NoTE

The examples used in this chapter assume you are using RCS version 5.7. To
determine the version of RCS you are using, type rcs -V.

SOY HLIM
TOYINOD NOISHIA

Basic RCS Usage

One of RCS’s attractions is its simplicity. With only a few commands, you can accom-
plish a great deal. This section discusses the ci, co, and ident commands as well as
RCS keywords.

ci and co

You can accomplish a lot with RCS using only two commands, ci and co, and a dir-
ectory named RCS. ci stands for “check in,” which means storing a working file in the
RCS directory; co means “check out,” and refers to retrieving an RCS file from the RCS
repository. To get started, create an RCS directory:

$ mkdir RCS

All RCS commands will use this directory, if it is present in your current working direc-
tory. The RCS directory is also called the repository. Next, create the source file shown
in Listing 7.1, howdy . c, in the same directory in which you created the RCS directory.

106

The Linux Programming Toolkit

PART |

LisTING 7.1 howdy.c—BAsic RCS UsAGE

/* $1d$
* howdy.c
* Sample code to demonstrate RCS Usage
* Kurt Wall
*/
#include <stdio.h>
#include <stdlib.h>

int main(void)

{
fprintf(stdout, Howdy, Linux programmer!");
return EXIT_SUCCESS;

Execute the command ci howdy.c. RCS asks for a description of the file, copies it to the
RCS directory, and deletes the original. “Deletes the original?”” Ack! Don’t worry, you
can retrieve it with the command co howdy.c. Voild! You have a working file. Note that
the working file is read-only; if you want to edit it, you have to lock it. To do this, use
the -1 option with co (co -1 howdy.c). -1 means lock, as explained in Table 7.1.

$ ci howdy.c
RCS/howdy.c,v <-- howdy.c
enter description, terminated with single '.' or end of file:

NOTE: This is NOT the log message!

>> Simple program to illustrate RCS usage
>>

initial revision: 1.1

done

$ co -1 howdy.c
RCS/howdy.c,v --> howdy.c
revision 1.1 (locked)

done

To see version control in action, make a change to the working file. If you haven’t
already done so, check out and lock the file (co -1 howdy.c). Change anything you
want, but I recommend adding “\n” to the end of fprintf()’s string argument because
Linux (and UNIX in general), unlike DOS and Windows, do not automatically add a
newline to the end of console output.

fprintf(stdout, "Howdy, Linux programmer!\n");

Next, check the file back in and RCS will increment the revision number to 1.2, ask for a
description of the change you made, incorporate the changes you made into the RCS file,
and (annoyingly) delete the original. To prevent deletion of your working files during
check-in operations, use the -1 or -u option with ci.

Version Control with RCS
107

CHAPTER 7

$ ci -1 howdy.c

RCS/howdy.c,v <-- howdy.cC

new revision: 1.2; previous revision: 1.1
enter log message, terminated with single
>> Added newline

>>

done

or end of file:

When used with ci, both the -1 and -u options cause an implied check out of the file
after the check in procedure completes. -1 locks the file so you can continue to edit it,
while -u checks out an unlocked or read-only working file.

In addition to -1 and -u, ci and co accept two other very useful options: -r (for “revi-
sion”) and -f (“force”). Use -r to tell RCS which file revision you want to manipulate.
RCS assumes you want to work with the most recent revision; -r overrides this default.
ci -r2 howdy.c (this is equivalent to ci -r2.1 howdy.c), for example, creates revision
2.1 of howdy.c; co -r1.7 howdy.c checks out revision 1.7 of howdy.c, disregarding the
presence of higher-numbered revisions in your working directory.

SOY HLIM
TOMINOY) NOISHIA

The -f option forces RCS to overwrite the current working file. By default, RCS aborts a
check-out operation if a working file of the same name already exists in your working
directory. So, if you really botch up your working file, co -1 -f howdy.c is a handy
way to discard all of the changes you’ve made and start with a known good source file.
When used with ci, -f forces RCS to check in a file even if it has not changed.

RCS’s command-line options are cumulative, as you might expect, and it does a good job
of disallowing incompatible options. To check out and lock a specific revision of

howdy .c, you would use a command like co -1 -r2.1 howdy.c. Similarly, ci -u -r3
howdy . c checks in howdy. c, assigns it revision number 3.1, and deposits a read-only
revision 3.1 working file back into your current working directory.

RCS Keywords

RCS keywords are special, macro-like tokens used to insert and maintain identifying
information in source, object, and binary files. These tokens take the form $KEYWORDS.
When a file containing RCS keywords is checked out, RCS expands $KEYWORDS$ to
$KEYWORD: VALUE $.

$1d$

For example, that peculiar string at the top of Listing 7.1, $1d$, is an RCS keyword. The
first time you checked out howdy.c, RCS expanded it to something like

$Id: howdy.c,v 1.1 1998/12/07 22:39:01 kwall Exp $

108

The Linux Programming Toolkit

PART |

The format of the $1d$ string is
$KEYWORD: FILENAME REV_NUM DATE TIME AUTHOR STATE LOCKER $"

On your system, most of these fields will have different values. If you checked out the
file with a lock, you will also see your login name after the Exp entry.

Log

RCS replaces the Log keyword with the log message you supplied during check in.
Rather than replacing the previous log entry, though, RCS inserts the new log message
above the last log entry. Listing 7.2 gives an example of how the Log keyword is
expanded after several check ins:

LisTING 7.2 THE Log KEYwWORD AFTER A FEW CHECK INS

/* $Id: howdy.c,v 1.5 1999/01/04 23:07:35 kwall Exp kwall $

* howdy.c

* Sample code to demonstrate RCS usage

* Kurt Wall

* Listing 7.1

*

*k kkhkkkkhkkkkhkhkkhkkhkkkhkhkkhkkhkhkhkkkk ReViSiOI’l Histor\y EEEEEE R R EEEEEEEEEESES]
* $Log: howdy.c,v $

* Revision 1.5 1999/01/04 23:07:35 kwall

* Added pretty box for the revision history

*

* Revision 1.4 1999/01/04 14:41:55 kwall

* Add args to main for processing command line

*

* Revision 1.3 1999/01/04 14:40:15 kwall

* Added the Log keyword.

LR S S S S S S SRR RS EESE RS R RS EEEEEEEEEEEEEEEEEEEEES
*

~

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)

{
fprintf(stdout, "Howdy, Linux programmer!\n");
return EXIT_SUCCESS;

The Log keyword makes it convenient to see the changes made to a given file while
working within that file. Read from top to bottom, the change history lists the most
recent changes first.

Version Control with RCS

CHAPTER 7 109
Other RCS Keywords
Table 7.2 lists other RCS keywords and how RCS expands each of them.
TaBLe 7.2 RCS KEYWORDS
Keyword Description
$Author$ Login name of user who checked in the revision
$Date$ Date and time revision was checked, in UTC format
$Header$ Full pathname of the RCS file, the revision number, date, time,
author, state, locker (if locked) <
m
$Locker$ Login name of the user who locked the revision (if not locked, field s z
is empty) 3 2
$Name$ Symbolic name, if any, used to check out the revision g Q
SRCSFiles Name of the RCS file without a path w3
$Revision$ Revision number assigned to the revision 2
$Source$ Full pathname to the RCS file
$State$ The state of the revision: Exp (experimental), the default; Stab

(stable); Rel (released)

The ident Command

The ident command locates RCS keywords in files of all types. This feature lets you
find out which revisions of which modules are used in a given program release. To illus-
trate, create the source file shown in Listing 7.3.

LisTING 7.3 THE ident COMMAND

/* $1d$
* prn_env.c
* Display values of environment variables.
* Kurt Wall
* Listing 7.3
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static char rcsid[] = "Id\n";
int main(void)

continues

110

The Linux Programming Toolkit

PART |

LISTING 7.3 CONTINUED
{

extern char **environ;
char **my_env = environ;

while(*my_env) {
fprintf(stdout, "%s\n", *my_env);
my_env++;

}

return EXIT_SUCCESS;

The program, prn_env.c, loops through the environ array declared in the header file
unistd.h to print out the values of all your environment variables (see man(3) environ
for more details). The statement static char rcsid[] = "Id\n"; takes advantage of
RCS’s keyword expansion to create a static text buffer holding the value of the $1d$ key-
word in the compiled program that ident can extract. Check prn_env.c in using the -u
option (ci -u prn_env.c), and then compile and link the program (gcc prn_env.c -o
prn_env). Ignore the warning you may get that rcsid is defined but not used. Run the
program if you want, but also execute the command ident prn_env. If everything
worked correctly, you should get output resembling the following:

$ ident prn_env

prn_env:
$Id: prn_env.c,v 1.1 1999/01/06 03:04:40 kwall Exp $

The $1d$ keyword expanded as previously described and gcc compiled this into the bina-
ry. To confirm this, page through the source code file and compare the Id string in the
source code to ident’s output. The two strings will match exactly.

ident works by extracting strings of the form $KEYWORD: VALUE $ from source, object,
and binary files. It even works on raw binary data files and core dumps. In fact, because
ident looks for all instances of the $ KEYWORD: VALUE $ pattern, you can also use
words that are not RCS keywords. This enables you to embed additional information into
programs, for example, a company name. Embedded information can be a valuable tool
for isolating problems to a specific code module. The slick part of this feature is that
RCS updates the identification strings automatically—a real bonus for programmers and
project managers.

rcsdiff

If you need to see the differences between one of your working files and its correspond-
ing RCS file, use the rcsdiff command. rcsdiff uses the diff (1) command (discussed

Version Control with RCS 111

CHAPTER 7

in Chapter 6, “Comparing and Merging Source Files”) to compare file revisions. In its
simplest form, rcsdiff filename, rcsdiff compares the latest revision of filename in
the repository with the working copy of filename. You can also compare specific revi-
sions using the -r option.

Consider the sample program prn_env.c. Check out a locked version of it and remove
the static char buffer. The result should look like the following:
#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>

=
int main(void) s Z
{ 59
extern char **environ; 25 A
char **my_env = environ; ﬁo
k=
while(*my_env) { 3
fprintf(stdout, "%s\n", *my_env); -
my_env++;
}
return EXIT_SUCCESS;
}

Now, execute the command rcsdiff prn_env.c. RCS complies and displays the follow-
ing:

$ rcsdiff prn_env.c

RCS file: RCS/prn_env.c,v

retrieving revision 1.1

diff -r1.1 prn_env.c

11d10

< static char rcsid[] =

= "$Id: prn_env.c,v 1.1 1999/01/06 03:04:40 kwall Exp kwall $\n";

As we learned in the Chapter 6, this diff output means that line 11 in revision 1.1 would
have appeared on line 10 of prn_env.c if it had not been deleted. To look at examining
specific revisions using the -r option, check prn_env.c into the repository, check it right
back out with a lock, add a sleep(5) statement immediately above the return statement,
and, finally, check this third revision back in with the -u option. You should now have
three revisions of prn_env.c in the repository.

The general format for comparing specific file revisions using rcsdiff is

rcsdiff [-rFILE1 [-rFILE2]] FILENAME

112

The Linux Programming Toolkit

PART |

First, compare revision 1.1 to the working file:

$ rcsdiff -r1.1 prn_env.c

RCS file: RCS/prn_env.c,v

retrieving revision 1.1

diff -r1.1 prn_env.c

1c1

< /* $Id: prn_env.c,v 1.1 1999/01/06 03:10:17 kwall Exp $

> /* $Id: prn_env.c,v 1.3 1999/01/06 03:12:22 kwall Exp $
11d10

< static char rcsid[] =

= "$Id: prn_env.c,v 1.1 1999/01/06 03:04:40 Exp kwall $\n";
21a21

> sleep(5);

Next, compare 1.2 to 1.3:

$ rcsdiff -r1.2 -r1.3 prn_env.c

RCS file: RCS/prn_env.c,Vv

retrieving revision 1.2

retrieving revision 1.3

diff -r1.2 -rt1.3

1ct

< /* $Id: prn_env.c,v 1.1 1999/01/06 03:10:17 kwall Exp $

> /* $Id: prn_env.c,v 1.3 1999/01/06 03:12:22 kwall Exp $
20a21
> sleep(5);

rcsdiff is a useful utility for viewing changes to RCS files or preparing to merge multi-
ple revisions into a single revision.

For you GNU Emacs aficionados, Emacs boasts an advanced version control mode, VC,
that supports RCS, CVS, and SCCS. For example, to check the current file in or out of
an RCS repository, type €-x v vor €-x C-q and follow the prompts. If you want to
place the file you are currently editing into the repository for the first time (called
“registering” a file with RCS), you would type C-x v i. All of Emacs’ version control
commands are prefixed with C-x v. Figure 7.1 illustrates registering a file in an Emacs
session with RCS.

Emacs’ RCS mode greatly enhances RCS’ basic capabilities. If you are a fan of Emacs, I
encourage you to explore Emacs’ VC mode.

Version Control with RCS
113

CHAPTER 7

FiGURE 7.1
Registering a file Tincluds <stdio,h>
. . include <stdlib,h>
with RCS in #iFdef HAVE_RESOLV_H
#include <resoly,h>
EmaCS_ #endif /% HAVE_RESOLY_H %/

#include "config.h”
int mainf{void}
i

int retval:

#ifdef HAVE_HHAP

fprintfistdout, "have mmap()n');
#else

fprintfistderr, "no mmsp{}n"}:
#endif

if CHAVE_UTIHE_NULL}
fprintfistdout, "utimet) allows NULL\A"):
else
fprintfistderr, "utimel) doesn’t allow MULL\A"):

if (5YS_SIGLIST_DECLARED)
(C RCS-1.1)—-L1-

[WNate; file is write protected

Other RCS Commands

Besides ci, co, ident, and rcsdiff, the RCS suite includes rlog, rcsclean, rcsmerge,
and, of course, rcs. These additional commands extend your control of your source code,
allowing you to merge or delete RCS files, review log entries, and perform other admin-

SOY HLIM
TOMINOY) NOISHIA

istrative functions.

rcsclean
rcsclean does what its name suggests: it cleans up RCS working files. The basic syntax
is rcsclean [options] [file ...].A bare rcsclean command will delete all work-

ing files unchanged since they were checked out. The -u option tells rcsclean to unlock
any locked files and removes unchanged working files. You can specify a revision to
delete using the -rM.N format.

$ rcsclean -r2.3 foobar.c

removes the 2.3 revision of foobar.c.

rlog

rlog prints the log messages and other information about files stored in the RCS reposi-
tory. For example, rlog prn_env.c will display all of the log information for all revi-
sions of prn_env.c. The -R option tells rlog to display only filenames. To see a list of
all the files in the repository, for example, rlog -R RCS/* is the proper command (of
course, you could always type 1s -1 RCS, too). If you only want to see a list of all
locked files, use the -L option, as in rlog -R -L RCS/*. To see the log information on
all files locked by the user named gomer, use the -1 option:

$ rlog -lgomer RCS/*

114

The Linux Programming Toolkit

PART |

rcs

The rcs command is primarily an administrative command. In normal usage, though, it
is useful in two ways. If you checked out a file read-only, then made changes you can’t
bear to lose, rcs -1 filename will check out filename with a lock without simultane-
ously overwriting the working file. If you need to break a lock on a file checked out by
someone else, rcs -u filename is the command to use. The file will be unlocked, and a
message sent to the original locker, with an explanation from you about why you broke
the lock. As you will recall, each time you check a file in, you can type a check in mes-
sage explaining what has changed or what you did. If you make a typographical error or
some other mistake in the check in message, or would simply like to add additional
information to it, you can use the following rcs command:

$ rcs -mrev:msg

rev is the revision whose message you want to correct or modify and msg is the corrected
or additional information you want to add.

rcsmerge

rcsmerge attempts to merge multiple revisions into a single working file. The general
syntax is

rcsmerge -rAncestor -rDescendant Working_file -p > Merged_file

Both Descendant and Working_file must be descended from Ancestor. The -p option
tells rcsmerge to send its output to stdout, rather than overwriting Working_file. By
redirecting the output to Merged_file, you can examine the results of the merge. While
rcsmerge does the best it can merging files, the results can be unpredictable. The -p
option protects you from this unpredictability.

For more information on RCS, see these man pages: rcs(1), ci(1), co(1),
rcsintro(1), resdiff (1), rcsclean(1), rcsmerge(1), rlog(1), rcsfile(1), and
ident(1).

Summary

In this chapter, you learned about RCS, the Revision Control System. ci and co, with
their various options and arguments, are RCS’s fundamental commands. RCS keywords
enable you to embed identifying strings in your code and in compiled programs that can
later be extracted with the ident command. You also learned other helpful but less fre-
quently used RCS commands, including rcsdiff, rcsclean, rcsmerge, and rlog.

Creating Programs
in Emacs

by Kurt Wall and Mark Watson

IN THIS CHAPTER

¢ Introduction to Emacs 1776

e Features Supporting
Programming 125

e Automating Development with
Emacs Lisp 132

116

The Linux Programming Toolkit

PART |

Emacs provides a rich, highly configurable programming environment. In fact, you can
start Emacs in the morning, and, while you are compiling your code, you can catch up
on last night’s posts to alt.vampire.flonk.flonk.flonk, email a software patch, get caring
professional counseling, and write your documentation, all without leaving Emacs. This
chapter gets you started with Emacs, focusing on Emacs’ features for programmers.

Introduction to Emacs

Emacs has a long history, as one might expect of software currently shipping version
20.3 (the version used for this chapter), but we won’t recite it. The name Emacs derives
from the “editing macros” that Richard Stallman originally wrote for the TECO editor.
Stallman has written his own account of Emacs’ history, which can be viewed online at
http://www.gnu.org/philosophy/stallman-kth.html (you will also get a good look at
GNU’s philosophical underpinnings).

NoOTE

The world is divided into three types of people—those who use Emacs, those
who prefer vi, and everyone else. Many flame wars have erupted over the
Emacs versus vi issue.

Commenting on Emacs’ enormous feature set, one wag said: “Emacs is a great
operating system, but UNIX has more programs.” I'm always interested in Emacs
humor. Send your Emacs related wit to kwall@xmission.com with “Emacs
Humor” somewhere in the subject line.

What is true of any programmer’s editor is especially true of Emacs: Time invested in
learning Emacs repays itself many times over during the development process. This
chapter presents enough information about Emacs to get you started using it and also
introduces many features that enhance its usage as a C development environment.
However, Emacs is too huge a topic to cover in one chapter. A complete tutorial is Sams
Teach Yourself Emacs in 24 Hours. For more detailed information, see the GNU Emacs
Manual and the GNU Emacs Lisp Reference Manual, published by the Free Software
Foundation, Inc., and Learning GNU Emacs and Writing GNU Emacs Extensions, pub-
lished by O’Reilly.

Creating Programs in Emacs

117

CHAPTER 8

Starting and Stopping Emacs

To start Emacs, type emacs or emacs filename. If you have X configured and running
on your system, try xemacs to start XEmacs, a graphical version of Emacs, formerly
known as Lucid Emacs. If Emacs was built with Athena widget set support, Emacs will
have mouse support and a pull-down menu. Depending on which command you type,
you should get a screen that looks like Figure 8.1, Figure 8.2, or Figure 8.3.

FIGURE 8.1 Menu bar

Emacs on a text

Emacs, one componentoF a Linux-based CHU system,

et help C-h {Hold down CTRL and press h}
mode console. |ndo changes C-x u Exit Emacs C-x C-c
et & tutorial C-ht lse Info to read docs C-h i

Pctivate menubar F10 or ESC * or
[*C-" means use the CTRL key, ‘M-" means use the Meta {or Alt) key.
If you have no Meta key, you may instead type ESC followed by the character,}

MU Emacs 20,3,1 (i386-redhat-1irux-gru, ¥ toolkit) — Editing window
of Mon Apr 19 1339 on porky.devel,redhat,com
Copyright {(C» 1998 Free Software Foundation, Inc,

MU Emacs comes with ABSOLUTELY WO WARRANTY: tupe C-h C-w For Full details,
ou may give out copies of Emacs: type C-h C-c to see the conditions,
Tupe C-h C-d for information on getting the latest version,

Minibuffer

=
m3 O
FIGURE 8.2 Menu bar E 2 o
Emacs, with () = %‘
Athena (X) 2a

support. =

Editing window
Status bar —

#scratch# (isp Interactioni--L1--All
0 =

and al] Minibuffer

out the GHL

The Linux Programming Toolkit

118

PART |

FIGURE 8.3 File Edit Apps Options Buffers Tools Lisp-Interaction

e e I AL

cal interface.

Menu bar

Toolbar

Editing window —
HEmacs 20.4 "Emerald" (liruw<) of Fri Feh 27 1998 on gadid

Copyright (C) 19385-1997 Free Software Foundation, Inc.

Copyright (C) 1990-1994 Lucid, Inc.

Copyright (C) 1993-1997 Sun Microsystems, Inc. All Rights Reserved.
Copyright (C) 1994-1996 Board of Trustees, University of Illinois
Copyright (C) 1995-1996¢ Ben Wing

HEmacs comes with ABSOLUTELY NO WARRANTY; type G-h C-—w for full details
You may give out copies of EEmacs; type G-h G-1 to see the conditions
Type C-h C-d for information on getting the latest wersion.

Type £l or use the Help menu to get help.

Type C-x v to undo changes (‘'C-’ means use the Control key).

To get out of XEmacs, type G-x G-c.

Type G-h t for a tutorial on using XEmacs.

Type C-h 1 to enter Info, which you can use to read online documentation
For tips and answers to frequently asked gquestions, see the XEmacs FAD.
{It's on the Help mem1, or type C-h F [a capital F!].}

Status bar — ¥
————— HEmacs: *scratch* (Lisp Interaction)----a1l- |

Minibuffer ———

If you take a notion to, type C-h t to go through the interactive tutorial. It is instructive
and only takes about thirty minutes to complete. We will not cover it here because we do
not want to spoil the fun. The following list explains the notation used in this chapter:

e C-x means press and hold the Ctrl key and press letter x

e C x means press and release the Ctrl key, and then press letter x

* M-x means press and hold the Alt key and press letter x (if M-x does not work as
expected, try Esc x)

* M x means press and release the Alt key, and then press letter x

Due to peculiarities in terminal configuration, the Alt key may not work with all terminal
types or keyboards. If a command preceded with the Alt key fails to work as expected,
try using the Esc key instead. On the so-called “Windows keyboards,” try pressing the
Window key between Alt and Ctrl.

Creating Programs in Emacs

119

CHAPTER 8

Tip

To exit any version of Emacs, type C-x C-c.

Moving Around

Although Emacs usually responds appropriately if you use the arrow keys, we recom-
mend you learn the “Emacs way.” At first, it will seem awkward, but as you become
more comfortable with Emacs, you will find that you work faster because you don’t have
to move your fingers off the keyboard. The following list describes how to move around
in Emacs:

* M-b—Moves the cursor to the beginning of the word left of the cursor

e M-f—Moves the cursor to the end of word to the right of the cursor

* M-a—Moves to the beginning of the current sentence

* M-e—Moves to the end of the current sentence

¢ C-n—Moves the cursor to the next line

e C-p—Moves the cursor to the previous line

e C-a—Moves the cursor to the beginning of the line

e (C-e—Moves the cursor the end of the line

SOVING
NI SINV¥DO¥d
ONILYIYD

e C-v—DMoves display down one screen full
* M-v—Moves display up one screen full
* M->—Moves the cursor to the end of the file

* M-<—DMoves the cursor to the beginning of the file

If you open a file ending in .c, Emacs automatically starts in C mode, which has features
that the default mode, Lisp Interaction, lacks. M-C-a, for example, moves the cursor to
the beginning of the current function, and M-C-e moves the cursor to the end of the cur-
rent function. In addition to new commands, C mode modifies the behavior of other
Emacs commands. In C mode, for instance, M-a moves the cursor to the beginning of
the innermost C statement, and M-e moves the cursor to the end of the innermost C
statement.

You can also apply a “multiplier” to almost any Emacs command by typing C-u [N],
where N is any integer. C-u by itself has a default multiplier value of 4. So, C-u 10 C-n
will move the cursor down ten lines. C-u C-n moves the cursor down the default four
lines. If your Alt key works like the Meta (M-) key, M-n, where n is some digit, works
as a multiplier, too.

120

The Linux Programming Toolkit

PART |

Inserting Text

Emacs editing is simple: just start typing. Each character you type is inserted at the
“point,” which, in most cases, is the cursor. In classic GNU style, however, Emacs’ docu-
mentation muddles what should be a clear, simple concept making an almost pointless
distinction between the point and the cursor. “While the cursor appears to point *at* a
particular character, you should think of point as *between* two characters; it points
before the character that appears under the cursor (GNU Emacs Manual, 15).” Why the
distinction? The word “point” referred to “.” in the TECO language in which Emacs was
originally developed. “.” was the command for obtaining the value at what is now called
the point. In practice, you can generally use the word “cursor” anywhere the GNU docu-
mentation uses “point.”

To insert a blank line after the cursor, type C-x 0. C-o inserts a blank line above the cur-
rent line and positions the cursor at the beginning of the line. C-x C-o deletes all but one
of multiple consecutive blank lines.

Deleting Text

Del and, on most PC systems, Backspace, erases the character to the left of the cursor.
C-d deletes the character under the cursor. C-k deletes from the current cursor location
to the end of the line, but, annoyingly, doesn’t delete the terminating newline (it does
delete the newline if you use the multiplier; that is, C-u 1 C-k deletes the line, newline
and all). To delete all the text between the cursor and the beginning of a line, use C-x
Del.

To delete a whole region of text, follow these steps:

1. Move the cursor to the first character of the region.

2. Type C-@ (C-SPACE) to “set the mark.”

3. Move the cursor to the first character past the end of the region.
4

. Type C-w to delete, or “wipe,” the region.

If you want to make a copy of a region, type M-w instead of C-w. If you lose track of
where the region starts, C-x C-x swaps the location of the cursor and the mark. In C
mode, M-C-h combines moving and marking: It moves the cursor to the beginning of the
current function and sets a mark at the end of the function.

If you delete too much text, use C-x u to “undo” the last batch of changes, which is usu-
ally just your last edit. The default undo buffer size is 20,000 bytes, so you can continue
the undo operation. To undo an undo, type M-C-x u. To cut and paste, use M-w to copy
a region of text, move to the location in the buffer where you want to insert the text, and
perform a “yank” by typing C-y.

Creating Programs in Emacs

CHAPTER 8 121

To facilitate yanking and undoing, Emacs maintains a kill ring of your last 30 deletions.
To see this in action, first delete some text, move elsewhere, and then type C-y to yank
the most recently deleted text. Follow that with M-y, which replaces the text yanked with
the next most recently deleted text. To cycle further back in the kill ring, continue typing
M-y.

Search and Replace

Emacs’ default search routine is a non—case-sensitive incremental search, invoked
with C-s. When you type C-s, the minibuffer prompts for a search string, as shown in
Figure 8.4.

FiGure 8.4
o Buffers Files Tools Edit Search Mule C Help
Minibuffer prompt Bt read_linetchar #str, int n} £ /% Thiz is 4 conment %/
N char ch:
for an incremental int i = 0;
whilet(ch == getchar()) 1= "\n") <
search. P01 2t
stri++] = ch
¥
strlil = 707
return i
x
int count_spaces{const char #str)
int count = 0, i3
for(i = 03 strlil I= "\0"; ++i) /% Thiz iz a longer comment */
iFstrlil =)
++count.;
return count:
i
Prompt
int lline_len(const char #str) {
| :—F1 rdline.c<2> {C Isearch)—L1—To
/|I-z=arch; l

SOVING
NI SWVHD0Y4d
ONILYIYD

In most cases, a non—case-sensitive search will be sufficient, but, when writing C code,
which is case sensitive, it may not have the desired result. To make case-sensitive search-
es the default, add the following line to the Emacs initialization file, ~/ . emacs:

(setq case-fold-search nil)

As you type the string, Emacs moves the cursor to the next occurrence of that string. To
advance to the next occurrence, type C-s again. Esc cancels the search, leaving the cur-
sor at its current location. C-g cancels the search and returns the cursor to its original
location. While in a search, Del erases the last character in the search string and backs
the cursor up to its previous location. A failed search beeps at you annoyingly and writes
“Failed I-search” in the minibuffer.

Incremental searches can wrap to the top of the buffer. After an incremental search fails,
another C-s forces the search to wrap to the top of the buffer. If you want to search back-
wards through a buffer, use C-r.

The Linux Programming Toolkit

122

PART |

Emacs also has regular expression searches, simple (non-incremental) searches, searches
that match entire phrases, and, of course, two search-and-replace functions. The safest
search-and-replace operation is M-%, which performs an interactive search and replace.
Complete the following steps to use M-%:

1. Type M-%.

2. Type the search string and press Enter.

3. Type the replacement string and press Enter.

4. At the next prompt, use one of the following:

SPACE ory Make the substitution and move to the next occurrence of search

string
Del or n Skip to the next occurrence of search string
! Perform global replacement without further prompts

Make the substitution at current location, and then exit the search-
and-replace operation

M- or q Exit the search and replace, and place cursor at its original location
A Backtrack to the previous match
Cxr Start a recursive edit

Figure 8.5 shows the results of these steps.

Recursive edits allow you to make more extensive edits at the current cursor location.
Type M-C-c to exit the recursive editing session and return to your regularly scheduled
search and replace.

Other search and replace variants include M-x query-replace-regexp, which executes an
interactive search and replace using regular expressions. For the very stout of heart or
those confident of their regular expression knowledge, consider M-x replace-regexp,
which performs a global, unconditional (sans prompts) search and replace using regular
expressions.

Creating Programs in Emacs

123

CHAPTER 8

FIGURE 8.5
S h d int count = 0, iz
earch an,
L fordi = 03 strlil = "NO7; ++i) /% This is a longer comment */
replace minibuffer #trlal =7 9
prompt. R return count: ’

int line_len{const char ¥str} {

.. ———:———F1 rdline.c<Z L
Minibuffer blace:
after Step 1
int count = 0, if
For{i = 0 strlil I= "\07: ++i} /% This is a longer comment %/
if{strlil == 7 7}
++count?
return count;
int line_len{const char *str} {
inibuffer TN & 0o == F1rdline.c{2> [o
Minibuffer IS Lprdline o> I
! -
after Step 2
int count = 0, iz
fordi = 03 strlil I= “5\07; ++i) /% This iz & longer comment */
if{strlil == * 7}
++ocaunt
return count?
int line_len{const char *str) {
———:———F1 rdline.c<Z L
F|luery replacing read. with rd_: (? for help)
Minibuffer I

after Step 4

Saving and Opening Files

To save a file, use C-x C-s. Use C-x C-w to save the file using a new name. To open a
file into the current buffer, type C-x C-f to “visit” the file, type the filename in the
minibuffer, and press Enter, which opens it in the current buffer. If you only want to
browse a file without editing it, you can open it in read-only mode using C-x C-r, typing
the filename in the minibuffer, and pressing Enter.

SOVING
NI SINV¥DO¥d
ONILYIYD

Having opened a file in read-only mode, it is still possible to edit the buffer. Like most
editors, Emacs opens a new buffer for each file visited and keeps the buffer contents sep-
arate from the disk file until explicitly told to write the buffer to disk using C-x C-f or
C-x C-w. So, you can edit a read-only buffer by typing C-x C-q, but you won’t be able
to save it to disk unless you change its name.

Emacs makes two kinds of backups of files you edit. The first time you save a file,
Emacs creates a backup of the original file in the current directory by appending a ~ to
the filename. The other kind of backup is made for crash recovery. Every 300 keystrokes
(a default you can change), Emacs creates an auto-save file. If your system crashes and
you later revisit the file you were editing, Emacs will prompt you to do a file recovery, as
shown in Figure 8.6.

124

The Linux Programming Toolkit

PART |

FIGURE 8.6
Recovering a file
after a crash.

Prompt to perform
file recovery

rdline,c has auto sawe data; consider F-x recower—Ffils

Multiple Windows

Emacs uses the word “frame” to refer to separate Emacs windows because it uses “win-
dow” to refer to a screen that has been divided into multiple sections with independently
controlled displays. This distinction dates back to Emacs’ origins, which predate the exis-
tence of GUIs capable of displaying multiple screens. To display two windows, Emacs
divides the screen into two sections, as illustrated in Figure 8.7.

FIGURE 8.7
. (i B il 1s Edi Hul, >

Emacs windows. Kot read_line(char #str, int n) { /% This is a camnent %/
char ch: .
int i = 0z — —WIndOW 1
while{{ch == getchar{}} l= "\n"} {

if(i < n)
strli++] = ch:
¥
strlil = "\072
return i3
—=:#%-F1 rdline.c

int read_lins(char #str, int n)

char chs
int i =0

mhlla((:h):: stchar()) 1= "\n") { H
nn ot —— Window 2

strli++] = ch

¥

strlil = 7072

return i
—=:x%-F1 _rdline.c

[—

To create a new window, type C-x 2, which splits the current window into two windows.
The cursor remains in the “active” or current window. The following is a list of com-
mands for moving among and manipulating various windows:

* C-x 0—Move to the other window

* C-M-v—Scroll the other window

e C-x 0—Delete the current window

e C-x 1—Delete all windows except the current one

Creating Programs in Emacs

CHAPTER 8

e C-x 2—Split screen into two windows
e C-x 3—Split the screen horizontally, rather than vertically

¢ C-x 4 C-f—“Visit” a file into the other window

Note that deleted buffers are hidden, not closed, or “killed” in Emacs’ parlance. To close
a buffer, switch to that buffer and type C-x k and press Enter. If the buffer has not been
saved, Emacs prompts you to save it.

Under the X Window system, you can also create new frames, windows that are separate
from the current window, using the following commands:

e C-x 5 2—Create a new frame of the same buffer
e C-x 5 f—Create a new frame and open a new file into it

¢ C-x 5 0——Close the current frame

When using framed windows, be careful not to use C-x C-c to close a frame, because it
will close all frames, not just the current one, thus terminating your Emacs session.

Features Supporting Programming

Emacs has modes for a wide variety of programming languages. These modes customize
Emacs’ behavior to fit the syntax and indentation requirements of the language.
Supported languages include several varieties of Lisp, C, C++, Fortran, Awk, Icon, Java,
Objective-C, Pascal, Perl, and Tcl. To switch to one of the language modes, type M-x
[language]-mode, replacing [language] with the mode you want. So, to switch to Java
mode, type M-x java-mode.

Indenting Conveniences

Emacs automatically indents your code while you type it. In fact, it can enforce quite a
few indentation styles. The default style is gnu, a style conforming to GNU’s coding
standards. Other supported indentation styles include k&r, bsd, stroustrup, linux, python,
java, whitesmith, ellemtel, and cc.

To use one of the supported indentation styles, type the command M-x c-set-style fol-
lowed by Enter, enter the indentation style you want to use, and press Enter again. Note
that this will only affect newly visited buffers; existing buffers will be unaffected.

Each line that begins with a Tab will force subsequent lines to indent correctly, depend-
ing on the coding style used. When you are using one of Emacs’ programming modes,
pressing Tab in the middle of a line automatically indents it correctly.

125

SOVING
NI SWVHD0Y4d
ONILYIYD

126

The Linux Programming Toolkit

PART |

Syntax Highlighting
Emacs’ font-lock mode turns on a basic form of syntax highlighting. It uses different col-

ors to mark syntax elements. To turn on font-lock mode, type M-x font-lock-mode and
press Enter. Figure 8.8 illustrates font-lock mode in the C major mode.

F|GURE 8.8 luffe i ch Hule C Help
The effect of font-
lock mode on C
code.

cursutil.c
ing cu

Using Comments

M-; inserts comment delimiters (/* */) on the current line and helpfully positions the
cursor between them. The comment will be placed (by default) at column 32. If the cur-
rent line is longer than 32 characters, Emacs places the comment just past the end of the
line, as illustrated in Figure 8.9.

FIGURE 8.9
. [BufFers Files Tools Edit Search Hule C Help
Inserting int read_linstchar *str, int n) € /% [/
char ch
comments. int i = 0

while{{ch == getchar{}} I= "\n"} {
if(i < nd

strli++] = ch:
i3
strlil = 07
return iz
¥

int count_spaces{const char *str} {
int count = 0, i3

Fordi = 03 strlil I= "N077 ++i)
if{strlil ==~ 7}
++count:
return count?:
i3

int lins_len{const

S —

char *str)

Creating Programs in Emacs

127

CHAPTER 8

If you are creating a multi-line comment, an Emacs minor mode, auto-fill, will indent
and line wrap comment lines intelligently. To set this minor mode, use the M-x auto-
fill-mode command. In the middle of an existing comment, M-; aligns the comment
appropriately. If you have a whole region that you want to convert to comments, select
the region and type M-x comment-region.

Although not strictly related to comments, Emacs helps you make or maintain a change
log for the file you’re editing. To create or add an entry to a change log in the current
directory, type C-x 4 a. The default filename is ChangeLog.

Compilation Using Emacs

The command M-x compile compiles code using, by default, make -k. Ordinarily, this
would require the presence of a Makefile in the current directory. If you are using GNU
make, however, you can take advantage of a shortcut. For example, if you are working on
a file named rdline.c and want to compile it, type M-x compile. Then, when the buffer
prompts for a filename, type rdline.o, as illustrated in Figure 8.10. GNU make has an
internal suffix rule that says, in effect, for a given file FILE.o, create it with the make
command “cc -c FILE.c -o FILE.0”.

FIGURE 8.10 % A
. Buffers Files Tools Edit Search Fule Hin (@]
Compiling a Gink, read_Linc(char Astr, inb ML E‘ (n)
a7 char ch:
program within Int 1= 0: > ; 3
while{{ch == getchar{}} I= "\n") { Ia) Z —
Emacs. W <nd wn 2
strli++] = ch: Y a
s —
Stelil = 0% =

return 13
i3

int count_spaces{const char *str)
{
int count = 0, i3
for{i = 02 strlil I= "N072 ++i)
25y

if(strlil ==
++count?

return counts

| T ——
7|Compils comnand: make —k rdline,ol

The first time you issue the compile command, Emacs sets the default compile com-
mand for the rest of the session to the make command you enter. If you have not yet
saved the buffer, Emacs asks if you want to. When you compile from within Emacs, it
creates a scratch buffer called the compilation buffer, which lists the make commands
executed, any errors that occur, and the compilation results.

If any error occurs, Emacs includes an error-browsing feature that takes you to the
location of each error. In Figure 8.11, an error occurred while compiling rdline.c.

128

The Linux Programming Toolkit

PART |

FiGURE 8.11

The compilation

[Buffers Files Tools Edit Search tule C Help
lint read_line{char *str, int n}{

. . char ch:
buffer lists compi- int i =0
. while{{ch == getchar{}} I= "\n") {
lation messages, RS

. . strli++] = ch
including errors. ¥

strlil = 7072
return i:

—=:—F1 rdline.c (C)—L1—T
cd “/projects/unleashed/src/08/

make -k rdline.o

cc -c rdline.c -o rdline.o

rdline,c:l: parse error before ‘read_line”
make: ##% [rdline.ol Error 1

Compilation exited abnormally with code 2 at Tue Mar 23 16:07:38 Comp||at|0n bUHer

To go to the line where the error occurred, type C-x * (back quote); Emacs positions the
cursor at the beginning of the line containing the error, as illustrated in Figure 8.12.

FIGURE 8.12

Buffers Files Tools Edit Search fiule C Help

C-x " positions the fink read_line(char #str, int m){
char chy
ine int i =0z
cursor on the line while((ch == getchar(}) 1= “\n%) £
ini iR 2
containing the Lol = b
¥
error. strlil = 0%

return iz

—=:k—F1 rdline,c
rdline.c:l: parse error before
make: %k [rdline.ol Error 1

Compilation exited abrormally with code 2 at Tue Mar 23 15:53:03

{Compilationiexit [21)—L4—Bot
7|Parsing error nessages,..done.

If there are other errors, C-x ~ will take you to each error in the source file.
Unfortunately, the progression is only one way; you cannot backtrack the error list. This
shortcoming aside, Emacs’ error browsing feature is very handy. To close the compila-
tion buffer, use the command C-x 1 to delete all buffers except the current one.

Tag support is another handy Emacs programming feature. Tags are a type of database
that enables easy source code navigation by cross-referencing function names and,
optionally, typedefs, to the files in which they appear and are defined. Tags are especially
useful for locating the definitions of function names or typedefs. The etags program cre-
ates tag files that Emacs understands. To create an Emacs tag file, execute the following
command:

$ etags -t <list of files>

Creating Programs in Emacs

129

CHAPTER 8

This command creates the tags database, TAGS by default, in the current directory. <list
of files> is the files for which you want tags created. The -t option will include type-
defs in the tag file. So, to create a tag file of all the C source and header files in the cur-
rent directory, the command is:

$ etags -f *.[ch]
Once you’ve created the tag file, use the following commands to take advantage of it:

* M-. tagname—Finds the file containing the definition of tagname and opens it in a
new buffer, replacing the previous buffer

e C-x 4 . tagname—Functions like M-., but visits the file into another window

e C-x 5 . tagname—Functions like C-x 4., but visits the file into another frame
Emacs’ tags facility makes it very easy to view a function’s definition while editing
another file. You can also perform search-and-replace operations using tag files. To per-
form an interactive search and replace:

. Type M-x tags-query-replace and press Enter.

. Type the search string and press Enter.

1
2
3. Type the replacement string and press Enter.
4

. Press Enter to accept the default tags table, TAGS, or type another name and press
Enter.

5. Use the commands described for the query-replace operation.

SOVING
NI SWVHD0Y4d
ONILYIYD

Another help feature allows you to run a region of text through the C preprocessor, so
you can see how it expands. The command to accomplish this feat is C-c C-e. Figure
8.13 illustrates how it works.

FIGURE 8.13 Juffers es Tools Edit h Mule C Help
Running a text
region through the
C preprocessor.

{C--LE--A1l

The Linux Programming Toolkit

130

PART |

In the top window, we define a preprocessor macro named square (x). After marking the
region, type C-c¢ C-e. The bottom window, named *Macroexpansion*, shows how the
preprocessor expanded the function. Pretty neat, huh?

Customization in Brief

In this section, we list a few commands you can use to customize Emacs’ behavior. We
can only scratch the surface, however, so we will forgo long explanations of why the cus-
tomizations we offer work and ask, instead, that you simply trust us that they do work.

Using the ~/.emacs File

Table 8.1 lists the commands and variables that you will find useful for customizing
Emacs. They control various elements of Emacs’ default behavior.

Table 8.1 Emacs COMMANDS AND VARIABLES

Name Type Description

inhibit-default-init Command Disables any site-wide customizations
case-fold-search Command Sets case sensitivity of searches
user-mail-address Variable Contains user’s mail address

The file ~/.emacs ($HOME/ . emacs) contains Lisp code that is loaded and executed each
time Emacs starts. To execute a Lisp command, use the syntax

(setq lisp-command-name [arg])

For example, (setq inhibit-default-init t) executes the Emacs Lisp command
inhibit-default-init with a value of “t” (for true). arg may be either Boolean (t =
true, nil = false), a positive or negative digit, or a double quote delimited string.

To set a variable value, the syntax is
(set-variable varname value)

This initializes varname to value. So, (set-variable user-mail-address
some_guy@call_me_now.com) sets the variable user-mail-address to
some_guy@call_me_now.com.

You can also set variables and execute commands on-the-fly within Emacs. First, type
C-x b to switch to another buffer. Press Tab to view a list of the available buffers in the
echo area. Figure 8.14 shows what the buffer list might look like.

Creating Programs in Emacs

131
CHAPTER 8
FIGURE 8.14 A Files Tools Edit Se: Mule Hinibuf Help
Sample buffer list.
P Intar‘achn)——Ll——Hll
ipletion near point,
4 Echo area
Type buffer __| Available
name here buffers

letions# (Completion Listi——L1--All

h to buff

Now, type *scratch* and press Enter. Finally, to execute a Lisp command, type, for
example, (setq case-fold-search t), and press C-j. Lisp evaluates the statement
between parentheses, displaying the result on the line below the command, as illustrated
in Figure 8.15.

FIGURE 8.15 } i Mule Help
Screen after exe-
cution of Lisp
command.

Result

SOVING
NI SWVHD0Y4d
ONILYI¥D)

Command entered

— ¥k dscratch# (Lizsp Interaction)--L3--All

Follow a similar procedure to set a variable value. The syntax takes the general form
(setq set-variable varname value)

The behavior is exactly the same as executing a command. For example, to set user -
mail-address on-the-fly, the command to type in the scratch buffer is (setq
set-variable user-mail-address "someone@somewhere.com") followed by C-j.

132

The Linux Programming Toolkit

PART |

Creating and Using Keyboard Macros

This section will briefly describe how to create and execute keyboard macros within
Emacs. Keyboard macros are user-defined commands that represent a whole sequence of
keystrokes. They are a quick, easy way to speed up your work.

For example, the section on deleting text pointed out that the command C-k at the begin-
ning of a line would delete all the text on the line, but not the newline. In order to delete
the newline, too, you have to either type C-k twice or use the multiplier with an argu-
ment of 1, that is, C-u 1 C-k. In order to make this more convenient, you can define a
keyboard macro to do this for you.

To start, type C-x (, followed by the commands you want in the macro. To end the defin-
ition, type C-x). Now, to execute the macro you’ve just defined, type C-x e, which

stands for the command call-last-kbd-macro. Actually, the macro was executed the first
time while you defined it, allowing you to see what it was doing as you were defining it.

If you would like to see the actual commands, type C-x C-k, which will start a special
mode for editing macros, followed by C-x e to execute the macro. This will format the
command in a special buffer. The command C-h m will show you instructions for editing
the macro. C-¢ C-c ends the macro editing session.

The material in this section should give you a good start to creating a highly personal
and convenient Emacs customization. For all of the gory details, see Emacs’ extensive
info (help) file. The next section introduces you to enough Emacs Lisp to enable you to
further customize your Emacs development environment.

Automating Emacs with Emacs
Lisp

Emacs can be customized by writing functions in Elisp (or Emacs Lisp). You have
already seen how to customize Emacs by using the file ~/.emacs. It is assumed that you
have some knowledge of Lisp programming. The full reference to Emacs Lisp, GNU
Emacs Lisp Reference Manual (written by Bill Lewis, Dan Laliberte, and Richard
Stallman), can be found on the Web at http://www.gnu.org/manual/elisp-manual-20-

2.5/elisp.html. In this section, you will see how to write a simple Emacs Lisp function
that modifies text in the current text buffer.

Emacs Lisp is a complete programming environment, capable of doing file I/O, building
user interfaces (using Emacs), doing network programming for retrieving email, Usenet
news, and so on. However, most Emacs Lisp programming involves manipulating the text
in Emacs edit buffers.

Creating Programs in Emacs

CHAPTER 8

Listing 8.1 shows a very simple example that replaces the digits “0”, “1”, and so on with
the strings “ZERO”, “ONE”, and so on.

Listing 8.1 sample.el

(defun sample ()
(let* ((txt (buffer-string))
(len (length txt))
(x nil))
(goto-char 0)
(dotimes (n len)

;; see if the next character is a number @0, 1, .. 9
(setq x (char-after))
(if x
(let ()
(setq x (char-to-string (char-after)))
(if x
(let ()
(if (equal x "@") (replace-char "ZER0O"))
(if (equal x "1") (replace-char "ONE"))
(if (equal x "2") (replace-char "TWO"))
(if (equal x "3") (replace-char "THREE"))
(if (equal x "4") (replace-char "FOUR"))
(if (equal x "5") (replace-char "FIVE"))
(if (equal x "6") (replace-char "SIX"))
(if (equal x "7") (replace-char "SEVEN"))
(if (equal x "8") (replace-char "EIGHT"))
(if (equal x "9") (replace-char "NINE"))))))
;5 move the text pointer forward

(forward-char))))

(defun replace-char (s)
(delete-char 1)
(insert s))

The example in Listing 8.1 defines two functions: sample and replace-char. replace-
char is a helper function that only serves to make the sample function shorter. This
example uses several text-handling utility functions that are built in to Emacs Lisp:

e buffer-string—Returns as a string the contents of the current Emacs text buffer

e length—Returns the number of characters in a string

* char-after—Returns the character after the Emacs edit buffer insert point

e char-to-string—Converts a character to a string

e forward-char—Moves the Emacs edit buffer insert point forward by one character
position

133

SOVING
NI SWVHD0Y4d

DNILVIYD)

134

The Linux Programming Toolkit

PART |

e delete-char—Deletes the character immediately following the Emacs edit buffer
insert point

e insert—Inserts a string at the current Emacs edit buffer insert point

You can try running this example by either copying the sample.el file into your
~/.emacs file or using M-x load-file to load sample.el. You run the program by typ-
ing M-: (sample). Typing M-: should give you a prompt Eval:.

Much of the functionality of Emacs comes from Emacs Lisp files that are auto-loaded
into the Emacs environment. When you install Emacs in your Linux distribution, one of
the options is to install the Emacs Lisp source files (the compiled Emacs Lisp files are
installed by default). Installing the Emacs Lisp source files provides many sample pro-
grams for doing network programming, adding menus to Emacs, and so on.

Summary

Emacs is a rich, deep programming environment. This chapter introduced you to the
basics of editing and writing programs with GNU Emacs. It covered starting and stop-
ping Emacs, cursor movement, basic editing functions, and search-and-replace opera-
tions. In addition, you learned how to use Emacs features that support programming,
such as using tags tables, special formatting, syntax highlighting, and running sections of
code through the C preprocessor. The chapter also showed you how to perform basic
Emacs customization using the ~/ . emacs initialization file, keyboard macros, and

Emacs Lisp.

System Programming
PART

IN THIS PART

¢ |/O Routines 137

File Manipulation 161
e Process Control 173

¢ Accessing System Information 21715

Handling Errors 229

e Memory Management 247

/0 Routines

by Mark Whitis

IN THIS CHAPTER

¢ File Descriptors 138
¢ Calls That Use File Descriptors 138
e Types of Files 152

138

System Programming

PART Il

This chapter covers file descriptor—based I/O. This type of file I/O is UNIX specific,
although C development environments on many other platforms may include some sup-
port. The use of file pointer (stdio) based I/O is more portable and will be covered in
the next chapter, “File Manipulation.” In some cases, such as tape I/0O, you will need to
use file descriptor—based I/0. The BSD socket programming interface for TCP/IP (see
Chapter 19, “TCP/IP and Socket Programming”) also uses file descriptor—based 1/O,
once a TCP session has been established.

One of the nice things about Linux, and other UNIX compatible operating systems, is
that the file interface also works for many other types of devices. Tape drives, the con-
sole, serial ports, pseudoterminals, printer ports, sound cards, and mice are handled as
character special devices which look, more or less, like ordinary files to application pro-
grams. TCP/IP and UNIX domain sockets, once the connection has been established, are
handled using file descriptors as if they were standard files. Pipes also look similar to
standard files.

File Descriptors

A file descriptor is simply an integer that is used as an index into a table of open files
associated with each process. The values 0, 1, and 2 are special and refer to the stdin,
stdout, and stderr streams; these three streams normally connect to the user’s terminal
but can be redirected.

There are many security implications to using file descriptor I/O and file pointer I/O
(which is built on top of file descriptor I/O); these are covered in Chapter 35, “Secure
Programming.” The workarounds actually rely heavily on careful use of file descriptor
1/O for both file descriptor and file pointer /0.

Calls That Use File Descriptors

A number of system calls use file descriptors. This section includes brief descriptions of
each of those calls, including the function prototypes from the man pages and/or header
files.

Most of these calls return a value of -1 in the event of error and set the variable errno to
the error code. Error codes are documented in the man pages for the individual system
calls and in the man page for errno. The perror() function can be used to print an error
message based on the error code. Virtually every call in this chapter is mentioned in
Chapter 35. Some calls are vulnerable, others are used to fix vulnerabilities, and many
wear both hats. The calls that take file descriptors are much safer than those that take
filenames.

1/0 Routines

CHAPTER 9

Each section contains a code fragment that shows the necessary include files and the pro-
totype for the function(s) described in that section, copied from the man pages for that
function.

The open() Call

The open () call is used to open a file. The prototype for this function and descriptions
for its variables and flags follow.

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *pathname, int flags).
int open(const char *pathname, int flags, mode_t mode);

The pathname argument is simply a string with the full or relative pathname to the file to
be opened. The third parameter specifies the UNIX file mode (permissions bits) to be
used when creating a file and should be present if a file may be created. The second
parameter, flags, is one of 0_RDONLY, O_WRONLY, or O_RDWR, optionally OR-ed with addi-
tional flags; Table 9.1 lists the flag values.

TaBLE 9.1 FLAGS FOR THE open() CALL

Flag Description

0_RDONLY Open file for read-only access.

0_WRONLY Open file for write-only access.

O_RDWR Open file for read and write access.

0_CREAT Create the file if it does not exist.

0_EXCL Fail if the file already exists.

0_NOCTTY Don’t become controlling tty if opening tty and the process had no control-
ling tty.

O_TRUNC Truncate the file to length O if it exists.

0_APPEND Append file pointer will be positioned at end of file.

0_NONBLOCK If an operation cannot complete without delay, return before completing the

operation. (See Chapter 22, “Non-blocking Socket I/0.”)
0_NODELAY Same as 0_NONBLOCK.

0_SYNC Operations will not return until the data has been physically written to the
disk or other device.

open () returns a file descriptor unless an error occurred. In the event of an error, it will
return -1 and set the variable errno.

139

SANILNOY O/I

140

System Programming

PART Il

NoOTE

The creat () call is the same as open() with O_CREAT!0_WRONLY!O_TRUNC.

The close() Call

You should close a file descriptor when you are done with it. The single argument is the
file descriptor number returned by open (). The prototype for close() is as follows.

#include <unistd.h>
int close(int fd);

Any locks held by the process on the file are released, even if they were placed using a
different file descriptor. If closing the file causes the link count to reach zero, the file will
be deleted. If this is the last (or only) file descriptor associated with an open file, the
entry in the open file table will be freed.

If the file is not an ordinary file, other side effects are possible. The last close on one end
of a pipe may affect the other end. The handshake lines on a serial port might be affect-
ed. A tape might rewind.

The read() Call

The read() system call is used to read data from the file corresponding to a file descrip-
tor.

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);

The first argument is the file descriptor that was returned from a previous open () call.
The second argument is a pointer to a buffer to copy the data from, and the third argu-
ment gives the number of bytes to read. Read () returns the number of bytes read or a
value of —1 if an error occurs (check errno).

The write() Call

The write() system call is used to write data to the file corresponding to a file descrip-
tor.

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

I/0 Routi
outines 141

CHAPTER 9

The first argument is the file descriptor which was returned from a previous open () call.
The second argument is a pointer to a buffer to copy the data to (which must be large
enough to hold the data) and the third argument gives the number of bytes to write.
write() returns the number of bytes read or a value of -1 if an error occurs (check
errno).

The ioctl() Call

The ioctl() system call is a catchall for setting or retrieving various parameters associ-
ated with a file or to perform other operations on the file. The ioctls available, and the
arguments to ioctl(), vary depending on the underlying device.

#include <sys/ioctl.h>
int ioctl(int d, int request, ...)

The argument d must be an open file descriptor.

The fcntl() Call

The fentl() call is similar to ioctl() but it sets or retrieves a different set of parame-
ters.

#include <unistd.h>
#include <fcntl.h>

int fentl(int fd, int cmd);
int fentl(int fd, int cmd, long arg);

Unlike ioctl(), these parameters are generally not controlled by the low-level device
driver. The first argument is the file descriptor, the second is the command, and the third
is usually an argument specific to the particular command. Table 9.2 lists the various
command values that can be used for the second argument of the fcntl() call.

=
o
=
TaBLE 9.2 COMMANDS FOR fcntl() 2
=
Command Description =
(%]
F_DUPFD Duplicates file descriptors. Use dup2() instead.
F_GETFD Gets close-on-exec flag. The file will remain open across exec () family calls

if the low order bit is 0.

F_SETFD Sets close-on-exec flag.
F_GETFL Gets the flags set by open.
F_SETFL Changes the flags set by open.

continues

142

System Programming

PART Il

TABLE 9.2 CONTINUED

Command Description

F_GETLK Gets discretionary file locks (see flock().)

F_SETLK Sets discretionary lock, no wait.

F_SETLKW Sets discretionary lock, wait if necessary.

F_GETOWN Retrieves the process id or process group number that will receive the SIGIO

and SIGURG signals.

F_SETOWN Sets the process id or process group number.

Since there are other ways to do most of these operations, you may have little need to
use fentl().

The fsync() Call

The fsync() system call flushes all of the data written to file descriptor fd to disk or
other underlying device.

#include <unistd.h>

int fsync(int fd);

#ifdef _POSIX_SYNCHRONIZED_IO
int fdatasync(int fd);

#endif

The Linux filesystem may keep the data in memory for several seconds before writing it
to disk in order to more efficiently handle disk I/O. A zero is returned if successful; oth-
erwise -1 will be returned and errno will be set.

The fdatasync() call is similar to fsync() but does not write the metadata (inode infor-
mation, particularly modification time).

The ftruncate() Call

The ftruncate () system call truncates the file referenced by file descriptor fd to the
length specified by length.

#include <unistd.h>
int ftruncate(int fd, size_t length);

Return values are zero for success and -1 for an error (check errno).

1/0 Routines
143

CHAPTER 9

The 1seek () Call

The 1seek() function sets the current position of reads and writes in the file referenced
by file descriptor files to position offset.

#include <sys/types.h>
#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

Depending on the value of whence, the offset is relative to the beginning (SEEK_SET),
current position (SEEK_CUR), or end of file (SEEK_END). The return value is the resulting
offset (relative to the beginning of the file) or a value of (off_t) -1 in the case of error
(errno will be set).

The dup () and dup2() Calls

The system calls dup () and dup2() duplicate file descriptors. dup () returns a new
descriptor (the lowest numbered unused descriptor). dup2 () lets you specify the value of
the descriptor that will be returned, closing newfd first, if necessary; this is commonly
used to reopen or redirect a file descriptor.

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd, int newfd);

Listing 9.1 illustrates using dup2() to redirect standard output (file descriptor 1) to a file.
The function print_line () formats a message using snprintf (), a safer version of
sprintf (). We don’t use printf () because that uses file pointer I/O, although the next
chapter and Chapter 35 will show how to open a file pointer stream over a file descriptor
stream. The results of running the program are shown in Listing 9.2.

dup () and dup2() return the new descriptor or return -1 and set errno. The new and old
descriptors share file offsets (positions), flags, and locks but not the close-on-exec flag.

SANILNOY O/I

LisTING 9.1 dup.c—REDIRECTING STANDARD OUTPUT WITH dup2()

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>

continues

System Programming

144

PART Il

LiSTING 9.1 CONTINUED

print_line(int n)

{
char buf[32];
snprintf(buf,sizeof(buf), "Line #%d\n",n);
write(1,buf, strlen(buf));

}

main()

{
int fd;

print_line(1);
print_line(2);
print_line(3);

/* redirect stdout to file junk.out */
fd=open("junk.out", O_WRONLY,O_CREAT,0666);
assert(fd>=0);

dup2(fd,1);

print_line(4);
print_line(5);
print_line(6);

close(fd);
close(1);

LisTING 9.2 SAMPLE RUN OF dup.c

$./dup

Line #1

Line #2

Line #3

$ cat junk.out
Line #4

Line #5

Line #6

$

The select() Call

The select () function call allows a process to wait on multiple file descriptors simulta-
neously with an optional timeout. The select () call will return as soon as it is possible
to perform operations on any of the indicated file descriptors. This allows a process to

1/0 Routines
145

CHAPTER 9

perform some basic multitasking without forking another process or starting another
thread. The prototype for this function and its macros is listed below.
#include <sys/time.h>

#include <sys/types.h>
#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

select() is one of the more complicated system calls available. You probably won’t
need to use it very often but when you do, you really need it. You could issue a bunch of
non-blocking reads or writes on the various file descriptors, but that kind of program-
ming is one of the reasons why DOS and Windows applications multitask so poorly; the
task keeps running and chewing up CPU cycles even though it has no useful work to do.

The first parameter is the number of file descriptors in the file descriptor sets (so the ker-
nel doesn’t have to waste time checking a bunch of unused bits). The second, third, and
fourth parameters are pointers to file descriptor sets (one bit per possible file descriptor)
that indicate which file descriptors you would like to be able to read, write, or receive
exception notifications on, respectively. The last parameter is a timeout value. All but the
first parameter may be null. On return the file descriptor sets will be modified to indicate
which descriptors are ready for immediate I/O operations. The timeout will also be modi-
fied on return, although that is not the case on most systems other than Linux. The return
value itself will indicate a count of how many descriptors are included in the descriptor
sets. If it is zero, that indicates a timeout. If the return value is -1, errno will be set to
indicate the error (which may include EINTR if a signal was caught).

The macros FD_ZERO(), FD_SET (), FD_CLEAR, and FD_ISSET() help manipulate file
descriptor sets by erasing the whole set, setting the bit corresponding to a file descriptor,
clearing the bit, or querying the bit. All but FD_ZERO() take a file descriptor as the first
parameter. The remaining parameter for each is a pointer to a file descriptor set.

SANILNOY O/I

Listing 9.3 has a crude terminal program that illustrates the use of select(). The pro-
gram doesn’t disable local echo or line buffering on the keyboard, set the baud rate on
the serial port, lock the serial line, or do much of anything but move characters between
the two devices. If compiled with BADCODE defined, it will spin on the input and output
operations tying up CPU. Otherwise, the program will use select() to sleep until it is
possible to do some I/O. It will wake up every ten seconds, for no good reason. It is

146

System Programming

PART Il

limited to single character buffers so it will make a system call for every character in or
out instead of doing multiple characters at a time when possible. My manyterm program
also illustrates the use of select().

LiSTING 9.3 select BASED TERMINAL PROGRAM

#include <sys/time.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <assert.h>

#include <stdio.h> /* for fprintf(stderr,... */
#include <termios.h>

/* crude terminal program */

/* - does not lock modem */

/* - does not disable echo on users terminal */
/* - does not put terminal in raw mode */

/* - control-c will abort */

int debug = 0;

void dump_fds(char *name, fd_set *set, int max_fd)

{
int 1i;
if(!debug) return;
fprintf(stderr, "%s:", name);
for(i=0; i<max_fd; i++) {
if (FD_ISSET(i, set)) {
fprintf(stderr, "%d,", 1i);
}
}
fprintf(stderr, "\n");
}
main()
{

int keyboard;

int screen;

int serial;

char c;

int rc;

struct termios tio;

#ifndef BADCODE

1/0 Routines

CHAPTER 9

fd_set readfds;
fd_set writefds;
fd_set exceptfds;
struct timeval tv;
int max_fd;

/* inbound and outbound keep track of */
/* whether we have a character */
/* already read which needs to be sent in that direction */
/* the _char variables are the data buffer */
int outbound;
char outbound_char;
int inbound;
char inbound_char;
#endif

keyboard = open("/dev/tty",0 _RDONLY] O_NONBLOCK);
assert(keyboard>=0);

screen = open("/dev/tty",0 _WRONLY; O_NONBLOCK);
assert(screen>=0);
serial = open("/dev/modem", O_RDWR, O_NONBLOCK);

assert(serial>=0);

if (debug) {
fprintf (stderr, "keyboard=%d\n",keyboard);
fprintf(stderr, "screen=%d\n",screen);
fprintf(stderr, "serial=%d\n",serial);

}
#ifdef BADCODE
while(1) {
rc=read(keyboard, &c,1);
if(re==1) {
while(write(serial,&c,1) != 1)
}
rc=read(serial,&c,1);
if(rc==1) {
while(write(screen,&c,1) != 1)
5
}
}
#else

outbound = inbound = 0;

while(1) {
FD_ZERO(&writefds);
if (inbound) FD_SET(screen, &writefds);

continues

147

SANILNOY O/I

148

System Programming

PART Il

LISTING 9.3 CONTINUED

if (outbound) FD_SET(serial, &writefds);

FD_ZERO(&readfds);
if (!outbound) FD_SET(keyboard, &readfds);
if(!inbound) FD_SET(serial, &readfds);

max_fd = 0;

if(screen > max_fd) max_fd=screen;
if (keyboard > max_fd) max_fd=keyboard;
if(serial > max_fd) max_fd=serial;
max_fd++;

if (debug) fprintf(stderr, "max_fd=%d\n",max_fd);

tv.tv_sec = 10;
tv.tv_usec = 0;

dump_fds("read in", &readfds, max_fd);
dump_fds("write in", &writefds, max_fd);

rc= select(max_fd, &readfds, &writefds, NULL, &tv);

dump_fds("read out", &readfds, max_fd);
dump_fds("write out", &writefds, max_fd);

if (FD_ISSET (keyboard, &readfds)) {
if(debug) fprintf(stderr, "\nreading outbound\n");
rc=read(keyboard,&outbound_char,1);
if(rc==1) outbound=1;
if (outbound == 3) exit(0);
}

if (FD_ISSET(serial, &readfds)) {
if(debug) fprintf(stderr, "\nreading inbound\n");
rc=read(serial,&inbound_char,1);
if(rc==1) inbound=1;

}

if (FD_ISSET(screen, &writefds)) {
if(debug) fprintf(stderr, "\nwriting inbound\n");
rc=write(screen,&inbound_char,1);
if(rc==1) inbound=0;

}

if (FD_ISSET(serial, &writefds)) {
if(debug) fprintf(stderr, "\nwriting outbound\n");
rc=write(serial,&outbound_char,1);
if(rc==1) outbound=0;

1/0 Routines

CHAPTER 9

}
#endif

The fstat () Call

The fstat() system call returns information about the file referred to by the file descrip-
tor files, placing the result in the struct stat pointed to by buf (). A return value of
zero is success and -1 is failure (check errno).

149

#include <sys/stat.h>
#include <unistd.h>

int fstat(int filedes, struct stat *buf);

Here is the definition of struct stat, borrowed from the man page:

struct stat

{
dev_t st_dev; /*
ino_t st_ino; /*
mode_t st_mode; /*
nlink_t st_nlink; /*
uid_t st_uid; /*
gid_t st_gid; /*
dev_t st_rdev; /*
off_t st_size; /*
unsigned long st_blksize; /*
unsigned long st_blocks; /*
time_t st_atime; /*
time_t st_mtime; /*
time_t st_ctime; /*

b

device */

inode */

protection */

number of hard links */

user ID of owner */

group ID of owner */

device type (if inode device) */
total size, in bytes */
blocksize for filesystem I/0 */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */

This call is safer than its cousins stat () and even lstat().

The fchown() Call

The fchown () system call lets you change the owner and group associated with an open

file.

#include <sys/types.h>
#include <unistd.h>

int fchown(int fd, uid_t owner, gid_t group);

SANILNOY O/I

150

System Programming

PART Il

The first parameter is the file descriptor, the second the numerical user id, and the third
the numerical group id. A value of -1 for either owner or group will leave that value
unchanged. Return values are zero for success and -1 for failure (check errno).

An ordinary user may change the file's group to any group they belong to. Only
root may change the owner to any group.

The fchown () call is safer than its cousin chown (), which takes a pathname instead of a
file descriptor.

The fchmod () Call

The fchmod () call changes the mode (permission bits) of the file referenced by fildes to
mode.

#include <sys/types.h>
#include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

Modes are frequently referred to in octal, a horrid base 8 numbering system that was
used to describe groups of 3 bits when some systems could not print the letters A—F
required for hexadecimal notation. Remember that one of the C language’s unpleasant
idiosyncrasies is that any numeric constant that begins with a leading zero will be inter-
preted as octal. Return values are zero for success and -1 for error (check errno).

Table 9.3 shows the file mode bits that may be OR-ed together to make the file mode.

TABLE 9.3 FiLE MODES

Octal Symbolic Description

04000 S_ISUID Set user id (setuid)
02000 S_ISGID Set group id (setgid)
01000 S_SVTX Sticky bit

00400 S_IRUSR User (owner) may read
00200 S_IWUSR User (owner) may write

00100 S_IXUSR User (owner) may execute/search

1/0 Routines
151

CHAPTER 9

Octal Symbolic Description

00040 S_IRGRP Group may read

00020 S_IWGRP Group may write

00010 S_IXGRP Group may execute/search
00004 S_IROTH All others may read
00002 S_IWOTH All others may write
00001 S_IXOTH All others may execute

The kernel may modify these bits silently while executing this call or when the file is
later modified in certain circumstances to prevent security breaches; in particular the
setuid and setgid bits will be reset when the file is written to.

The fchmod () call is safer than its cousin chmod ().

The fchdir () Call

The fchdir () call changes to the directory referred to by the open file descriptor fd. A
return value of zero means success and -1 means failure (check errno).

#include <unistd.h>
int fchdir(int fd);

The fchdir() call is safer than its cousin chdir().

The flock() Call

The system call flock() requests or removes an advisory lock on the file referred to by
file descriptor fd.

#include <sys/file.h>

int flock(int fd, int operation)

SANILNOY O/I

The second parameter, operation, will be LOCK_SH for a shared lock, LOCK_EX for an
exclusive lock, or LOCK_UN to unlock; the value LOCK_NB can be OR-ed with any of the
other options to prevent blocking. At any particular time, only one process can have an
exclusive lock on a particular file, but more than one can have shared locks. Locks are
only enforced when a program tries to place its own lock; programs that do not attempt
to lock a file may still access it. Locks, therefore, only work between cooperating pro-
grams. Return values are zero for success and -1 for error.

152

System Programming

PART Il

On Linux, and many other UNIX-type systems, there are many types of locks that may
or may not interoperate with each other. Locks placed with flock() do not communicate
with locks placed using fentl() or lockf (), or with UUCP lock files in /var/lock.
Linux also implements mandatory locks, if they are enabled on your kernel, for specific
files that have the setgid bit set and the group execute bit clear; in this case, locks placed
with fentl() or lockf () will be mandatory.

The pipe() Call
The pipe () system call creates a pipe and returns two file descriptors in the two integer

arrays pointed to by filedes. These file descriptors may be used like any file descriptors
returned by open (). The return value is O for success and -1 for error (check errno).

#include <unistd.h>
int pipe(int filedes[2]);

pipe() can be used in conjunction with fork(), dup2(), and execve () to create pipes to
other programs with redirected input and/or output. Beware of deadlock conditions if you
redirect both input and output back to the parent process; it is not difficult to find your-
self in a situation where both the parent and child are waiting on each other. You can also
create pipes between two or more child processes in this manner.

Types of Files

A variety of types of files are manipulated using file descriptor I/O or by file pointer I/O
(stdio), which is implemented on top of file descriptor I/O. This section mentions some
of the idiosyncrasies of several different types of files.

Regular Files

All of the system calls described in the previous sections, except for ioctl() and
fchdir() (which applies to directories) apply to ordinary files. The program
filedes_io.c, shown in listing 9.4, shows most of the system calls described in this
chapter applied to an ordinary file.

LisTING 9.4 filedes_io.c

/* filedes_io.c */
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <fcntl.h>

1/0 Routines

153

CHAPTER 9

#include <unistd.h>

#include <assert.h>
#include <errno.h>
#include <string.h>
#include <stdio.h> /* for printf */

char samplei[] "This is sample data 1\n";
char sample2[] = "This is sample data 2\n";
char data[16];

main()

{
int fd;
int rc;

struct stat statbuf;

/* Create the file */

printf("Creating file\n");
fd=open("junk.out",0 _WRONLY O_CREAT0_TRUNC,0666);
assert(fd>=0);

rc=write(fd,samplel,strlen(samplel));
assert(rc==strlen(samplei));

close(fd);

/* Append to the file */
printf("Appending to file\n");
fd=open("junk.out",0 WRONLY'!O_APPEND);
assert(fd>=0);

printf(" locking file\n");
rc=flock(fd, LOCK_EX);
assert(rc==0);

=
/* sleep so you can try running two copies at one time */ o
printf(" sleeping for 10 seconds\n"); g?
sleep(10); g
=
m
w

printf (" writing data\n");
rc=write(fd,sample2,strlen(sample2));
assert(rc==strlen(sample2));

printf(" unlocking file\n");
rc=flock(fd, LOCK_UN);
assert(rc==0);

close(fd);

continues

154

System Programming

PART Il

LISTING 9.4 CONTINUED

/* read the file */
printf("Reading file\n");
fd=open("junk.out",0_RDONLY);
assert(fd>=0);

while(1) {
rc=read(fd,data,sizeof(data));
if(rc>0) {
data[rc]=0; /* terminate string */
printf("Data read (rc=%d): <%s>\n",rc,data);
} else if (rc==0) {
printf("End of file read\n");

break;
} else {
perror("read error");
break;
}
}
close(fd);

/* Fiddle with inode */
printf("Fiddling with inode\n");
fd=open("junk.out",0 RDONLY);
assert(fd>=0);

printf("changing file mode\n");
rc=fchmod(fd, 0600);
assert(rc==0);
if(getuid()==0) {
printf("changing file owner\n");
/* If we are root, change file to owner nobody, */
/* group nobody (assuming nobody==99 */
rc=fchown(fd, 99, 99);
assert(rc==0);
} else {
printf("not changing file owner\n");

}

fstat(fd, &statbuf);

printf("file mode=%0 (octal)\n",statbuf.st_mode);
printf("Owner uid=%d\n",statbuf.st_uid);
printf("Owner gid=%d\n",statbuf.st_uid);

close(fd);

1/0 Routines

CHAPTER 9

Tape 1/0

Tape drives normally support sequential access to one or more unnamed files separated
by end of file markers. Some tape drives support variable block sizes but others use a
fixed block size or block sizes that are a multiple of some size. Most, perhaps all, tape
drives have some maximum block size. Nine-track (open reel) tape drives support vari-
able block sizes with a minimum block size of something like 16 bytes. Quarter Inch
Cartridge (QIC) drives require block sizes to be a multiples of 512 bytes. DAT drives
support variable length block sizes. If you want to preserve filename information, use an
archive program such as tar, which will write a single file containing an archive of many
files with filename, ownership, and permission information.

ANSI standard nine-track tapes do appear to have filenames. What is really happening is
that two files are written to tape for every data file; the first file contains a header and the
second contains the data. There is a package that handles ANSI tapes at
ftp://garbo.uwasa.fi/unix/ansiutil/ansitape.tar.Z.

The Linux tape drive interface is pretty straightforward. You simply open the tape device
(/dev/nst0@) and perform read() and write() calls. Each write() writes a single block
to tape; you control the block size by simply controlling how many bytes you write at a
time. To read variable length blocks, and learn what block size was read, simply issue a
read () with a size large enough to hold the largest block expected; the read will only
read the data in the current block and the return value will indicate the block size. End of
file markers are placed on tape by writing a block size of zero (most tape devices do not
allow zero length blocks); by convention, two consecutive end of file markers mark the
end of tape. If a zero length block is read, this should be treated as an end of file. Some
UNIX systems require you to close and reopen the file to get past the end of file marker;
Linux does not have this idiosyncrasy. If you are not concerned about block sizes, you
can even use file pointer I/O on a tape drive; it is possible that selecting unbuffered input
and output using setbuf () might even allow control over block variable sizes.

NoOTE

The 1seek() call does not work for tape devices, although you can accomplish
this using the MTSEEK ioctl on those tape drives (such as DAT drives) that sup-
port this.

155

SANILNOY O/I

156

System Programming

PART Il

There are a wide variety of ioctls defined in /usr/include/sys/mtio.h that pertain to
tape devices. The man page for st, the SCSI tape device, describes these in more detail.
The mt program can issue many of these. Some of the things you can do with ioctls are
rewind, retension tape, set tape position, eject tape, erase tape, retrieve status, set block
sizes, set recording density, turn compression on and off, and initiate a drive self-test.
Not all tape drives support all functions.

tapecopy.c, shown in Listing 9.5, copies all files from one tape drive to another, pre-
serving block sizes. Remember to use the no-rewind tape device (/dev/nst@ instead of
/dev/st0); the rewind device rewinds the tape every time the file is closed. You will
probably want to rewind each tape with a command like mt -f /dev/nst@ rewind. If
you only have one tape drive or just want to see the block sizes on an existing tape, you
can use /dev/null as the output devices. The program takes three parameters, the input
tape device, the output tape device, and the level of verbosity (1=verbose, O=quiet).

LISTING 9.5 tapecopy.c

/* tapecopy.c - copy from one tape to another */
/* preserving block size */
/* Copyright 1999 by Mark Whitis. All rights reserved */

#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h>
#include <sys/mtio.h>

int verbose=1;

main(int argc, char *argv[])
{

int in;

int out;

int rc;

int size;

char buffer[65536];

int lasteof;

int filesize;

int nfiles;

int totalsize;

int blocknum;

if(argc != 4) {
fprintf (stderr, "Usage:\n");

1/0 Routines
157

CHAPTER 9

fprintf (stderr, " tapecopy in out verbosity\n");

}
verbose = atoi(argv[3]);

in=open(argv[1],0_RDONLY);

assert(in);
out=open(argv[2],0_WRONLY |0 _CREAT,0666);
assert(out);

/* set to variable block size (0) */

/* oddly, this returns EINVAL even though it works */
/* expect an ENOTTY on /dev/null or plain file */
rc—ioctl(in,MTSETBLK,@);

if(rc!=0) perror("tapecopy: ioctl(in,MTSETBLK,Q)");
rc ioctl(out,MTSETBLK,Q);
if(rc!=0) perror("tapecopy: ioctl(out,MTSETBLK,Q)");
filesize=0;
nfiles=0;
totalsize=0;
blocknum=0;
lasteof = 0;
while(1) {

rc=read(in, buffer, sizeof(buffer));
if(verbose) {
fprintf(stderr,"Block %d, size=%d\n",blocknum,rc);

I3

if(rc<0) {
perror("tapecopy: read error");
blocknum++;

} else if(rc==0) {
/* end of file marker read */
if(lasteof) {

/* end of tape */ =
if(verbose) fprintf(stderr,"**EQOT**\n"); ©)
write(out, buffer, 0); g?
break; S

} else { =
m

w

if(verbose) {
fprintf(stderr,"**EOF**, filesize=%d\n",filesize);

}
/* some Un*x systems require closing and opening */

/* file to get past end of file marker */
close(in);

in=open(argv[1],0_RDONLY);

/* write file marker */

write(out, buffer, 0);

continues

158

System Programming

PART Il

LISTING 9.5 CONTINUED

nfiles++;
filesize=0;
lasteof=1;
blocknum=0;
I3
} else {
size = rc;

rc = write(out, buffer, size);
if(rc!=size) {

perror("tapecopy: write error");
}
filesize+=size;
totalsize+=size;
blocknum++;

lasteof=0;

}

if(verbose) fprintf(stderr,"Number of files: %d\n",nfiles);
if(verbose) fprintf(stderr,"Total size: %d\n",totalsize);

close(in);
close(out);

Serial Port 1/0

Using the serial ports is fairly easy. Just open the port 0_RDWR and use ioctls or termios
to set the communications parameters. See Chapter 26, “Terminal Control the Hard
Way,” for more information on termios. You may also want to use file pointer I/O
instead.

Note that serial ports frequently have two instances: a call in device and a call out device.
This is so the getty program can have the connection open to receive incoming sessions,
but modem applications can still open it for outgoing connections as long as there is no
active incoming session.

Printer Port

The parallel printer driver creates three character special devices: /dev/1p@, /dev/1p1,
and /dev/1p2. To talk to the printer directly, you simply open write data to the appropri-
ate device (assuming no other program already has them open). This is usually not what

1/0 Routines
159

CHAPTER 9

you want to do from an application, however. Instead, you should use the spooling mech-
anism provided by the 1pd daemon. You should pipe the data through a user specified
queuing program, which will usually be 1pr or mpage with assorted options. It will usual-
ly be more convenient to use file pointer I/O for this purpose; the popen() function can
be used for this purpose (as long as the program is not privileged).

Sound Card

The sound driver creates a number of character special devices for the various subdevices
on a typical soundcard. To play back digitized sound samples, you simply open
/dev/audio (or /dev/dsp or /dsp1), use ioctls() to set the sample rate, number of
channels, number of bits per sample, and other parameters and then start writing your
audio samples to the open file descriptor (or file pointer). If you are trying to do synchro-
nized sound, you will need to balance the amount of data you write ahead; too little and
you will have dropouts due to buffer overflow, but too much will cause noticeable delays.
Recording is similar. To use the FM synthesizer, you must first know how to produce a
valid MIDI data stream that you then send to the /dev/midi device. In some cases, you
may find it simpler to invoke an external program such as play, rec, or playmidi to han-
dle your audio.

More information on the programming interface is available at
http://www.opensound.com/pguide/.

Summary

File descriptor I/O provides low level file I/O functions in a way that is somewhat UNIX
specific. For higher level 1/O operations, see file pointer I/O in Chapter 10, “File
Manipulation.” In some cases, you will still need to use some of the functions in this
chapter in conjunction with file pointer I/O.

SANILNOY O/I

160

File Manipulation

by Mark Whitis

IN THIS CHAPTER

e The File Functions 162
¢ Formatted Output 765

162

System Programming

PART Il

This chapter describes file manipulation through the file pointer (FILE *) mechanism
provided by the stdio library. This library is common to all C implementations for
general-purpose computers (but not some embedded systems); therefore, most C pro-
grammers should already be reasonably familiar with it. This chapter provides a quick
overview of the basics, and gives more attention to various subtleties and Linux/UNIX-
specific calls. The functions described in this section are library functions and not system
calls.

The stdio library offers several enhancements over file descriptor I/O; in some circum-
stances, these can be disadvantages as well. The stdio library buffers I/O, reducing the
system call overhead. This can sometimes cause problems with output not being deliv-
ered when expected and can be a problem if you are concerned about block boundaries,
such as with magnetic tapes or some network protocols. The buffering can be disabled.
The very popular printf () family of functions work with file pointer I/O, not file
descriptor I/0, and there are a variety of other line oriented functions. These functions
may also resume system calls that were interrupted by a signal. The portability of the
library is also a major advantage.

The File Functions

The description of each function starts with a function prototype definition, borrowed
from the man page and/or header file. In the function descriptions that follow, FILE *
identifies a file pointer. Most functions described in this section will take a file pointer
argument to indicate what stream to operate on; this will not be repeated in each descrip-
tion. Three standard file pointers are normally open when each program starts— stdin,
stdout, and stderr. These three file pointers point to streams that normally are connect-
ed to the user’s terminal unless redirected to a file or pipe.

NoTE

Some functions are actually implemented as macros. Beware of expressions in
the arguments that have side effects; these functions may be called more than
once.

File Manipulation

CHAPTER 10

Opening and Closing Files
The fopen(), freopen(), and fclose() calls are part of the ANSI standard library;
fdopen() is not. Prototype definitions for these functions are as follows:

#include <stdio.h>

FILE *fopen(const char *path, const char *mode);

FILE *fdopen(int fildes, const char *mode);

FILE *freopen (const char *path, const char *mode,
FILE *stream);

int fclose(FILE * stream);

The function fopen() opens the file named path in mode mode. The modes are described
in Table 10.1. There is no difference between text and binary modes; this distinction is
important on non-UNIX operating systems that handle line ends differently (DOS, MS-
Windows, MacOS) and translate to and from the UNIX paradigm in text mode. fopen ()
returns a file pointer that is passed to other stdio functions to identify the stream; this
pointer points to a structure that describes the state of the stream. In the event of an error,
it will return NULL and set errno.

TaBLE 10.1 FiLe OrPEN MODES

Mode Read Write Position Truncate Create Binary
r Yes No Beginning No No Text
r+ Yes Yes Beginning No No Text
w No Yes Beginning Yes Yes Text
W+ Yes Yes Beginning Yes Yes Text
a No Yes End No Yes Text
a+ Yes Yes End No Yes Text
b Yes No Beginning No No Binary
r+b or tb+ Yes Yes Beginning No No Binary
wb No Yes Beginning Yes Yes Binary
w+b or wb+ Yes Yes Beginning Yes Yes Binary
ab No Yes End No Yes Binary
a+b or ab+ Yes Yes End No Yes Binary

The freopen() function takes a third argument, which is an existing file pointer. This
will close and reopen the file pointer so that it points to the new file. It should use the
same file descriptor for the underlying file descriptor I/O as well. freopen() is typically
used to redirect the streams stdout, stdin, and stdout.

163

NOILLYININV Al

164

System Programming

PART Il

The fdopen () function is used to create a file pointer stream on top of an underlying

file descriptor stream created using open(), pipe(), or accept(). The fopen() and
freopen() calls are vulnerable security attacks based on race conditions and/or symbolic
links; Chapter 35, “Secure Programming,” presents a safer, but more restricted, imple-
mentation of fopen(). The fclose() system call closes a file. Return values are 0 for
success and EOF (-1) for failure (check errno).

Basic Reading and Writing

The functions fread() and fwrite() are used to read data from and write data to
streams (files).

#include <stdio.h>

size t fread(void *ptr, size_t size, size_t nmemb, FILE
*stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream);

The first argument is a pointer to a buffer. The next two arguments are the size of a
record and the number of records to be written. The return value is the number of records
written (not bytes); this value may be less than the number requested. In the event of an
error, the return value will normally be less than the number requested; it is possible it
might even be negative. You will need to use feof () and ferror() to check why the
operation was not completed.

Status Functions

The feof () and ferror() functions return the current status of the stream.

#include <stdio.h>

void clearerr(FILE *stream);
int feof(FILE *stream);

int ferror(FILE *stream);
int fileno(FILE *stream);

The feof () function returns non-zero if the end of file has been reached; note, however,
that the end of file flag will not usually be set until you actually try to read past the end
of file. Looping using while (!feof (stream)) will likely result in one extra pass
through the loop. The ferror() function returns a non-zero value if the error flag is

set on the stream. This function does not set errno, but the previous function call that
actually encountered the error did set errno. The end of file and error flags are reset
with clearerr().

File Manipulation

165

CHAPTER 10

The fileno() function returns the file descriptor number associated with a stream. This
allows you to perform file descriptor I/O operations (see Chapter 9, “I/O Routines™) on
that stream. For example, you might need to issue an ioctl() of fstat() system call.
Be careful going over stdio’s head; in particular, be sure to flush your buffers before
doing so.

Formatted Output

The printf () function should be familiar to anyone with the slightest C programming
experience. It prints formatted output, including optional arguments, to a stream under
the control of a control string format.

#include <stdio.h>

int printf(const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

int sprintf(char *str, const char *format, ...);

int snprintf(char *str, size_t size, const char *format, ...);

#include <stdarg.h>

int vprintf(const char *format, va_list ap);
int vfprintf(FILE *stream, const char *format,
va_list ap);
int vsprintf(char *str, const char *format, va_list ap);
int vsnprintf(char *str, size_t size, const char *format,
va_list ap);

[TP%1)

There are a number of interesting variations on printf (). The functions with an “s” in
the name print to a string instead of a stream. The plain variants are inherently bro-
ken and should not be used; they are vulnerable to buffer overflow problems. The func-
tions that have “sn” in the name fix the buffer overflow problem. These functions are not
implemented on many other operating systems but you should use them anyway. If you
need to port your program to an OS that has not fixed this problem, you can at least
implement the snprintf () calling convention using a wrapper function around

[l
S

vsprintf () even if you don’t check for overflows. Your code will still be broken on sys-
tems that are broken, but it will work properly on systems that have been fixed. A canary
value (see Chapter 35) in your wrapper function would also help.

The versions of the function that start with “v” are very handy. These are the varargs
versions; actually, they use stdargs, which is the same but different. These are very
handy if you need to write your own printf () function that does something different

to the output. I remember years ago when I was forced to work on a Pascal program.

NOLLYINdINVIA|
114

166

System Programming

PART Il

This was during the Pascal fad; based on my own measurements at the time, around 90
percent of programming projects that were started were using Pascal—yet 90 percent of
the programming projects which were actually finished were written in C. Management
decided they wanted the program to optionally output its responses to a file and/or a
printer—a pretty reasonable request. It approximately doubled the size of the program;
every write statement had to be replaced with three write statements and two condition-
als. And inconsistencies would creep in between the different outputs when the program
was changed. Since printf () is a user-defined function and not a statement, you don’t
have that problem in C. The code fragment in Listing 10.1 shows how you would handle
duplicate output to multiple destinations using vprintf () and friends; just use a search
and replace operation to change all calls to printf () to your own xprintf (). The listing
also shows how we used to accomplish the same thing before the vprintf () family
came along. It wasn’t guaranteed to work but it did anyway; it effectively copied 32
bytes of the stack (or a bunch of registers on RISC CPUs). You can use a similar tick to
divert output to a dialog box. Note that on a Linux system, simply redirecting the output
of an unmodified program through the “tee” program would suffice to log the output of
the program.

The stdarg macros provide a way to pass a variable number and/or type of parameters to
a function. The function must have at least one fixed argument. The argument list in the
function prototype must have “...” where the variable arguments begin. This tells the
compiler not to generate error messages when you pass additional, and seemingly incon-
sistent, parameters to this function. It may also tell the compiler to use a stdarg friendly
calling convention. The printf () function has always used a variable number and type
of arguments, using trickery which eventually led to portability problems (implementa-
tions on some processors, particularly RISC processors, pass some or all of the argu-
ments to a function in registers instead of on the stack). printf () itself is the most
common application for stdargs. stdargs also provides a way to pass the variable
arguments of one function to another function safely and portably. One of the most com-
mon uses of this is to write your own printf () style function which, in turn, makes use
of the existing ones. A stdargs function declares a variable of type va_list. It then calls
a function va_start() with the va_list variable just declared and the last fixed vari-
able; va_start() is a macro so neither parameter needs to be preceded by an “&”
(address of) operator. When you are finished, va_end () will free any resources used by
va_start(). The va_list variable, often named “ap” for “argument pointer”’, may now
be used to sequence through each variable using the va_arg() macro. The function itself,
not the stdargs macros, needs to know the number and type of the arguments; in the
case of the printf () functions, this information is determined from the format string.
va_arg() takes two parameters: the va_list variable, ap, and the type argument, which
is a C language type expression (such as char *); the macro casts its result to the

File Manipulation
b 167

CHAPTER 10

specified type and as a side effect modifies the ap variable to point to the next variable
argument (using the size of the specified type as an offset on traditional systems where
arguments are passed on the stack). A simple example of a stdargs function that imple-
ments a trivial printf () like function can be found on the stdarg man page; for more
information on the use of va_arg() and stdargs, please refer to that document. Unlike
functions with fixed arguments, functions with variable arguments cannot easily be
encapsulated in another wrapper function. The trick here is to make the real function take
a va_list argument (instead of the variable argument list to which it refers) and then
make a simple wrapper function that does nothing more than initialize the va_list and
call the other function. Now programmers can write their own wrapper function by sim-
ply calling your real function instead of your wrapper. The xprintf () function in Listing
10.1 is an example of a replacement wrapper function. The ANSI standard essentially
requires that the printf () family of functions be implemented as a va_list function
and variable argument wrapper, or at least appear to be. Since vsprintf () and

vfprint () do the same thing but do different things with the results, a given implemen-
tation’s efforts to combine the two variations may add confusion here for those who
choose to look at the code for the printf () family of functions. Those who want to
peruse the stdarg.h file to see how the magic of stdarg is done may find more magic
than they expected: the file has disappeared. Although it is possible to implement
stdargs in C macros on a traditional machine, gcc handles these macros internally since
it has to deal with many different architectures.

Listing 10.1 vprintf() AND FRIENDS

#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>

FILE *printer;
FILE *logfile;

int xprintf(const char *format, ...)
{

va_list ap;
va_start(ap,format);
vprintf (format, ap);

if(printer) vfprintf(printer, format, ap);
if(logfile) vfprintf(logfile, format, ap);

va_end(ap);

NOILLYININV Al

continues

168

System Programming

PART Il

LisTING 10.1 CONTINUED

int old_xprintf(const char *format,
long a1, long a2, long a3, long a4,
long a5, long a6, long a7, long a8)

{
printf(format, atl, a2, a3, a4, a5, a6, a7, a8);
if(printer)
fprintf (printer,format, at, a2, a3, a4, a5, a6, a7, a8);
if(logfile)
fprintf(logfile,format, at, a2, a3, a4, a5, a6, a7, a8);
}

Formatted Input

The fscanf () function is used to read formatted input from stdin under the control of a
control string format. Many variations exist that read from any arbitrary stream (“f” ver-
sions) or from a string (“s” versions). The “v” versions use stdargs. These variations are
similar to the variations described for the printf () family.

#include <stdio.h>

int scanf(const char *format, ...);

int fscanf(FILE *stream, const char *format, ...);

int sscanf(const char *str, const char *format, ...);

#include <stdarg.h>

int vscanf(const char *format, va_list ap);

int vsscanf(const char *str, const char *format, va_list ap);
int vfscanf(FILE *stream, const char *format, va_list ap);

One of the most common mistakes people make using these functions is to pass the value
of a variable instead of its address (a pointer); don’t forget the “&” operator where nec-
essary. Generally, strings will not need an ampersand but other variables will.

Failure to include a size in the control string for string arguments will permit buffer over-
flows that can have serious security consequences. If you do include a size, any extra
input in a particular field is likely to end up in the wrong field.

Note that the versions of scanf () that read directly from a stream are vulnerable to extra
data at the end of the line being read by the next scanf (). For this reason, it is better to
read a line into a string buffer and then use sscanf () on it; this also lets you use multiple
scanf () calls with different formats to handle different possible input formats.

The return value from all of these functions is the number of fields successfully read. In
the event of an error, the function will return EOF (-1) or a number less than the number
of fields requested.

File Manipulation
b 169

CHAPTER 10

Character and Line Based Input and Output

Many functions are available for line-based input and output. These functions generally
have two flavors, one that deals with characters and one that works on strings. The func-
tion prototypes are listed below.

#include <stdio.h>

int fgetc(FILE *stream);

char *fgets(char *s, int size, FILE *stream);
int getc(FILE *stream);

int getchar(void);

char *gets(char *s);

int ungetc(int c, FILE *stream);

int fputc(int c, FILE *stream);

int fputs(const char *s, FILE *stream);
int putc(int c, FILE *stream);

int putchar(int c);

int puts(const char *s);

int ungetc(int c, FILE *stream);

Table 10.2 gives a brief summary of these functions. Those that return int will return a
negative value (EOF) on error (check errno). The functions that return a character point-
er return either a pointer to the string read (a pointer to the buffer you passed in) or
NULL if an error occurred.

TABLE 10.2 CHARACTER AND LINE I/O FUNCTIONS

Function Direction Size Stream Overflow Newline
fgetc Input Character Any No

fgets Input line Any No Kept
getc Input Character Any No

getchar Input Character stdin No

gets Input Line stdin Yes Removed
ungetc Input Character Any No

fputc Output Character Any No

fputs Output Line Any No Not added
putc Output Character Any No

putchar Output Character stdout No

puts Output Line stdout No Added

NOILLYININV Al

170

System Programming

PART Il

The line-oriented functions are inconsistent in their handling of newlines. The gets()
function is vulnerable to buffer overflows and should not be used; use fgets() instead
but note the difference in newline handling.

File Positioning

The file positioning functions set the current position of a file; they may not work on
streams that do not point to normal files. The prototypes for these functions are listed
below.

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);
long ftell(FILE *stream);

void rewind(FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos(FILE *stream, fpos_t *pos);

The fseek() function sets the position to offset. The whence parameter is SEEK_SET,
SEEK_CUR, or SEEK_END; these values determine whether the offset is relative to the begin-
ning, current position, or the end of file. It returns the current position relative to the
beginning, or a value of -1 in the event of error (check errno). The ftell() function
simply returns the current position. The rewind () function sets the position to zero. The
fgetpos() and fsetpos() functions are implemented as variations of ftell() and
fseek(); on other operating systems that do not treat all files as a simple stream of data
bytes, the fpos_t may be a structure instead of an integer.

Buffer Control

The prototypes for the buffer control functions are as follows. These functions provide
for the three main types of stream buffering, unbuffered, line buffered, and block
buffered, as well as the ability to flush any buffered but unwritten data out.

#include <stdio.h>

int fflush(FILE *stream);

int setbuf(FILE *stream, char *buf);

int setbuffer(FILE *stream, char *buf, size_tsize);

int setlinebuf (FILE *stream);

int setvbuf(FILE *stream, char *buf, int mode , size t size);

The fflush() function flushes the buffers on output stream stream.

The setvbuf () function sets the buffer used by a stream. The arguments are the file
pointer for the stream, the address of the buffer to use, the mode, and the size of the
buffer. The mode can be one of _IONBF for unbuffered operation, _IOLBF for line
buffered, or _I0FBF for fully buffered. If the buffer address is NULL, the buffer will be

File Manipulation
P 171

CHAPTER 10

left alone but the mode will still be changed. The other functions basically are variations
of the more versatile setvbuf () function. Use setvbuf () immediately after opening a
stream or after fflush(); do not use it if there is any buffered data.

Tip

The code fragment setbuf (stream, NULL); is frequently used to unbuffer a
stream, although setvbuf () can also be used.

Deletion and Renaming

The remove () function deletes a file by name and the rename () function renames a file.

#include <stdio.h>

int remove(const char *pathname);
int rename(const char *oldpath, const char *newpath);

The first argument to each function is the pathname to an existing file. The second argu-
ment to rename () is a pathname that describes where the file should be renamed to. Both
return a value of zero on success and —1 on error; the specific error code will be found,
as usual, in the variable errno. These functions can be vulnerable to symbolic links and
race conditions, which are discussed in Chapter 35 “Secure Programming.”

Temporary Files

The tmpfile() and tmpnam() functions are part of the ANSI standard C stdio library;
the other two (mkstemp () and mktemp ()) are peculiar to UNIX systems.

#include <stdio.h>

FILE *tmpfile (void);
char *tmpnam(char *s);

#include <unistd.h>
int mkstemp(char *template);
char *mktemp(char *template);

The tmpfile() function opens a temporary file. The tmpnam() function generates a file-
name that may be used to generate a temporary file; if “s” is not NULL the filename is
written into the supplied buffer (which could be overflowed since there is no size argu-
ment), otherwise it returns a pointer to an internal buffer that will be overwritten the next
time the function is used. Neither of these functions allows you to specify where the file
will be stored, and they are likely to create a file (or pathname) in a vulnerable shared
directory such as /tmp or /var/tmp. These functions should not be used.

NOILLYININV Al

172

System Programming

PART Il

A simple example of how to use tmpnam() to create and open a temporary function is as
follows:
FILE *tmpfile=NULL;

Char FILENAME[L_tmpnam];
Tempfile=fopen(tmpnam(FILENAME), "rb+");

The mktemp () function also generates a unique filename for a temporary file, but it uses
a template that allows you to specify the path prefix that will be used; the last six charac-
ters of the template must be “XXXXXX”. The mkstemp () function makes a filename
using mktemp () and then issues an open() system call to open it for file descriptor 1/O;
you can use fdopen() to open a stdio stream on top of that descriptor.

Temporary files should only be created in safe directories that are not writable by other
users (such as ~/tmp or /tmp/$ (username); otherwise, they are vulnerable to race condi-
tions and symlink attacks (see Chapter 35). The filenames generated by these functions
are easily guessable.

Summary

The file pointer functions included in the stdio library, which is part of the standard C
library, provide a more convenient and portable interface to files, particularly for text
files.

The primary limitation of the stdio library is that it can only manipulate streams that are
handled by the underlying file descriptor system calls. My universal streams library does
not have this limitation; user supplied functions can be used to handle input and output.
You might want to check my Web site to see if this library has been released.

Process Control

by Mark Whitis

IN THIS CHAPTER

o Attributes 174

e System Calls and Library
Functions 175

¢ Scheduling Parameters 183
e Threads 184

e Sample Programs 1917

174

System Programming

PART Il

This chapter introduces the basics of process control. In the traditional UNIX model,
there are basically two operations to create or alter a process. You can fork() to create
another process that is an exact copy of the existing process, and you can use execve ()
to replace the program running in a process with another program. Running another pro-
gram usually involves both operations, possibly altering the environment in between.
Newer, lightweight processes (threads) provide separate threads of execution and stacks
but shared data segments. The Linux specific __clone() call was created to support
threads; it allows more flexibility by specifying which attributes are shared. The use of
shared memory (see Chapter 17, “Shared Memory”) allows additional control over
resource sharing between processes.

Attributes

Table 11.1 attempts to summarize how process attributes are shared, copied, replaced, or
separate for the four major ways to change a process. Instead of actually copying memo-
ry, a feature known as “copy-on-write” is frequently used in modern OSes like Linux.
The mappings between virtual and physical memory are duplicated for the new process,
but the new mappings are marked as read-only. When the process tries to write to these
memory blocks, the exception handler allocates a new block of memory, copies the data
to the new block, changes the mapping to point to the new block with write access, and
then resumes the execution of the program. This feature reduces the overhead of forking
a new process.

TABLE 11.1 PROCESS ATTRIBUTE INHERITANCE

Attribute fork() thread __clone() execve()
Virtual Memory (VM)

Code Segment copy shared CLONE_VM replaced

Const Data don’t shared CLONE_VM replaced

Segment care

Variable Data copy shared CLONE_VM replaced

Segment

stack copy separate CLONE_VM replaced

mmap () copy shared CLONE_VM replaced

brk() copy shared CLONE_VM replaced

command line copy shared CLONE_VM replaced

environment copy shared CLONE_VM replaced

Process Control

175
CHAPTER 11
Attribute fork() thread __clone() execve()
.)
Files =
0
chroot(), copy shared CLONE_FS copy m
chdir(), :’
umask ())
2
. . -|
File descriptor copy shared CLONE_ copy! 3
table FILES -
file locks separate separate CLONE_PID same
Signals
Signal Handlers copy shared CLONE_SIGHAND reset
Pending Signals separate separate separate reset
Signal masks separate separate separate reset
Process Id (PID) different different CLONE_PID same
timeslice separate shared CLONE_PID same

Footnote!: Except file descriptors with the close on exec bit set

System Calls and Library Functions

The calls in this section are a mixture of system calls and library functions. The function
prototype at the beginning of each section is borrowed from the man pages and/or header
files.

The fork() System Call

The fork() system call creates an almost exact copy of the current process. Both the
parent and the child will execute the code following the fork (). An “if”’ conditional nor-
mally follows the fork to allow different behavior in the parent and child processes.

#include <unistd.h>
pid_t fork(void);
pid_t vfork(void);

If the return value is positive, you are executing in the parent process and the value is the
PID of the child. If the return value is 0, you are in the child. If the value is negative,
something went wrong and you need to check errno.

176

System Programming

PART Il

Under Linux, vfork() is the same as fork(). Under some operating systems, vfork() is
used when the fork will be immediately followed by an execve(), to eliminate unneeded
duplication of resources that will be discarded; in order to do this, the parent is suspend-
ed until the child calls execve().

The exec() Family

The execve () system call replaces the current process with the program specified by
filename, using the argument list argv and the environment envp. If the call to execve()
returns, an error obviously occurred and errno will have the cause.

#include <unistd.h>

int execve (const char *filename, char *const argv [],
char *const envp[]);

extern char **environ;

int execl(const char *path, const char *arg, ..., NULL);

int execlp(const char *file, const char *arg, ..., NULL);

int execle(const char *path, const char *arg , ...,
NULL, char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

H

The library functions execl(), execlp(), execle(), execv(), and execvp() are simply
convenience functions that allow specifying the arguments in a different way, use the
current environment instead of a new environment, and/or search the current path for the
executable. The versions of the function with an “1” in the name take a variable number
of arguments, which are used to build argv|[]; the function prototypes in the preceding
code have been edited to show the NULL terminator required at the end of the list. Those
functions that lack an “e” in the name copy the environment from the current process.
Those functions that have a “p” in the name will search the current path for the exe-
cutable named by file; the rest require that an explicit path to the executable file be
specified in path.

With the exception of execle() and execve(), all these functions have serious security
vulnerabilities due to their use of the current environment (including path) and should
never be used in setuid programs. All these functions and the execve () must be used
with a safe path to the executable. There is no exec () function; this is often used, how-
ever, as a generic identifier for this family of functions. Only rarely will you want to use
these routines by themselves. Normally, you will want to execute a fork () first to

exec () the program in a child process.

Process Control

177

CHAPTER 11

The system() and popen() Functions

For lazy programmers, the system() and popen() functions exist. These functions must
not be used in any security sensitive program (see Chapter 35, “Secure Programming”).

#include <stdlib.h>
int system (const char * string);

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

#include <stdio.h>
FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

These functions fork() and then exec() the user’s login shell that locates the command
and parses its arguments. They use one of the wait () family of functions to wait for the
child process to terminate.

The popen() function is similar to system(), except it also calls pipe() and creates a
pipe to the standard input or from the standard output of the program, but not both. The
second argument, type, is “1” to read piped stdout or “w” to write to stdin.

The clone() Function Call

The Linux specific function call, __clone(), is an alternative to fork() that provides
more control over which process resources are shared between the parent and child
processes.

#include <sched.h>

int __clone(int (*fn) (void *arg), void *child_stack,

int flags, void *arg)
This function exists to facilitate the implementation of pthreads. It is generally recom-
mended that you use the portable pthreads_create() to create a thread instead,
although __clone() provides more flexibility.

The first argument is a pointer to the function to be executed. The second argument is a
pointer to a stack that you have allocated for the child process. The third argument,
flags, is created by OR-ing together various CLONE_* flags (shown in Table 11.1). The
fourth argument, arg, is passed to the child function; its function is entirely up to the
user. The call returns the process ID of the child process created. In the event of an error,
the value -1 will be returned and errno will be set.

178

System Programming

PART Il

The wait(), waitpid(), wait3(), and wait4()
System Calls

These system calls are used to wait for a change of state in a particular process, any
member of a process group, or any child process.

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status)
pid_t waitpid(pid_t pid, int *status, int options);

#define _USE_BSD

#include <sys/types.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3(int *status, int options,
struct rusage *rusage)

pid_t wait4(pid_t pid, int *status, int options,

struct rusage *rusage)
The wait () call waits for any child process. The waitdpid() call waits for a specific
process. The BSD-style wait3() and wait4() calls are equivalent to wait () and
waitpid(), respectively, but also return the resource usage of the child process into the
struct pointed to by the argument rusage. Where the functions take a pid argument, this
may be positive, in which case it specifies a specific pid; negative, in which case the
absolute value specifies a process group; -1, for any process; or 0, for any member of the
same process group as the current process. If the call takes an argument options, this
will be 0, or the result of OR-ing either or both of the options WNOHANG (don’t block if no
child has exited yet) or WUNTRACED (return for children that have stopped).

Until a parent process collects the return value of a child process, a child process that has
exited will exist in a zombie state. A stopped process is one whose execution has been
suspended, not one that has exited.

select()

The select () call was described in detail in Chapter 9, “I/O Routines.” It is mentioned
here because it provides a very lightweight alternative to threads and forking processes.

Signals

Signals are events that may be delivered to a process by the same or a different process.
Signals are normally used to notify a process of an exceptional event.

Process Control

CHAPTER 11 179

#include <signal.h>
struct sigaction {
void (*sa_handler) (int);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer) (void);

}

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

void (*signal(int signum, void (*handler)(int))) (int);

int raise (int sig);

int killpg(int pgrp, int sig);

int sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);

int sigprocmask(int how, const sigset_t *set,
sigset_t *oldset);

int sigpending(sigset_t *set);

int sigsuspend(const sigset_t *mask);

void psignal(int sig, const char *s);

#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);

#include <unistd.h>
int pause(void);

#include <string.h>
char *strsignal(int sig);
extern const char * const sys_siglist[];

The signal() function registers the handler, handler, for the signal signum. The handler
may be one of the predefined macro values SIG_IGN (to ignore the signal), SIG_DFL (to
restore the default handler), or a user defined signal handler function. The handler is
reset to the default behavior when the signal handler is called; it may call signal() again
to catch future signals.

The function raise() sends a signal, sig, to the current process. The system call kill()
sends a signal, sig, to another process specified by process id pid. The system call
killpg() is similar, except it sends the signal to every process in the process group spec-
ified by pgrp or the current process’s process group if pgrp is zero. For both calls, the
current process must have permission to send a signal to the recipient, which generally
means they must belong to the same user or the sender must be root. If the signal for
kill() is zero, no signal is actually sent, but the usual error checking is performed; this
may be used to test for the continued existence of a particular process.

The various signals that may be delivered are defined in the man page signal in section
7 (use the command man 7 signal). The pause() system call suspends the current

180

System Programming

PART Il

process until a signal is received. The sigaction() system call is an elaborate version of
the more common signal() call. It sets the new action for signal signum to the action
pointed to by act (if not NULL) and saves the current action into oldact (if not NULL).

The sigaction structure has four members. The member sa_handler is a pointer to the
signal handler function; it might also have the value SIG_DFL or SIG_IGN. The member
sa_mask indicates which other signals should be blocked while handling this one. The
member sa_flags is the result of bitwise OR-ing together of the flags SA_NOCLDSTOP
(disable SOGCHLD notification if the child merely stops), SA_ONESHOT or SA_RESETHAND
(which both cause the signal handler to be reset after the first invocation), SA_RESTART
(which allows some system calls to be restarted after a signal), or either SA_NOMASK or
SA_NODEFER (which allow the same signal to be delivered again while the signal handler
is executing). The sa_restorer member is obsolete.

The sigprocmask () function is used to set the current mask of blocked signals. The
argument how can be SIG_BLOCK (add members of set to the set of blocked signals),
SIG_UNBLOCK (remove members of set from the set of blocked signals), or SIG_SETMASK
(assign the set of blocked signals from set). If the pointer oldset has a value other than
NULL, the previous contents of the mask are saved to the referenced object.

The system call sigpending() may be used to determine which signals are currently
pending but blocked. The set of pending signals is stored into the object pointed to by
set. The system call sigsuspend() temporarily suspends the current process but first
sets the signal mask according to mask. These functions return zero for success and -1 for
an error (check errno).

The function strsignal() returns a pointer to a string that describes the signal sig. The
descriptive strings may be accessed directly in the array sys_siglist[]. The psignal()

function is similar except it prints the description, along with the prefix message “s”, to
stderr.

The function sigreturn() should not be called directly; when the kernel invokes a sig-
nal handler it inserts a return into this cleanup function on the stack frame. The function
sigpause () is obsolete; use sigsuspend(). The sigvec() function has similarly been
obsoleted by sigaction().

There can be problems with setuid() processes receiving signals from an ordinary user
who invokes the process while the process is in a privileged state. Chapter 35 has more
details on the security implications of signals.

Many system calls and library functions can be interrupted by signals. Depending on the
SA_RESTART value set with sigaction(), some system calls may be restarted automati-
cally. Otherwise, if a system call is interrupted by a signal (errno=EINTR), you may need
to reissue the system call with the arguments adjusted to resume where it left off.

Process Control

181

CHAPTER 11

Program Termination

The exit() function terminates execution of the current program, closes any open file
descriptors, and returns the lower eight bits of the value status to the parent process to
retrieve using the wait () family of functions.

#include <unistd.h>
void _exit(int status);

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

#include <stdlib.h>

void exit(int status);

int atexit(void (*function)(void));

int on_exit(void (*function)(int , void *), void *arg);
void abort(void);

#include <assert.h>
void assert (int expression);

The parent process will receive a SIGCHLD signal. Any child processes’ parent process id
will be changed to 1 (init). Any exit handlers registered with atexit() or on_exit() will
be called (most recently registered first) before the program ends. The exit () function
will call the system call _exit (), which may be called directly to bypass the exit han-
dlers.

The function atexit () registers a function with no arguments and no return value to be
called when the program exits normally. The on_exit () function is similar, except that

the exit handler function will be called with the exit status and the value of arg as argu-
ments. The atexit() and on_exit () functions return a value of 0 on success and return
-1 and set errno if they do not succeed.

The abort () function also terminates the current program. Open files are closed and
core may be dumped. If you have registered a signal handler for SIGABRT using
signal(), or a similar function, this signal handler will be called first. The parent
process will be notified that the child died due to SIGABRT.

The assert () macro evaluates the provided expression. If the expression evaluates to 0
(false) then it will call abort (). The assert() macro can be disabled by defining the
macro NDEBUG. assert () is normally used to check your assumptions and make your
code more robust, causing it to abort instead of malfunction. It is good practice to check
function arguments using assert () at the beginning of each function for situations that
otherwise would not be handled properly. assert () can be used to check return values
from functions if you don’t feel like handling them more gracefully. You can also use
assert() to check word sizes and other aspects of the compilation and execution envi-
ronment. The following code fragments show some calls to assert():

assert(result_p); /* check for NULL pointer */
assert(result _p!=NULL); /* ditto */

182

System Programming

PART Il
assert(sizeof(int)==4); /* Check word size */
rc=open("foo",0_RDONLY);
assert(rc>=0); /* check return value from open */

Alarms and Timers

The system call setitimer() sets one of three interval timers associated with each
process.
#include <sys/time.h>

struct itimerval {
struct timeval it_interval; /* next value */

struct timeval it_value; /* current value */
b
struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* microseconds */
}s

int getitimer(int which, struct itimerval *value);
int setitimer(int which, const struct itimerval *value,
struct itimerval *ovalue);

#include <unistd.h>

unsigned int alarm(unsigned int seconds);
unsigned int sleep(unsigned int seconds);
void usleep(unsigned long usec);

The argument may have the value ITIMER_REAL (decrements in real time), ITIMER_VIR-
TUAL (decrements when the process is executing), or ITIMER_PROF (decrements when the
process is executing or when the kernel is executing on the process’s behalf). The timers
deliver the signals SIGALRM, SIGVTALRM, and SIGPROF, respectively. The interval timers
may have up to microsecond resolution. The getitimer () system call retrieves the cur-
rent value into the object pointed to by value. The setitimer () call sets the timer to the
value pointed to by value and stores the old value into the object pointed to by ovalue,
if not NULL. These system calls return zero for success or a value of -1 (check errno)
for an error.

The alarm() function schedules a SIGALRM signal to be delivered in the number of sec-
onds of real time indicated by seconds. The sleep() and usleep() functions suspend
the process for at least the number of seconds or microseconds, respectively, specified by
their single argument. The actual delay may be significantly longer due to clock granu-
larity or multitasking.

All these functions share the same set of timers. Thus alarm(), sleep(), and usleep()
can conflict with each other and with an ITIMER_REAL used with getitimer (). The time-
out used by the select() system call might also conflict. If you need to make simultane-
ous use of more than one function that uses ITIMER_REAL (), you will need to write a

Process Control

CHAPTER 11

function library that maintains multiple timers and calls setitimer() only with the next
one to expire.

Scheduling Parameters

These calls manipulate parameters that set the scheduling algorithm and priorities associ-
ated with a process.
#include <sched.h>
int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *p);

int sched_getscheduler(pid_t pid);
struct sched_param {

int sched_priority;
b

#include <unistd.h>
int nice(int inc);

#include <sys/time.h>

#include <sys/resource.h>

int getpriority(int which, int who);

int setpriority(int which, int who, int prio);

#include <sched.h>
int sched_get priority max(int policy);
int sched_get_priority_min(int policy);

A process with a higher static priority will always preempt a process with a lower static
priority. For the traditional scheduling algorithm, processes within static priority 0 will
be allocated time based on their dynamic priority (nice() value).

The system calls sched_setscheduler() and sched_getscheduler() are used to set or
get, respectively, the scheduling policy and parameters (set only) associated with a par-
ticular process. These functions take a process id, pid, to identify the process on which
to operate; the current process must have permission to act on the specified process. The
scheduling policy, policy, is one of SCHED_OTHER (the default policy), SCHED_FIFO, or
SCHED_RR; the latter two specify special policies for time critical applications and will
preempt processes using SCHED_OTHER. A SCHED_FIFO process can only be preempted by
a higher priority process, but a SCHED_RR process will be preempted if necessary to share
time with other processes at the same priority. These two system calls will return -1 in
the event of an error (check errno); on success, sched_setscheduler() returns O and
sched_getscheduler() returns a non-negative result. The system calls sched_get_
priority max() and sched_get_priority min() return the maximum and minimum
priority values, respectively, which are valid for the policy specified by policy). The

183

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

184

System Programming

PART Il

static priority of SCHED_OTHER processes is always 0; use nice () or setpriority() to set
the dynamic priority.

The system call nice() adds inc to the dynamic priority for the calling process, lower-
ing its priority. The superuser may specify a negative value, which will raise the priority.
Returns O for success or -1 for error (check errno).

The system call setpriority() sets the dynamic priority of a process (which =
PRIO_PROCESS), process group (which = PRIO_PGRP), or user (which = PRIO_USER). The
priority is set to the value prio, which will have a value between -20 and 20 with lower
numbers giving more priority in scheduling. It will return O on success and -1 if there is
an error (check errno). The system call getpriority() takes the same first two argu-
ments and returns the lowest value (highest priority) of all matching processes. It will
return -1 for either an error or if that is the actual result; you must clear errno before
using this function and check it afterwards to determine which was the case.

Threads

POSIX threads (pthreads) provide a relatively portable implementation of lightweight
processes. Many operating systems do not support threads. The Linux implementation
differs from many. In particular, each thread under Linux has its own process id because
thread scheduling is handled by the kernel scheduler. Threads offer lower consumption of
system resources and easier communication between processes.

There are many potential pitfalls to using threads or any other environment where the
same memory space is shared by multiple processes. You must be careful about more
than one process using the same variables at the same time. Many functions are not re-
entrant; that is, there cannot be more than one copy of that function running at the same
time (unless they are using separate data segments). Static variables declared inside func-
tions are often a problem. Parameter passing and return value conventions for function
calls and returns that are used on various platforms can be problematic, as can the specif-
ic conventions used by certain functions. Returning strings, large structs, and arrays are
particularly problematic. Returning a pointer to statically allocated storage inside the
function is no good; another thread may execute that function and overwrite the return
value before the first one is through using it. Unfortunately, many functions and, worse
yet, compilers, use just such a calling convention. GCC may use different calling conven-
tions on different platforms because it needs to maintain compatibility with the native
compiler on a given platform; fortunately, GCC favors using a non-broken return conven-
tion for structures even if it could mean incompatibility with other compilers on the same
platform. Structs up to 8 bytes long are returned in registers, and functions that return

Process Control

CHAPTER 11

larger structures are treated as if the address of the return value (storage space allocated
in the calling function) was passed as an argument. Variables that are shared between
processes should be declared using the volatile keyword to keep the optimizer from
changing the way they are used and to encourage the compiler to use atomic operations
to modify these variables where possible. Semaphores, mutexes, disabling interrupts, or
similar means should be used to protect variables, particularly aggregate variables,
against simultaneous access.

Setting or using global variables may create problems in threads. It is worth noting that
the variable errno may not, in fact, be a variable; it may be an expression that evaluates
to a different value in each thread. In Linux, it appears to be an ordinary integer variable;
presumably, it is the responsibility of the thread context switching code to save and
restore errno when changing between threads.

The pthread_create() Function

The pthread_create() function creates a new thread storing an identifier to the new
thread in the argument pointed to by thread.

#include <pthread.h>

int pthread_create(pthread_t *thread,

pthread_attr_t * attr,

void * (*start_routine) (void *), void * arg);
The second argument, attr, determines which thread attributes are applied to the thread;
thread attributes are manipulated using pthread_attr_init(). The third argument is the
address of the function that will be executed in the new thread. The fourth argument is a
void pointer that will be passed to that function; its significance, if any, is defined by the
user.

The pthread_exit() Function

This function calls any cleanup handlers that have been registered for the thread using
pthread_cleanup_push() and then terminates the current thread, returning retval,
which may be retrieved by the parent or another thread using pthread_join(). A thread
may also terminate simply by returning from the initial function.

#include <pthread.h>

void pthread_exit(void *retval);

185

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

186

System Programming

PART Il

The pthread_join() Function

The function pthread_join() is used to suspend the current thread until the thread spec-
ified by th terminates.

#include <pthread.h>

int pthread_join(pthread_t th, void **thread_return);
int pthread_detach(pthread_t th);

The other thread’s return value will be stored into the address pointed to by
thread_return if this value is not NULL. The memory resources used by a thread are
not deallocated until pthread_join() is used on it; this function must be called once for
each joinable thread. The thread must be in the joinable, rather than detached, state and
no other thread may be attempting to use pthread_join() on the same thread. The
thread may be put in the detached state by using an appropriate attr argument to
pthread_create() or by calling pthread_detach().

Note that there seems to be a deficiency here. Unlike with the wait () family of calls for
regular processes, there does not seem to be a way to wait for the exiting of any one out
of multiple threads.

Attribute Manipulation

These functions manipulate thread attribute objects. They do not manipulate the attribut-
es associated with threads directly. The resulting object is normally passed to
pthread_create(). The function pthread_attr_init() initializes a new object and the
function pthread_attr_destroy() erases it. The user must allocate space for the attr
object before calling these functions. These functions could allocate additional space that
will be deallocated by thread_attr_destroy(), but in the Linux implementation this is
not the case.

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

int pthread_attr_setdetachstate(pthread_attr_t *attr,
int detachstate);

int pthread_attr_getdetachstate(const pthread_attr_t *attr,
int *detachstate);

int pthread_attr_setschedpolicy(pthread_attr_t *attr,
int policy);

int pthread_attr_getschedpolicy(const pthread_attr_t *attr,
int *policy);

int pthread_attr_setschedparam(pthread_attr_t *attr,
const struct sched_param *param);

Process Control

CHAPTER 11 187

int pthread_attr_getschedparam(const pthread_attr_t *attr,
struct sched_param *param);
int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inherit);
int pthread_attr_getinheritsched(const pthread_attr_t *attr,
int *inherit);
int pthread_attr_setscope(pthread_attr_t *attr,
int scope);
int pthread_attr_getscope(const pthread_attr_t *attr,
int *scope);
int pthread_setschedparam(pthread_t target_thread,
int policy, const struct sched_param *param);
int pthread_getschedparam(pthread_t target_thread,
int *policy, struct sched_param *param);

-
el
O
0
m
(%]
(%]
(o)
©
=
=1
=
O
—

The pthread_setschedparam() and pthread_getschedparam() functions are used to set
or get, respectively, the scheduling policy and parameters associated with a running
thread. The first argument identifies the thread to be manipulated, the second is the poli-
cy, and the third is a pointer to the scheduling parameters.

The remaining functions take one argument that is a pointer to the attribute object, attr,
to be manipulated, and either set or retrieve the value of a specific attribute that will be
obvious from the name. Table 11.2 shows the thread attributes; the default values are
marked with an asterisk. High priority real-time processes may want to lock their pages
into memory using mlock (). mlock() is also used by security sensitive software to pro-
tect passwords and keys from getting swapped to disk, where the values may persist after
they have been erased from memory.

TABLE 11.2 THREAD ATTRIBUTES

Attribute Value Meaning

Joinable state
Detached state

detachstate PTHREAD_CREATE_JOINABLE*

PTHREAD_CREATE_DETACHED

schedpolicy SCHED_OTHER* Normal, non-realtime
SCHED_RR Realtime, round-robin
SCHED_FIFO Realtime, first in
first out
schedparam policy specitic
inheritsched PTHREAD EXPLICIT SCHED* Set by schedpolicy

PTHREAD_INHERIT_SCHED

and schedparam
Inherited from
parent process

continues

188

System Programming

PART Il

TABLE 11.2 CONTINUED

Attribute Value Meaning
scope PTHREAD_SCOPE_SYSTEM* One system timeslice
PTHREAD_SCOPE_PROCESS for each thread

Threads share same
system timeslice
(not supported
under Linux)

All the attribute manipulation functions return 0 on success. In the event of an error,
these functions return the error value rather than setting errno.

The pthread_atfork() Function

This function registers three separate handlers, which will be invoked when a new
process is created.

#include <pthread.h>

int pthread_atfork(void (*prepare)(void),
void (*parent)(void), void (*child) (void));

The prepare () function will be called in the parent process before the new process is
created, and the parent () process will be called afterwards in the parent. The child()
function will be called in the child process as soon as it is created. The man page for
these functions refers to the fork() process; this seems to be an anachronism since pre-
sumably __clone() is now used instead. Any of the three function pointers may be
NULL; in that case, the corresponding function will not be called. More than one set of
handlers may be registered by calling pthread_atfork() multiple times. Among other
things, these functions are used to clean up mutexes that are duplicated in the child
process. Return values are 0 for success or an error code.

Thread Cancellation

The pthread_cancel function allows the current thread to cancel another thread, identi-
fied by thread.

#include <pthread.h>

int pthread_cancel(pthread_t thread);

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);

Process Control

CHAPTER 11

A thread may set its cancellation state using setcancelstate(), which takes two argu-
ments. The argument state is the new state and the argument oldstate is a pointer to a
variable in which to save the oldstate (if not NULL). The function pthread_setcancel-
type changes the type of response to cancellation requests; if type is
PTHREAD_CANCEL_ASYNCHRONOUS, the thread will be cancelled immediately or
PTHREAD_CANCEL_DEFERRED to delay cancellation until a cancellation point is reached.
Cancellation points are established by calls to pthread_testcancel (), which will cancel
the current thread if any deferred cancellation requests are pending. The first three func-
tions return O for success and an error code otherwise.

The pthread_cleanup_push() Macro

The pthread_cleanup_push () macro registers a handler, routine, which will be called
with the void pointer argument specified by arg when a thread terminates by calling
pthread_exit (), or honors a cancellation request.
#include <pthread.h>
void pthread_cleanup_push(void (*routine) (void *),
void *arg);
void pthread_cleanup_pop(int execute);
void pthread_cleanup_push_defer_np(
void (*routine) (void *), void *arg);
void pthread_cleanup_pop_restore_np(int execute);

The macro pthread_cleanup_pop () unregisters the most recently pushed cleanup han-

dler; if the value of execute is non-zero, the handler will be executed as well. These two
macros must be called from within the same calling function.

The macro pthread_cleanup_push_defer_np() is a Linux-specific extension that calls
pthread_cleanup_push() and also pthread_setcanceltype() to defer cancellation. The
macro pthread_clanup_pop_restore_np() pops the most recent handler registered by
pthread_cleanup_push_defer_np() and restores the cancellation type.

pthread_cond_init()

These functions are used to suspend the current thread until a condition is satisfied. A
condition is an object that may be sent signals.

#include <pthread.h>

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond,
pthread_condattr_t *cond_attr);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

189

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

190

System Programming

PART Il

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec *abstime);
int pthread_cond_destroy(pthread_cond_t *cond);

The function pthread_cond_int () initializes an object, cond, of type cond_t. The sec-
ond parameter is ignored under Linux. You can also just copy PTHREAD_COND_INITIAL-
IZER to the variable. The function pthread_cond_destroy() is the destructor for objects
of type cond_t; it doesn’t do anything except check that there are no threads waiting on
the condition.

The function pthread_cond_signal() is used to restart one, and only one, of the threads
waiting on a condition. The function pthread_cond_broadcast () is similar, except that
it restarts all threads. Both take a condition, of type cond_t, to identify the condition.

The function pthread_cond_wait () unlocks a mutex, specified by mutex, and waits for a
signal on the condition variable cond. The function pthread_cond_timedwait () is simi-
lar but it only waits until the time specified by abstime. The time is usually measured in
seconds since 1/1/1970 and is compatible with the value returned by the system call
time (). These functions are also possible cancellation points and they return O for suc-
cess or an error code in the event of failure.

The pthread_equal() Function

The function pthread_equal() returns a non-zero value if the threads referred to by
thread1 and thread2 are actually the same; otherwise it returns zero.

#include <pthread.h>

int pthread_equal(pthread_t threadi, pthread_t thread2);

Mutexes

Mutexes are mutual exclusion locks, a form of semaphore. Mutexes are objects of type
mutex_t such that only one thread may hold a lock on a given mutex simultaneously.
Like any form of semaphore, they are normally used to prevent two processes or threads
from using a shared resource at the same time. A thread that tries to lock a mutex that is
already locked will be suspended until the lock is released by the thread that has it
locked.

#include <pthread.h>

pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_ INITIALIZER_NP;

pthread_mutex_t errchkmutex
= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

Process Control

CHAPTER 11 191

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex));

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

The functions pthread_mutex_init() and pthread_mutex_destroy() are the construc-
tor and destructor functions, respectively, for mutex objects. The functions
pthread_mutex_lock() and pthread_mutex_unlock() are used to lock and unlock a
mutex, respectively. The function pthread_mutex_trylock() is similar to
pthread_mutex_lock() except that it will not block (suspend the thread) if the mutex is
already locked. These functions return O for success or an error code otherwise;
pthread_mutex_init () never fails.

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

Sample Programs

This section presents a library I wrote that demonstrates a number of process control fea-
tures and some sample programs that use that library.

Child Library

Listing 11.1 shows the header file, child.h, and Listing 11.2 shows the actual imple-
mentation, child.c, of the library. The library contains functions to spawn a set number
of child processes, to replace these processes when they die, and to send signals to these
processes. It also includes a function that implements a safer and more flexible replace-
ment for the system() and popen() standard library functions.

The type child_fp_t defines a pointer to a function that will be executed in the child
process. The two arguments are a pointer to the child_info_t structure that describes
the child and an arbitrary (user defined) void pointer.

The data structure child_info_t has information about a particular child process,
including its process id (pid), its parent process id (ppid), its process number (zero
through the number of child processes in a given group), and a pointer to the function to
be executed.

The data structure child_group_info_t contains information about a group of child
processes. The member nchildren defines how many processes are listed in the child
array. The members minchildren, maxchildren, and activechildren define the mini-
mum and maximum numbers of children to maintain and the number currently being
maintained; currently, these three values should all be the same. The array child

192

System Programming

PART Il

contains multiple instances of type child_info_t. This data structure maintains informa-
tion on a group of child processes all running the same function.

The data structure child_groups_t defines multiple groups; each group may be running
a different function. Member ngroups indicates how many groups are defined in the
array group of type child_group_info_t. This allows functions that wait for or manipu-
late dissimilar child processes.

The function child_create() creates an individual child process. The third argument,
private_p, is a user defined void pointer that is passed to the created child function. The
function child_group_create() creates between “min” and “max” copies of a child
process (currently the number created will equal “min’). The function
child_groups_keepalive () replaces children from one or more groups of children
when they terminate for any reason. The function child_group_signal() sends a signal
to all children in a single group. The function child_groups_signal() sends a signal to
the children in multiple groups. The function child_groups_kill() counts the number
of children by sending them signal 0, sends each of them SIGTERM, and waits until they
all die or a couple minutes have elapsed, at which time it aborts them using SIGKILL.

The function child_pipeve() is a replacement for system() and popen(). The first
three arguments are similar to the arguments for the execve () system call and define the
program to be executed, its command line arguments, and its environment. The remain-
ing three arguments are pointers to file descriptors for stdin, stdout, and stderr; if
these pointers are not NULL, a pipe will be created for the corresponding stream, and a
file descriptor for the appropriate end of the pipe will be returned into the referenced
objects.

LisTING 11.1 child.h

#ifndef _CHILD H
#define CHILD H

#ifdef __cplusplus

extern "C" {
#endif

#define MAX_CHILDREN 32
#define MAX_CHILD_GROUPS 4

extern int child_debug;

Process Control

193

CHAPTER 11

/* we have a circular reference here */
struct child_info_t;

-
x

typedef void (*child _fp_t) (struct child_info_t *, void *); g
m

w

typedef struct child_info_t { ;;
int pid; g
int ppid; =
int number; g

child_fp_t child_fp;
} child_info_t;

/* The following should really be kept in shared memory */
typedef struct {
int nchildren; /* number in table, not number running */
int minchildren;
int maxchildren;
int activechildren;
child_info_t child[MAX CHILDREN];
} child_group_info_t;

typedef struct {

int ngroups;

child_group_info_t *group[MAX_CHILD_GROUPS];
} child_groups_t;

void child_create(
child_info_t *child_info_p,
child_fp_t child_fp,
void *private_p

);

child_info_t *child_lookup_by pid(
const child_groups_t *child_groups_p,
int pid

);

int child_group_create(
child_group_info_t *children_info_p,
const int min,
const int max,
const child_fp_t child_fp,
void *private_p

)5

extern int child_restart_children;

continues

194

System Programming

PART Il

LisTING 11.1 CONTINUED

extern void child_groups_keepalive (
const child_groups_t *child_groups_p

);

extern int child_group_signal(
child_group_info_t *children_info_p,
int signal

)5

extern int child_groups_signal(
const child_groups_t *child_groups_p,
int signal

);

extern int child_groups_kill(
const child_groups_t *child_groups_p
)5

extern int child_pipeve(
const char *cmdpath, /* full path to command */

char * const argvl[], /* Array of pointers to arguments */
char * const envp[],/* Array of pointers to environment vars*/
int *stdin_fd_p, /* Output: fd for stdin pipe */

int *stdout_fd_p, /* Output: fd for stdout pipe */

int *stderr_fd_p /* Output: fd for stderr pipe */

);

extern void child_print_arg_array(char *name, char * const array[]);

extern void child_init();
extern void child_term();

#ifdef __cplusplus
}
#endif

#endif /* CHILD H */

LisTiING 11.2 child.c

#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/types.h>

Process Control

195

CHAPTER 11

#include <sys/wait.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>

#include "child.h"

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

/* Linux doesn't even bother to declare DST_NONE */
#ifndef DST_NONE

#define DST_NONE 0
#endif

int child_debug=0;

void child_create(
child_info_t *child_info_p,
child_fp_t child_fp,
void *private_p
) {
int rc;
int fd;
int seed;
struct timeval tv;
struct timezone tz;

assert(child_info_p);
assert(child_fp);

/* struct timezone is obsolete and not really used */
/* under Linux */

tz.tz_minuteswest = 0;

tz.tz_dsttime = DST_NONE;

rc=fork();
if(rc == (pid_t) -1) {

/* error */

perror("fork failed");
} else if (rc>0) {

/* parent */

child_info_p->pid = rc;
} else {

#ifndef USING_SHARED_MEM
child_info_p->pid = getpid();
child_info_p->ppid = getppid();

#endif

/* reseed random number generator */
/* if you don't do this in each child, they are */

continues

196

System Programming

PART Il

LisTING 11.2 CONTINUED

/* likely to all use the same random number stream */
fd=open("/dev/random",0_RDONLY) ;

assert(fd>=0);

rc=read(fd, &seed, sizeof(seed));

assert(rc == sizeof(seed));

close(fd);

srandom(seed) ;

gettimeofday (&tv, NULL);
fprintf (stderr,
"%010d.%06d: Starting child process #%d, pid=%d,
"parent=%d\n",
tv.tv_sec,
tv.tv_usec,
child_info_p->number,
child_info_p->pid,
child_info_p->ppid
)5

child_info_p->child_fp = child_fp;
child_fp(child_info_p, private_p);

gettimeofday(&tv, NULL);
fprintf (stderr,
"%010d.%06d: child process #%d finishing, pid=%d,
"parent=%d\n",
tv.tv_sec,
tv.tv_usec,
child_info_p->number,
child_info_p->pid,
child_info_p->ppid
)5

/* child process ceases to exist here */
exit(0);

child_info_t *child_lookup_by_ pid(

) A

const child_groups_t *child_groups_p,
int pid

int 1i;
int j;

assert(child_groups_p);

Process Control

197

CHAPTER 11

for(i=0; i<child_groups_p->ngroups; i++) {
for(j=0; j<child_groups_p->group[i]->nchildren; j++) {

if(child_groups_p->group[i]->child[j].pid == pid) { ;?
return(&child_groups_p->group[i]->child[j]); g

; “

} 0

! 2
return(NULL) ; =
o

-

}

int child_group_create(
child_group_info_t *children_info_p,
const int min,
const int max,
const child_fp_t child_fp,
void *private_p

) A

int 1i;

children_info_p->nchildren = min;
children_info_p->maxchildren max;
children_info_p->minchildren min;

for(i=0; i<min; i++) {
children_info_p->child[i].number = i;
children_info_p->child[i].child_fp = child_fp;

child_create(&children_info_p->child[i],child_fp,
private_p);

}
children_info_p->activechildren = min;

return(0);

int child_restart_children = 1;

/* This function currently does not change the number of */

/* children. In the future, it could be extended to change */
/* the number of children based on load. Each time a child */
/* exited, it could restart 0, 1, or 2 children instead of 1 */

void child_groups_keepalive(
const child_groups_t *child_groups_p
) {

int rc;
int child_status;

continues

System Programming

198

PART Il

LisTING 11.2 CONTINUED

int pid;
child_info_t *child_p;

while(1) {
rc=wait(&child_status);
if(child_restart_children==0) {
fprintf(stderr,"child_groups_keepalive(): exiting\n");

return;
}
if(rc>0) {
fprintf(stderr,"wait() returned S%d\n",rc);
pid = rc;
if (WIFEXITED(child_status)) {
fprintf(stderr, "child exited normally\n");
}
if (WIFSIGNALED(child_status)) {
fprintf(stderr, "child exited due to signal %d\n",
WTERMSIG(child_status));
I
if (WIFSTOPPED(child_status)) {
fprintf(stderr, "child suspended due to signal %d\n",
WSTOPSIG(child_status));
}
/* Use kill with an argument of zero to see if */
/* child still exists. We could also use */
/* results of WIFEXITED() and WIFSIGNALED */
if(kill(pid,0)) {
child_p = child_lookup_by_pid(child_groups_p, pid);
assert(child_p);
fprintf(stderr,
"Child %d, pid %d, died, restarting\n",
child_p->pid, pid);
child_create(child_p, child_p->child_fp, NULL);
} else {
fprintf(stderr,"Child pid %d still exists\n");
}
I3

}

int child_group_signal(
child_group_info_t *children_info_p,
int signal

) {
int i;
int count;

Process Control

199

CHAPTER 11

int rc;
child_info_t *child_p;

assert(children_info_p);
assert(signal>=0);

count=0;

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

for(i=0; i<children_info_p->nchildren; i++) {
child_p = &children_info_p->child[i];
fprintf (stderr,"sending signal %d to pid %d\n",
signal, child_p->pid);
rc=kill(child_p->pid,signal);
if(rc==0) count++;

}

return(count);

}

int child_groups_signal(
const child_groups_t *child_groups_p,
int signal
) {
int i;
int pid;
int count;

assert(child_groups_p);
assert(signal>=0);
count=0;
for(i=0; i<child_groups_p->ngroups; i++) {
count += child_group_signal(child_groups_p->group[i],
signal);
}

return(count);

}

int child_groups_kill(
const child_groups_t *child_groups_p
) A

int child_count;
int rc;
int 1i;

assert(child_groups_p);

child_count=child_groups_signal(child_groups_p, 0);
fprintf(stderr, "total children=%d\n", child_count);

fprintf(stderr, "sending SIGTERM\n");
child_groups_signal(child_groups_p, SIGTERM);

continues

200

System Programming

PART Il

LisTING 11.2 CONTINUED

}
/*

/* wait up to 4 minutes for children to die */

/* wait() may hang if children are already gone */

for(i=0; i<24; i++) {
rc=child_groups_signal(child_groups_p, 0);
if (rc==child_count) return(child_count);
sleep(5);

}

fprintf(stderr, "some children did not die\n");
fprintf(stderr, "sending SIGKILL\n");
child_groups_signal(child_groups_p, SIGKILL);

debugging function for argv and envp */

void child_print_arg_array(char *name, char * const array[])

{

int 1i;

i=0;
while(1) {
if(array[i]) {
fprintf(stderr,"%s[%d]=\"%s\"\n",name,i,array[i]);
} else {
fprintf (stderr, "%s[%d]=NULL\n",name,i,array[i]);
break;

it+;

extern char **environ;

/*
/*
/*
/*

/*
/*
/*
/*

This function is intended as a replacement for */
system() and popen() which is more flexible and */
more secure. The path to the executable must still */
be safe against write access by untrusted users. */

argv[] and envp[] must end with a NULL pointer */
stdin_fd_p, stdout_fd_p, or stderr_fd_p may be NULL, in */
which case, that stream will not be piped. stdout_fd_p
and stderr_fd_p may be equal */

Process Control

201

CHAPTER 11

/* you may want to use fd_open() on the pipes to use stdio */
/* argv[@] should equal cmdpath */

-
x

int child_pipeve(Q
const char *cmdpath, /* full path to command */ g
char * const argv[], /* Array of pointers to arguments */ A
char * const envpl[], /* Array of pointers to env. vars*/ g
int *stdin_fd_p, /* Output: fd for stdin pipe */ =
int *stdout_fd_p, /* Output: fd for stdout pipe */ 9
int *stderr_fd_p /* Output: fd for stderr pipe */

) A
int rc;
int pid;
int status;

int stdin_pipe[2];

int stdout_pipe[2];
int stderr_pipe[2];
char *dummy_argv[8];
char *dummy_envp[8];

stdin_pipe[@] = -1
stdin_pipe[1] = -1
stdout_pipe[0] =
stdout_pipe[1] =
stderr_pipe[0]
stderr_pipe[1]

—_ e s

if(stdin_fd_p) {
rc=pipe(stdin_pipe);
if(rc!=0) return(-1);
*stdin_fd_p = stdin_pipe[1];
}

if (stdout_fd_p) {
rc=pipe(stdout_pipe);
if(rc!=0) {
if(stdin_pipe[@]>=0) close(stdin_pipe[0]);
if(stdin_pipe[@]>=0) close(stdin_pipe[1]);
return(-1);
}
*stdout_fd_p = stdout_pipe[0];
}

if(stderr_fd_p && (stderr_fd_p!=stdout_fd_p)) {
rc=pipe(stderr_pipe);
if(rc!=0) {
if(stdin_pipe[@]>=0) close(stdin_pipe[0]);
if(stdin_pipe[@]>=0) close(stdin_pipe[1]);

continues

202

System Programming

PART Il

LisTING 11.2 CONTINUED

if(stdin_pipe[@]>=0) close(stdout_pipe[0]);
if(stdin_pipe[0]>=0) close(stdout_pipe[1]);
return(-1);

}
*stderr_fd_p = stderr_pipe[0];

rc=fork();

if(rc<0) {
/* error */
return(-1);

} else if(rc==0) {
/* child */

if(stdin_fd_p) {
/* redirect stdin */
rc=dup2(stdin_pipe[0],0);
}

if (stdout_fd_p) {
/* redirect stdout */
rc=dup2(stdout_pipe[1],1);
}

if(stderr_fd_p) {
/* redirect stderr */
if(stderr_fd_p == stdout_fd_p) {
rc=dup2(stdout_pipe[1],2);
} else {
rc=dup2(stderr_pipe[1],2);

}
}
/* clean up file descriptors */
#if 0
for(i=3;i<OPEN_MAX;i++) {
close(i);
}
#endif
if(envp == NULL) envp = environ;

if(child_debug>=5) {
child_print_arg_array("argv",argv);
child_print_arg_array("envp",envp);

Process Control

203

CHAPTER 11

fprintf (stderr,"cmdpath=\"%s\"\n",cmdpath);

}
%
fprintf(stderr,"about to execve()\n"); 2
O
#if 1 ;;
execve (cmdpath, argv, envp); =
#else 2
dummy_argv[@] = "./child_demo4"; =
dummy_argv[1] = "one";
dummy_argv[2] = "two";

dummy_argv[3] = "three";
dummy_argv[4] = NULL;

dummy_envp[@] = "PATH=/bin:/usr/bin";
dummy_envp[1] = NULL;

execve("./child_demo4",dummy_argv,dummy_envp);
#endif
/* we should never get here unless error */

fprintf(stderr, "execve() failed\n");
perror("execve()");

/* we will be lazy and let process termination */
/* clean up open file descriptors */

exit(255);

else {
/* parent */
pid=rc;

#if 0

rc=wait4(pid, &status, 0, NULL);
#else

rc=waitpid(pid, &status, 0);
#endif

if(rc<0) {

/* wait4() set errno */
return(-1);

}

if (WIFEXITED(status)) {
fprintf(stderr,"child_pipve(): child exited normally\n");
return((int) (signed char) WEXITSTATUS(status));

} else if (WIFSIGNALED(status)) {
fprintf(stderr,"child_pipve(): child caught signal\n");
errno = EINTR;
return(-1);

} else {

continues

System Programming

204

PART Il

LisTING 11.2 CONTINUED

fprintf(stderr,"child_pipve(): unkown child status\n");
/* we should handle stopped processes better */

errno = EINTR;

return(-1);

void child_init()
{

}

void child_term()

{
}

The child_demo1.c Program

The program child_demo1.c, shown in listing 11.3, demonstrates the child library by
invoking four child processes that do little other than announce their existence, sleep a
random amount of time, and then die. Processes that die are automatically restarted. For
no especially good reason, it installs signal handlers for several common signals and
responds to those signals by doing a longjmp () and then killing the children. The use of
longjmp() here is slightly risky because the local variables in the function have not been
declared volatile, so any variables the compiler might have stored in registers will have
random values after the longjmp (). A future version may fix this oversight.

LisTING 11.3 child_demotl.c

#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>

Process Control

205

CHAPTER 11

#include <signal.h>
#include <setjmp.h>

-
x
#include "child.h" =
O
wv
. . (o)
void child process_1(g
child_info_t *child_info_p, =
void *private_p o
) o
int rc;

int sleep_time;
assert(child_info_p);

/* undo signal settings from parent */
signal (SIGTERM, SIG_DFL);
signal (SIGINT, SIG_DFL);
signal (SIGQUIT, SIG_DFL);

/* This is child process */
fprintf (stderr,
"Child process #%d starting, pid=%d, parent=%d\n",
child_info_p->number,
child_info_p->pid,
child_info_p->ppid
)

/* Here is where we should do some useful work */
/* instead, we will sleep for a while and then die */
sleep_time = random() & OX7F;
fprintf(stderr,
"Child process #%d sleeping for %d seconds\n",
child_info_p->number,
sleep_time
)5
sleep(sleep_time);

fprintf (stderr,
"Child process #%d exiting, pid=%d, parent=%d\n",
child_info_p->number,
child_info_p->pid,
child_info_p->ppid
)
}

child_group_info_t child_group_1;
jmp_buf jump_env;

continues

System Programming

206

PART Il

LisTING 11.3 CONTINUED

void sig_handler(int signal)
{
fprintf(stderr, "pid %d received signal %d\n",
getpid(), signal);
child_restart_children = 0;

#if 0
/* wake up the wait() */
/* doesn't work */
raise(SIGCHLD) ;

#endif

longjmp(jump_env,1);

/* We opt not to call signal() again here */
/* next signal may kill us */

}

main()
{
int 1i;
int child;
child_group_info_t child_group_1;
child_groups_t child_groups;
int rc;

#if 0

setvbuf(stderr, NULL, _IOLBF, 0);
#else

setbuf(stderr, NULL);
#endif

/* Note: children inherit this */
signal (SIGTERM, sig_handler);
signal (SIGINT, sig_handler);
signal (SIGQUIT, sig_handler);

child_group_create(&child_group_1, 4, 4, child _process_1, NULL);
child_groups.ngroups = 1;

child_groups.group[@]=&child_group_1;

rc=setjmp(jump_env);
if(rc==0) {
/* normal program execution */

Process Control

207

CHAPTER 11

child_groups_keepalive(&child_groups);
} else {

/* exception handler */

/* we got here via setjmp() */

/* restore signal handlers to defaults */
signal (SIGTERM, SIG_DFL);
signal(SIGINT, SIG_DFL);
signal (SIGQUIT, SIG_DFL);

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

child_groups_kill(&child_groups);
exit(0);

The child_demo2.c Program

The program child_demo2.c, shown in Listing 11.4, is an extension of child_demo1.c.
It implements a very primitive Web server, which preforks 4 processes, each of which
responds to any request by reporting the status of the child process that handled the
request. Each child will terminate after it has handled 10 requests. In a preforked server
situation, you may want to guard against memory leaks and other problems by giving
each child a limited lifetime. It would also be good to set an alarm using alarm() at the
beginning of each request so the child will die if the request is not handled in a reason-
able length of time for any reason.

ListingG 11.4 child_demo2.c

#include <sys/time.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <signal.h>
#include <setjmp.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>

continues

208

System Programming

PART Il

LisTING 11.4 CONTINUED

#include <string.h>
#include <limits.h>

#include "child.h"

int debug=1;

int listen_sock;

void child_process_1(
child_info_t *child_p,
void *private_p
) A
int rc;
int sleep_time;
int connection;
struct sockaddr_in remote_addr;
int addr_size;
struct hostent *remote_host;
char buf[1024];
char *p;
int requests_remaining = 10;
int read_fd;
int write_fd;
FILE *in;
FILE *out;
char s[128];
assert(child_p);

requests_remaining = 10;

/* undo signal settings from parent */
signal (SIGTERM, SIG_DFL);
signal (SIGINT, SIG_DFL);
signal(SIGQUIT, SIG_DFL);

/* This is child process */
fprintf (stderr,
"Child process #%d starting, pid=%d, parent=%d\n",
child_p->number,
child_p->pid,
child_p->ppid
)5

while(requests_remaining--) {

addr_size=sizeof (remote_addr);

Process Control

209

CHAPTER 11

connection = accept(listen_sock,
(struct sockaddr *) &remote_addr,
&addr_size);

fprintf (stderr, "accepted connection\n");

remote_host = gethostbyaddr(

(void *) &remote_addr.sin_addr,

addr_size, AF_INET);
/* we never bother to free the remote_host strings */
/* The man page for gethostbyaddr() fails to mention */
/* allocation/deallocation or reuse issues */

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

/* return values from DNS can be hostile */

if(remote_host) {
assert(strlen(remote_host->h_name)<128);
assert(remote_host->h_length==4); /* no IPv6 */

if (debug) {
fprintf(stderr, "from: %s\n", remote_host->h_name);

}
strncpy(s,remote_host->h_name,sizeof(s));
} else {
if (debug) {
fprintf(stderr,
"from: [%s]\n",inet_ntoa(remote_addr.sin_addr));
}
strncpy(s,inet_ntoa(remote_addr.sin_addr),sizeof(s));

read_fd = dup(connection);
write_fd = dup(connection);
assert(read_fd>=0);
assert(write_fd>=0);
in = fdopen(read_fd,
out = fdopen(write_fd,
assert(in);
assert(out);

r);
s

/* do some work */

while(1) {
buf[0]=0;
p=fgets(buf, sizeof(buf), in);
if(!p) break; /* connection probably died */
buf[sizeof (buf)-1]=0;
p=strrchr(buf,'\n");
if(p) *p=0; /* zap newline */

continues

System Programming

210

PART Il

LisTING 11.4 CONTINUED

p=strrchr(buf,'\r");
if(p) *p=0; /* zap return */

fprintf (stderr, "buf=<%s>\n", buf);

p=strchr(buf,':");

if(p) {
/* we never actually get here because we start */
/* spewing out a response as soon as we rx GET */
/* probably an http: header */
/* ignore it */

} else if(strstr(buf,"GET")) {
fprintf(stderr,"GET\n");
fprintf(out, "HTTP/1.0 200 OK");
fprintf(out, "Content-type: text/html\n");
fprintf(out,"\n");
fprintf(out, "<HTML>\n");
fprintf(out," <HEAD>\n");
fprintf(out," <TITLE>\n");
fprintf(out," Status Page\n");
fprintf(out," </TITLE>\n");
fprintf(out," </HEAD>\n");
fprintf(out," <BODY>\n");
fprintf(out," <H1>\n");
fprintf(out," Status Page\n");
fprintf(out," </H1>\n");
fprintf(out,"
number=%d\n",child _p->number);
fprintf(out,"
pid=%d\n",child_p->pid);
fprintf(out,"
ppid=%d\n",child_p->ppid);
fprintf(out,"
requests remaining=%d\n",

requests_remaining);

fprintf(out," </BODY>\n");
fprintf (out, "</HTML>\n");
break;

} else {
[* 222 %)

}

}

fprintf (stderr,"closing connection\n");
/* wrap things up */

fclose(in);

fclose(out);

close(read_fd);

close(write_fd);

Process Control

CHAPTER 11 211

close(connection);
} /* while */

fprintf(stderr,
"Child process #%d exiting, pid=%d, parent=%d\n",
child_p->number,
child_p->pid,
child_p->ppid

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

);
}

child_group_info_t child_group_1;
jmp_buf jump_env;

void sig_handler(int signal)

{
fprintf(stderr, "pid %d recieved signal %d\n",
getpid(), signal);
child_restart_children = 0;
#if 0
/* wake up the wait() */
/* doesn't work */
raise(SIGCHLD);
#endif
longjmp(jump_env,1);
/* We opt not to call signal() again here */
/* next signal may kill us */
}

int port = 1236;

main()
{
int 1i;
int child;

child_group_info_t child_group_1;
child_groups_t child_groups;

int rc;

struct sockaddr_in tcpaddr;

tcpaddr.sin_family = AF_INET;
tcpaddr.sin_addr.s_addr = INADDR_ANY;
tcpaddr.sin_port = htons(port);

continues

System Programming

212

PART Il

LisTING 11.4 CONTINUED

listen_sock = socket(AF_INET, SOCK_STREAM, IPPROTO IP);
if (listen_sock<@) perror("socket");
assert(listen_sock>=0);

fprintf (stderr, "listening on port %d\n",port);

#if 1
rc=bind(listen_sock, (struct sockaddr *) &tcpaddr,
sizeof(tcpaddr));
#else
rc=bind(listen_sock, (struct sockaddr *) &tcpaddr, 4);
#endif
if(rc!=0) perror("bind");
assert(rc==0);
rc=listen(listen_sock,10);
if(rc!=0) perror("listen");
assert(rc==0);

#if 0

setvbuf(stderr, NULL, _IOLBF, 0);
#else

setbuf (stderr, NULL);
#endif

/* Note: children inherit this */
signal (SIGTERM, sig_handler);
signal (SIGINT, sig_handler);
signal (SIGQUIT, sig_handler);

child_group_create(&child_group_1, 4, 4, child_process_1,
NULL);

child_groups.ngroups = 1;
child_groups.group[@]=&child_group_1;

rc=setjmp(jump_env);
if(rc==0) {
/* normal program execution */

child_groups_keepalive(&child_groups);
} else {

/* exception handler */

/* we got here via setjmp() */

/* restore signal handlers to defaults */
signal (SIGTERM, SIG_DFL);

Process Control

signal (SIGINT, SIG_DFL);
signal (SIGQUIT, SIG_DFL

child_groups_kill(&child_groups);

exit(0);

CHAPTER 11

The child_demo3.c Program

The program child_demo3.c, shown in Listing 11.5, illustrates the use of the
child_pipeve() function. It will invoke the program named by argv[1] and give it the
arguments found in the remaining command-line arguments. It merely copies its environ-

ment for the child’s environment.

Another program, child_demo4.c, which is included on the CD-ROM but not as a list-
ing, dumps its arguments and environment and is useful for testing child_demo3.c.

ListingG 11.5 child_demo3.c

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

<sys/time.h>
<unistd.h>
<stdlib.h>
<stdio.h>
<assert.h>
<sys/types.h>
<sys/wait.h>
<fcntl.h>
<signal.h>
<setjmp.h>
<sys/socket.h>
<netdb.h>
<netinet/in.h>
<arpa/inet.h>
<string.h>
<limits.h>

"child.h"

int debug=5;

extern char **environ;

main(int

{

argc, char *argv[])

int count;

continues

213

-
el
o
0
m
(%]
(%]
(o)
o
=
=1
=
o
—

System Programming

214

PART Il

LisTING 11.5 CONTINUED

int 1i;
char **newargv;
int rc;

#if 1
/* very primitive example, borrows everything from the */
/* current process */
if (debug>=5) child_print_arg_array("argv",argv);

fprintf(stderr,"argc=%d\n",argc);
assert(argc >= 2);
/* make a new argv[] from argv[] */
count=0;
while(1) {

count++;

if(argv[count]==NULL) break;
}
printf("count=%d\n",count);
newargv = malloc(sizeof(void *)*(count+2));
newargv[@] = argv[1];
for(i=1; i<count; i++) {

newargv[i] = argv[i+1];
}
newargv[i] = NULL;
printf("argv[1]=%s\n",argv[1]);

if (debug>=5) child_print_arg_array("newargv",newargv);
if (debug>=5) child_print_arg_array("environ",environ);

fprintf(stderr,"invoking program\n");

rc=child_pipeve(argv[1], newargv, environ,
NULL, NULL, NULL);

fprintf(stderr,"program invocation over\n");

fprintf(stderr,"rc=%d\n",rc);
if(rc<0) {

perror("child_pipeve()");
}

#endif

Summary

The Linux operating system provides a variety of functions that can be used to manipu-
late processes. Most of these are shared by some or even all other UNIX and compatible
operating systems.

Accessing System
Information

by Mark Whitis

IN THIS CHAPTER

e Process Info 217
¢ General System Info 221
¢ Libraries and Utilities 227

216

System Programming

PART Il

In the old days, certain UNIX programs, such as ps and uptime, accessed kernel data
structures directly to retrieve system information. This required knowledge of kernel
externals and required care to ensure that the values were not modified as they were
being accessed. The programs needed to be setuid root in order to access the kernel data
structures; this meant they were vulnerable to security exploits if they were not carefully
written. These programs also frequently had to be rebuilt when the kernel was changed
because the positions and layouts of the data structures may have changed.

Some more modern systems implement a /proc filesystem that contains special files that
can be read to access system status information. These files are usually plain text files.
Linux makes more information available through the /proc filesystem than many other
systems.

Entries in the /proc filesystem can be created by any kernel module. The code that
implements the /proc filesystem and some of its entries can be found in /usr/src/
linux/fs/proc. Portions of the proc namespace are registered using the kernel function
proc_register().

The /proc files described in this chapter are based on a system running a 2.2.5 kernel. If
you have a different kernel version or have drivers installed that create /proc entries, you
may have a somewhat different selection of files. Many of the files listed here are not
mentioned in documentation so I had to rely on my own knowledge, the kernel sources,
comparisons with the output of various utilities, and the occasional guess to generate the
descriptions. The manual page for proc in section 5 (man 5 proc) gives more info on
many of these files.

I will caution you in advance that this chapter does not contain meticulous documenta-
tion for every bit of information available through the proc filesystem. The documenta-
tion in this chapter is largely based on exploring the contents of the files, the output of
certain programs that use the files, kernel sources, and sources to some of the utility
programs. You can, and should, do much of this yourself, but focus your efforts on the
specific information you need for your current application. This section is intended as a
general overview of what information is available from the system and where. If you
need a specific piece of information, you will have the motivation to explore that particu-
lar portion of the /proc filesystem more thoroughly and the code you are writing will be
the means to test your statements. Perhaps someone will decide to write an entire book
on the /proc filesystem or get a bunch of people to do so as part of the Linux
Documentation Project; until then, programmers should expect to have to get their feet
wet.

I will walk you to the library and show you how to use the card catalog—reading the
books is left as an exercise for you.

Accessing System Information

217

CHAPTER 12

Process Info

There is a directory under /proc for each user level process running on the system at any
given time; the name of this directory is the decimal representation of the process num-
ber. In addition, /proc/self is a symbolic link to the current process’s directory (this
link looks different for each process). Within these directories, there are a number of
files.

In the following sections, $pid should be replaced with the process id of the process of
interest. Most of these special files can be viewed with more, cat, or strings, or
searched with fgrep. The -f option on strings will print the filename, which is handy
with wildcards.

NoOTE

The source file /usr/src/linux/fs/proc/array.c seems to have most of the
routines that actually generate /proc output for the per process entries.

NOLLVINYOAN]
N3LSAS
DNISSINDY

The cmdline File

Reading the file /proc/$pid/cmdline returns a single line that is the command line of
the process, including the name of the program and all arguments. The command line
may be blank for zombie processes and the arguments might not be available if the
process is swapped out.

Tip

You can take a quick look at what is running on your system by issuing the fol-
lowing command:

strings -f /proc/[0-9]*/cmdline

The environ File

Reading the file /proc/$pid/environ returns the process environment. Individual envi-
ronment strings are separated by null bytes and the end of the environment is marked by
an end of file condition. The strings utility displays this in a more readable form than
the cat utility.

218

System Programming

PART Il

The fd Directory

The directory /proc/$pid/fd has an entry for each open file descriptor as a symbolic
link to the actual file’s inode. An inode contains information about a file. Each inode has
the device where the inode resides, locking information, mode and filetype of the file,
links to the file, user and group ids of the owner, bytes in the file, and addresses of the
file’s blocks on the disk.

Opening the file descriptor entry (for example, /proc/self/fd/1) opens the file itself; if
the file is a terminal or other special device, it may interfere with the process itself by
stealing data. You can also use the fstat() or 1stat() system calls to get information
about the file. The permissions shown for the file have access for the owner only and the
owner read and owner write bits indicate the mode in which the file is open.

There is a utility program that runs on many UNIX systems, with and without /proc
filesystems, called 1sof. On a Red Hat system, it is installed in /usr/sbin/1lsof. This
can be handy when you want to get information on what a process is doing, want to
know why you can’t unmound a particular filesystem because it is busy, or want to inves-
tigate suspicious activity. The fuser command is similar but searches for specific files. If
you have an old distribution or did not do a full install, you may be missing these
utilities.

Tip

Programmers especially need to do a full installation of everything included
with a Linux distribution CD.

The men File

The file /proc/self/mem can be used to access the memory image of a particular
process. Ordinary utilities like strings cannot be used, but the mmap () call should work
if you have adequate permission.

stat

The file /proc/$pid/stat has most of the information usually displayed by ps about a
process, and then some. Table 12.1 lists the various fields along with their position, the
name used to identify the field in the ps program, and a description. Cumulative values
include the current process and any children that have been reaped (using the wait ()

Accessing System Information

CHAPTER 12

family). Many of the time-related fields appear to be measured in jiffies (1/100 sec).

There seems to be some discrepancy about whether the counter field is included.

TaBLe 12.1 stat FIELDS

Name Description

1 pid Process id

2 cmd Simple name Basename of command line in parentheses (will be
used by ps if cmdline is blank)

3 state R=runnable, S=sleeping, D=uninterruptible sleep, T=traced or
stopped, Z=zombie, W=not resident, N=nice

4 ppid Parent process id

5 pgrp Process group id

6 session Session id of process

7 tty Controlling tty (major, minor)?

8 tpgid Process id for controlling tty

9 flags Process flags

10 min_flt Minor page faults

11 cmin_flt Minor page faults (cumulative)

12 maj_flt Major page faults

13 cmaj_flt Major page faults (cumulative)

14 utime User time

15 stime System time

16 cutime User time (cumulative)

17 cstime System time (cumulative)

18 counter Size of processes next timeslice

19 priority Static scheduling priority

20 nice Normal scheduling algorithm nice value (dynamic priority)

21 timeout Timeout value in jiffies

22 it_real_value Next interval timer expiration in jiffies

23 start_time When process was started

24 vsize VM size in bytes (total)

25 rss Resident Set Size

26 rss_rlim RSS rlimit

continues

219

N3LSAS
DNISSIIDY

NOILVINYO4N|

220

System Programming

PART Il

TaBLE 12.1 CONTINUED

Name Description

27 start_code Start of code segment

28 end_code End of code segment

29 start_stack Start of stack segment

30 kstk_esp Current stack frame

31 kstk_eip Current stack frame

32 signal Pending signals

33 blocked Blocked signals

34 sigignore Ignored signals

35 sigcatch Caught signals—signals with handlers
36 wchan Kernel function name process is sleeping in

The status File

The file /proc/$pid/status contains less information but in a more readable format
than /proc/$pid/stat. It includes the name, state, process id, parent process id, uids and
group ids (including real, effective, and saved ids), virtual memory statistics, and signal
masks.

The cwd Symbolic Link

The symbolic link /proc/$pid/cwd points to the inode for the current working directory
of the process.

The exe Symbolic Link

The symbolic link /proc/$pid/exe contains a symbolic link to the file being executed.
This usually points to a binary file. This could also point to a script that is being execut-
ed or the executable processing it, depending on the nature of the script.

The maps File

The file /proc/$pid/maps contains information on the mapped memory regions for the
processes. It contains address ranges, permissions, offset (into mapped file), and the
major and minor device numbers and inodes for mapped files.

Accessing System Information

CHAPTER 12 221

The root Symbolic Link

The symbolic link /proc/$pid/root is a link to the root directory (set with the chroot ()
system call) for the process.

The statm File

The special file /proc/$pid/statm lists memory usage by a process. The variable names,
in order, used in array.c are size, resident, share, trs, 1rs, drs, and dt. These give
the total size (including code, data, and stack), resident set size, shared pages, text pages,
stack pages, and dirty pages. Note that “text” often means executable code when you are
talking about memory usage. The top program displays this information.

General System Info

There are a variety of files in the /proc filesystem that give system information that is
not specific to a given process. The available files may vary with your system configura-
tion. The procinfo command can display a lot of system information based on some of
these files.

NOILVINHOAN]
N3LSAS
DNISSIIDY

The /proc/cmdline File

This gives the kernel boot command line.

The /proc/cpuinfo File

This file gives various information about the system CPU(s). This information is derived
from the CPU detection code in the kernel. It lists the generic model (386, 486, 586, and
so on) of the CPU and more specific information (vendor, model, and version) where
available. It includes the speed of the processor in bogomips, and flags that indicate if
various features or bugs were detected. The format of this file is multiple lines with a
fieldname, a colon, and a value.

The /proc/devices File

This file lists the major character and block device numbers and the name the driver gave
when allocating those numbers.

222

System Programming

PART Il

The /proc/dma File

This file lists which DMA channels have been reserved by drivers and the name the dri-
ver gave when reserving them. The cascade entry is for the DMA line that is used to
cascade the secondary DMA controller off of the primary controller; this line is not avail-
able for other use.

The /proc/filesystems File

This file lists the available filesystem types, one per line. This is generally the filesys-
tems that were compiled into the kernel, although it might include others that were added
by loadable kernel modules.

The /proc/interrupts File

This file has one line per reserved interrupt. The fields are the interrupt number, the num-
ber of interrupts received on that line, a field that may have a plus sign (SA_INTERRUPT
flag set) and the name a driver used when registering that interrupt. The function
get_irq_list() in/usr/src/linux/arch/i386/kernel/irq.c (assuming Intel plat-
form) generates this data.

This is a very handy file to manually “cat” before installing new hardware, as are
/proc/dma and /proc/ioports. They list the resources that are currently in use (but not
those used by hardware for which no driver is loaded).

The /proc/ioports File

This file lists the various I/O port ranges registered by various device drivers such as
your disk drives, ethernet, and sound devices.

The /proc/kcore File

This is the physical memory of the system in core file format. It is used with GDB to
examine kernel data structures. This file is not in a text format that is viewable using
your favorite text viewer (such as less).

The /proc/kmsg File

Only one process, which must have root privileges, can read this file at any given time.
This is used to retrieve kernel messages generated using printk(). The syslog() system
call (not to be confused with the syslog() library function) can be used to retrieve these
messages instead. The dmesg utility or the klogd daemon is normally used to retrieve
these messages.

Accessing System Information

223

CHAPTER 12

The /proc/ksyms File

This file lists the kernel symbols that have been registered; these symbols give the
address of a variable or function. Each line gives the address of a symbol, the name of
the symbol, and the module that registered the symbol. The ksyms, insmod, and kmod
programs probably use this file. It also lists the number of running tasks, the total num-
ber of tasks, and the last pid assigned.

The /proc/loadavg File

This file gives the system load average over several different time intervals as displayed
by the uptime command. The important data in this file is the three load values and the
process id that it was last run with.

N3LSAS
DNISSIIDY

The /proc/locks File

This file contains information on locks that are held on open files. It is generated by the
get_locks_status() function in /usr/src/linux/fs/locks.c. Each line represents
lock information for a specific file, and documents the type of lock applied to the file.
The functions fcntl() and flock() are used to apply locks to files. The kernel may also
apply mandatory locks to files when needed. This information appears in the
/proc/locks file. The documents locks.txt and mandatory.txt in the
/usr/src/linux/Documentation subdirectory discuss file locking in Linux.

NOILVINYO4N|

The /proc/mdstat File

This contains information on raid devices controlled by the md device driver.

The /proc/meminfo File

This file gives information on memory status and is used by the free program. Its format
is similar to that displayed by free. This displays the total amount of free and used phys-
ical and swap memory in the system. This also shows the shared memory and buffers
used by the kernel.

The /proc/misc File

This reports device drivers that register using the kernel function misc_register(). On
my system it reports rtc at 135. 135 is the minor device number used by the real-time
clock driver for /dev/rtc. None of the other devices that share major number 10 are list-
ed; perhaps they forget to call misc_register().

This information may have different results from system to system and setup to setup.

224

System Programming

PART Il

The /proc/modules File

This gives information on loadable kernel modules. This information is used by the
1smod program to display the information on the name, size, usecount, and referring
modules.

The /proc/mounts File

This gives information on currently mounted filesystems in the format you would nor-
mally expect in /etc/mtab. This is the file that would also reflect any currently manually
mounted file-systems that may not be included in your /etc/mtab file.

The /proc/pci File

This gives information on PCI devices. It is handy for diagnosing PCI problems. Some
of the information that you can retrieve from this file is the device, such as the IDE inter-
face or USB controller, the bus, device, and function numbers, device latency, and IRQ
numbers.

The /proc/rtc File

This gives information on the hardware real-time clock including the current date and
time, alarm setting, battery status, and various features supported. The /sbin/hwclock
command is normally used to manipulate the real-time clock. The format is similar to
/proc/cpuinfo.

The /proc/stat File

This has various information on CPU utilization, disk, paging, swapping, total interrupts,
contact switches, and the time of last boot (in seconds since 1/1/70). This information is
reported by the procinfo program.

The /proc/uptime File

This gives the number of seconds since the system booted and how many of those sec-
onds were spent idle. These are used by the uptime program, among others. Comparing
these two numbers gives you a long term measure of what percentage of CPU cycles go
to waste.

Accessing System Information

CHAPTER 12

The /proc/version File

This returns one line identifying the version of the running kernel. This information is
used by the uname program. An example of this would be:

Linux version 2.2.5-15 (root@porky.devel.redhat.com)
(gcc version egcs-2.91.66 19990314/Linux (egcs-1.1.2 release))
#1 Mon Apr 19 22:21:09 EDT 1999

The output from /proc/version appears as a single text string, and can be parsed using
standard programming methods to obtain system information as needed.

The uname program will access this file for some of its information.

The /proc/net Subdirectory

The /proc/net subdirectory contains files that describe and/or modify the behavior of
the networking code. Many of these special files are set or queried through the use of the
arp, netstat, route, and ipfwadm commands. The various files and their functions are
listed in Table 12.2.

TABLE 12.2 /proc/net/ FILES

File Description

arp Dumps the arp table dev packet statistics for each network interface
dev Statistics from network devices

dev_stat Status of network devices

igmp IGMP multicast groups joined

ip_masq_app Info on masquerading

ip_masquerade Info on masqueraded connections

raw Socket table for raw sockets

route Static routing rules

rt_cache Routing cache

snmp ip/icmp/tcp/udp protocol statistics for snmp agent; alternate lines give

field names and values

sockstat Lists number of tcp/udp/raw/pac/syn_cookies in use
tcp Socket table for TCP connections
udp Socket table for UDP connections

unix Socket table for UNIX domain sockets

225

N3LSAS
DNISSIIDY

NOILVINYO4N|

226

System Programming

PART Il

The /proc/scsi Subdirectory

The /proc/scsi directory contains one file that lists all detected SCSI devices and one
directory for each controller driver, with a further subdirectory for each separate instance
of that controller installed. Table 12.3 lists the files and subdirectories in /proc/scsi.

TaBLE 12.3 /proc/scsi/ FILES

File Description

/proc/scsi/$driver/$n One file for each controller where $driver is the name of the

SCSI controller driver and $n is a number such as 0,1,2, and so on

/proc/scsi/scsi Lists all detected SCSI devices; special commands can be written
to probe a specific target address, such as “scsi singledevice 1 0 5

0” to probe device ID 5 on channel 0

The /proc/sys Subdirectory

There are many subdirectories within the /proc/sys directory. Table 12.4 contains
descriptions of the various files within this directory.

kernel/ctrl-alt-del
kernel/osrelease
kernel/ostype

kernel/panic

/kernel/printk
kernel/real-root-dev
kernel/version
net/core
net/core/rmem_default
net/core/rmem_max

net/core/wmem_default

TaBLE 12.4 /proc/sys/ FILES
File Description
kernel/domainname Domain name
kernel/hostname Host name
kernel/acct Process accounting control values

Ctrl-Alt-Delete key behavior on keyboard
Kernel version number
“Linux”

Get/set panic timeout; kernel will reboot after this number of
seconds following a panic if >0

Kernel message logging levels

The number (major*256+minor) of the root device
Date of compilation

General networking parameters

Socket read buffer default size

Socket read buffer maximum size

Socket write buffer default size

Accessing System Information

227

CHAPTER 12

File Description
net/core/wmem_max Socket write buffer maximum size
net/ipv4 Standard IP networking parameters

net/ipv4/ip_autoconfig IP configuration -1 if IP address obtained automatically (BOOTP,
DHCP, or RARP)

net/ipv4/ip_dynaddr sysctl_ip_dynaddr: Allow dynamic rewriting of packet address;
bitfields - ip_output.c

net/ipv4/ip_forward Writing a 0 or 1 disables/enables ip_forwarding

vm/bdflush Disk buffer flushing parameters

vm/freepages set/get min_freepages (“man stm”) g >

vm/kswapd /usr/include/linux/swapctl.h 8 ga

vm/swapctl /usr/include/linux/swapctl.h g g g
g [

Libraries and Utilities

I have compiled a listing of /proc filesystem usage that I have been able to detect in
libraries or programs. This is included in the listings for this chapter on the CD-ROM
and my Web site but is not printed here. It can be used to find examples on the handling
of particular files in the /proc filesystem. Some are simply listed as /proc/ or
/proc/$pid/; in these cases the particular files used could not be quickly determined.
The list was generated from manual inspection of the results of searching manual pages,
libraries, and executable files for the string /proc on a Red Hat system with Powertools
and Gnome installed. Some cases where the filename is built up piecemeal were
undoubtedly missed. If a program only accesses the /proc filesystem through libraries, it
may not be listed at all.

The library libproc contains the /proc filesystem handling code from the ps program.

Summary

The /proc filesystem contains a large amount of information about the current system
state. Interpretation of the files in /proc is often fairly obvious from looking at the file or
will be documented in the proc man page. Comparing the file with the output of utilities
that parse the file can shed light on the subject. In other cases, you will want to examine
the kernel sources and/or the source code of programs or libraries that use the /proc
filesystem for information on the interpretation of various fields.

228

Handling Errors

by Kurt Wall

IN THIS CHAPTER

¢ Please Pause for a Brief Editorial 230
¢ C-Language Facilities 230
e The System Logging Facility 239

230

System Programming

PART Il

No matter how fast your algorithms run or how good your code is, you, or rather your
program, eventually must deal with unanticipated error conditions. The goal of this chap-
ter is to acquaint you with the error handling facilities available and to show you how to
use them.

Please Pause for a Brief Editorial

Robust, flexible error handling is crucial for production or release quality code. The bet-
ter your programs catch and respond to error conditions, the more reliable your programs
will be. So, if a library function call sets or returns an error value, test it and respond
appropriately. Similarly, write your own functions to return meaningful, testable error
codes. Whenever possible, try to resolve the error in code and continue. If continuing
execution is not possible, provide useful diagnostic information to the user (or write it in
a log file) before aborting. Finally, if you must end your program abnormally, do so as
gracefully as possible: closing any open files, updating persistent data (such as configu-
ration information), and making the termination appear as orderly as possible to the user.
It is very frustrating when a program simply dies for no apparent reason without issuing
any warning or error messages.

C-Language Facilities

Several features of ANSI C (also known, these days, as ISO9899 C) support error han-
dling. The following sections look at the assert () routine, usually implemented as a
macro but designed to be called like a function, a few handy macros you can use to build
your own assert ()-style function, and some standard library functions specifically
designed for detecting and responding to errors.

assert() Yourself

The assert() call, prototyped in <assert.h>, terminates program execution if the con-
dition it tests returns false (that is, tests equal to zero). The prototype is

#include <assert.h>
void assert(int expression);

assert() prints an error message to stderr and terminates the program by calling
abort(3) if expression is false (compares equal to 0). expression can be any valid C
statement that evaluates to an integer, such as fputs("some string", somefile). So,
for example, the program in Listing 13.1 will terminate abruptly at line 17 because the
fopen() call on line 16 will fail (unless, of course, you happen to have a file named
bar_baz in the current directory).

Handling Errors

CHAPTER 13 231

LisTING 13.1 badptr.c—USING assert()

1 /%

2 * Listing 13.1

3 * badptr.c - Testing assert()

4 */

5 #include <assert.h>

6 #include <stdio.h>

7

8 int main(void)

9 A

10 FILE *fp;

11

12 fp = fopen("foo_bar", "w"); /* This should work */
13 assert(fp);

14 fclose(fp);

15

16 fp = fopen("bar_baz", "r"); /* This should fail */
17 assert(fp);

18 fclose(fp); /* Should never get here */
19 return 0;

}

A sample run looks like the following:

$ badptr
badptr: badptr.c:17: main: Assertion "fp' failed.
IOT trap/Abort

syouyg
DNIANVH

The output shows the program in which the error occurred, badptr, the source file in
which the assertion failed, badptr.c, the line number where the assertion failed, 17 (note
that this is not where the actual error occurs), the function in which the error occurred,
and the assertion that failed. If you have configured your system to dump core, the direc-
tory from which you executed the program will also contain a core file.

The drawback to using assert() is that, when called frequently, it can dramatically
affect program execution speed. Occasional calls, however, are probably acceptable.
Because of the performance hit, many programmers use assert() during the develop-
ment process for testing and debugging, but, in the release version, disable all of the
assert() calls by inserting #define NDEBUG before the inclusion of <assert.h>, as
illustrated in the following code snippet:

#include <stdio.h>

#define NDEBUG
#include <assert.h>

If NDEBUG is defined, the assert () macro will not be called.

232

System Programming

PART Il

NDEBUG’s value does not matter and can even be 0. The mere existence of NDEBUG is suffi-
cient to disable assert () calls. However, as usual, there’s a catch! NDEBUG also makes it
important not to use expressions in the assert () statement that you will need later. In
fact, do not use any expression in assert(), even a function call, that has side effects.
Consider the statement

assert((p = malloc(sizeof(char)*100) == NULL));

Because NDEBUG prevents the call to assert () if it is defined, p will never be properly
initialized, so future use of it is guaranteed to cause problems. The correct way to write
this statement, if you are using assert(), is

p = malloc(sizeof(char) * 100);
assert(p);

Even after the assert () statement is disabled, you will still need to test p, but at least
your code will attempt to allocate memory for it. If you embed the malloc() call in an
assert() statement, it will never get called.

As you can see, assert() is useful, but abrupt program termination is not what you want
your users to deal with. The real goal should be “graceful degradation,” so that you only
need to terminate the program if a hierarchy of error handling calls all fail and you have
no alternative. The more errors you can successfully resolve behind the scenes without
having to involve or inform the user, the more robust your program will appear to be to
your users.

Using the Preprocessor

In addition to the assert() function, the C standard also defines two macros, _ LINE_
and _ FILE_ , that are useful in a wide variety of situations involving errors in program
execution. You can use them, for example, in conjunction with assert() to more accu-
rately pinpoint the location of the error that causes assert () to fail. In fact, assert()
uses both _ LINE_ and _ FILE__ to do its work. Listings 13.2-13.4 declare, define, and
use a more robust function for opening files, open_file().

LisTING 13.2 filefcn.h

/*
* Listing 13.2
* filefcn.h - Declare a new function to open files
*/

#ifndef FILEFCN_H_

#define FILEFCN_H_

NOoO O~ WN =

Handling Errors

233
CHAPTER 13

8 int open_file(FILE *fp, char *fname, char *mode,

=int line, char *file);

9

10 #endif /* FILEFCN_H_ */
Nothing extraordinary here.

LisTiING 13.3 filefcn.c

1 /*

2 * Listing 13.3

3 * filefcn.c - Using _ LINE__ and _ FILE_

4 */

5 #include <stdio.h>

6 #include "filefcn.h"

7

8 int open_file(FILE *fp, char *fname, char *mode, int line,

=char *file)

9 {

10 if((fp = fopen(fname, mode)) == NULL) {

11 fprintf(stderr, "[%s:%d] open_file() failed\n", file, line);
12 return 1;

13 }

14 return 0;

15 }

We merely define our function here. Again, nothing unusual.

DNITANVH

LisTING 13.4 testmacs.c

1 /*

2 * Listing 13.4

3 * testmacs.c - Exercise the function defined in filefcn.c
4 */

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include "filefcn.h"

8

9 int main(void)
10 {
11 FILE *fp;
12 int ret;
13
14 if (open_file(fp, "foo_bar", "w", _LINE_, FILE))
15 exit (EXIT_FAILURE);
16 if(fp)
17 fclose(fp);

-
[oe]

continues

234

System Programming

PART Il

LisTING 13.4 CONTINUED

19 ret = open_file(fp, "bar_baz", "r", _ LINE_ , _ FILE_);
20 if(ret)

21 exit (EXIT_FAILURE);

22 if(fp)

23 fclose(fp);

24

25 return 0;

}

Before compilation, the preprocessor substitutes the _ LINE__ symbols with 14 and 19,
and replaces _ FILE__ with testmacs.c, the name of the source file. If a call to
open_file() succeeds, it returns O to the caller, otherwise it prints a diagnostic indicat-
ing the filename and line number (in the caller) where it failed and returns 1. If we had
used LINE_ and _ FILE__ in the definition of open_file(), the line number and file-
name would not be very useful. As we have defined it, you know exactly where the func-
tion call failed.

Executing the program,

$./testmacs
[testmacs.c:19] open_file() failed

we see that it failed at line 19 of testmacs.c, which is the result we expected. _ LINE__
and _ FILE__ can be very helpful in tracking down bugs. Learn to use them.

Standard Library Facilities

In this context, “standard library” refers to the variables, macros, and functions mandated
to be part of the C environment supporting the standard. This section will take an
in-depth look at five functions and a variable (gee, that sounds like a movie about pro-
gramming, “Five Functions and a Variable”) that are an important part of any error han-
dling. Their prototypes (and header files) are as follows:

¢ stdlib.hvoid abort(void);

e stdlib.hvoid exit(int status);

* stdlib.hint atexit(void (*fcn)(void));

* studio.hvoid perror(const char *s);

¢ string.hvoid *strerror(int errnum);

* errno.hint errno;

Handling Errors

235

CHAPTER 13

The following three functions are also essential components of an error handling toolkit.
They are all declared in <stdio.h>.

void clearerr(FILE *stream);

Clears the end-of-file (EOF) and error indicators for stream.
int feof (FILE *stream);

Returns a non-zero value if the EOF indicator for stream is set.
int ferror(FILE *stream);

Returns a non-zero value if the error indicator for stream is set

Understanding errno

Many, but not all, library functions set the global variable errno to a non-zero value
when errors occur (most of these functions are in the math library). However, no library
function ever clears errno (sets errno = 0), so to avoid spurious errors, clear errno
before calling a library function that may set, as the code snippet in Listing 13.5 illus-
trates.

LisTING 13.5 THE errno VARIABLE

#include <errno.h.>
/* more stuff here */

DNITANVH

errno = 0;

y = sqrt(x);

if(errno != 0) {
fprintf(stderr, "sqrt() error"! Goodbye!\n");
exit (EXIT_FAILURE);

O©oO~NOOh~WN =

Functions in the math library often set errno to EDOM and ERANGE. EDOM errors occur
when a value passed to a function is outside of its domain. sqrt(-1), for example, gen-
erates a domain error. ERANGE errors occur when a value returned from a function in the
math library is too large to be represented by a double. 1log (@) generates a range error
since 1log (@) is undefined. Some functions can set both EDOM and ERANGE errors, SO com-
pare errno to EDOM and ERANGE to find out which one occurred and how to proceed.

Using the abort() Function

This is a harsh call. When called, it causes abnormal program termination, so the usual
clean-up tasks, such as closing files, and any functions registered with atexit() do not

236

System Programming

PART Il

execute (atexit() is discussed later in this chapter). abort () does, however, return an
implementation defined value to the operating system indicating an unsuccessful termi-
nation. If not restricted by ulimit, abort() also dumps out a core file to aid post-
mortem debugging. To facilitate debugging, always compile your code with debugging
symbols (using -g or -ggdb options with gcc) and don’t strip your executables. The
assert() call we discussed in a previous section of this chapter calls abort ().

NoTE

Stripping binaries means using the strip command to remove symbols, usually
debugging symbols, from compiled programs. Doing so reduces their disk and
memory footprint, but has the unfortunate side effect of making debugging
virtually impossible. Let the foolhardy user strip them.

Using the exit() Function

exit() is abort()’s civilized cousin. Like abort(), it terminates a program and returns
a value to the OS, but, unlike abort (), it does so only after doing any clean up and, if
you have additional clean up performed by functions registered with atexit (), it calls
them as well. status returns the exit value to the operating system. Any integer value is
legal, but only EXIT_SUCCESS and EXIT_FAILURE, defined in <stdlib.h>, and O are
portable return values. Many, if not most, of the programs you have already seen in this
book use it. See line 8 of Listing 13.5, for example.

Using the atexit() Function

The atexit () function registers fcn to be called upon normal program termination. Pass
atexit() a function that accepts no arguments and returns void. You can use atexit()
to guarantee that certain code is executed before your program shuts down completely.
As noted in the discussion of abort (), functions registered with atexit () will not be
called if abort () executes. If fcn registers successfully, atexit () returns 0, otherwise it
returns 1. Listing 13.6 demonstrates how atexit () works.

LisTING 13.6 THE atexit() FUNCTION

1 /*

2 * Listing 13.6

3 * chkexit.c - Fun with atexit()
4 */
5

6

#include <stdio.h>
#include <stdlib.h>

Handling Errors
8 237

CHAPTER 13

7

8 void f_atexit(void)

9 {

10 fprintf(stdout, "Here we are in f_atexit()\n");
11}

12

13 int main(int argc, char *argv[])

14 {

15 fprintf(stdout, "Here we are in main()\n");

16 if (atexit(f_atexit) != 0)

17 fprintf(stderr, "Failed to register f_atexit()\n");
18 fprintf(stdout, "Exiting...\n");

19

20 if(atoi(argv[1]))

21 abort();

22

23 return 0;

24}

Line 16 is the key line. We pass f_atexit() by feeding the bare function name,
f_atexit, to atexit(), testing the return value to make sure the function registered
successfully. To run chkexit, passita 1 or a 0. If you pass chkexit a 0, it will terminate
normally, but a non-zero argument will cause abnormal termination. When we run the
program, it confirms that atexit () was called after main () returned:

$./chkexit 0

Here we are in main()
Exiting...

Here we are in f_atext()
$./chkexit 1

Here we are in main()
Exiting...

IOT trap/Abort

syouyg
DNIANVH

In the second invocation, f_atext () registers successfully, but the abort () call sidesteps
the call. On systems configured to allow core dumps, the abort () call will also produce
a message similar to “Aborted (core dumped)” and generate a core file in the current
directory.

Using the strerror() Function

If an error occurs, it would probably be helpful to your users (or to you, for that matter)
to know what the operating system thinks went wrong. Enter strerror (). It returns a
pointer to a string that describes the error code associated with errnum. So, if you pass
errno to strerror(), you will get a human readable explanation of what happened,
rather than a cold, uninformative number.

238

System Programming

PART Il

Using the perror() Function

This handy function prints a system error message. If your code makes a system call that
fails, the call returns -1 and sets the variable errno to a value describing the last error,

just as many library functions do. perror() uses this value, printing the string argument
s, a colon, a space, the error message corresponding to errno, and a newline. So, calling

perror("Oops");
is the same as calling
printf("Oops: %s\n", strerror(errno));

Listing 13.7 illustrates both strerror() and perror().

LisTING 13.7 errs.c

1 /%

2 * Listing 13.7

3 * errs.c - Demonstrate perror() and strerror()
4 */

5 #include <stdio.h>

6 #include <string.h>

7 #include <stdlib.h>

8 #include <math.h>

9 #include <errno.h>

10

11 int main()

12 {

13 double d;

14

15 errno = 0;

16 d = sqrt(-1);

17 if(errno)

18 fprintf(stderr, "sqrt: %s\n", strerror(errno));
19
20 errno = 0;
21 d = sqrt(-2);
22 if(errno)
23 perror("sqrt");
24
25 exit (EXIT_SUCCESS);
26 }

When executed, you can’t tell the difference between perror()’s output and the output
using strerror().

Handling Errors

CHAPTER 13

The System Logging Facility

Writing log messages has been mentioned several times. The good news is that you do
not have to write this functionality yourself. Linux provides centralized system logging
facilities using two daemons, klogd and syslogd. We will concern ourselves with
syslogd, because it controls the generation of messages from user space programs. If
your application needs logging abilities, the tool to use is the syslog facility, borrowed
from BSD. On most Linux systems, the log files live under /var/log. Depending on the
Linux distribution you use, these log files include messages, debug, mail, and news. The
standard console logging daemon, syslogd, maintains these files. The header file
<syslog.h> defines the interface to syslogd. System administrators set the behavior of
syslogd in /etc/syslog.conf. To create a log message, use the syslog() function, pro-
totyped as

#include <syslog.h>
void syslog(int priority, char *format, ...);

priority is a bitwise OR combination of a level, which indicates the severity of the
message, and a facility, which tells syslogd who sent the message and how to respond to
it. format specifies the message to write to the log and any printf ()-like format speci-
fiers. The special format specifier %m will be replaced by the error message that str-
error() assigns to errno, as if strerror(errno) had been called. Table 13.1 lists the
possible values for levels in descending order.

TaBLE 13.1 syslog LOGGING LEVELS

Level Severity

LOG_EMERG System is unusable

LOG_ALERT Immediate action required

LOG_CRIT Critical error, such as hardware failure
LOG_ERR Error conditions

LOG_WARNING Warning conditions

LOG_NOTICE Normal, but significant, message
LOG_INFO Purely informational message
LOG_DEBUG Debug or trace output

Table 13.2 lists the facilities’ values.

239

syouyg
DNIANVH

240

System Programming

PArT I
TaBLE 13.2 syslog FACILITY NAMES
Facility Source of Message

LOG_AUTHPRIV

Private security and authorization messages

LOG_CRON Clock daemons (crond and atd)
LOG_DAEMON Other system daemons
LOG_KERN Kernel messages

LOG_LOCAL[0-7]

Reserved for local/site use

LOG-LPR Printer subsystem

LOG_MAIL Mail subsystem

LOG_NEWS News subsystem

LOG_SYSLOG Internal messages generated by sylogd
LOG_USER (DEFAULT) general user level messages
LOG_UUCP The uucp subsystem

In most cases, it’s best to use a facility value of LOG_USER, the default value. Unless, of
course, you are writing a mail or news client. However, if the system administrator at
your site has set up the local facility levels, LOG_LOCAL[@-7], you could use one of those
if they apply. Choosing the correct level is a little trickier. Generally, use one of the lev-
els between LOG_ERR and LOG_INFO, but, if you do send a LOG_ERR message, it will usual-
ly get displayed to all users and the system console, and may well send a page to the
machine’s administrator—hopefully the implication is clear: choose a level value appro-
priate the your message’s contents. My own personal recommendation for user-level pro-
grams is LOG_ERR for errors and LOG_INFO for regular, boring log messages.

So, putting it all together, suppose you encounter an error while opening a file. Your
syslog() call might look like this:

syslog(LOG_ERR | LOG_USER, "unable to open file %s *** %m\n", fname);
where fname is the filename you tried unsuccessfully to open. This call generated the fol-
lowing message in /var/log/messages:

Mar 26 19:36:25 hoser syslog: unable to open file foo
*** No such file or directory

The %m format specifier appended the string “No such file or directory”, as if
strerror(errno) had been called. Because LOG_USER is the default facility, the previous
code snippet could have been written:

syslog(LOG_ERR, "unable to open file %s *** Sm\n", fname);

Handling Errors
& 241

CHAPTER 13

Similarly, if you simply want to scribble a non-critical log entry, try
syslog(LOG_INFO, "this is a normal message\n");

The message it wrote to /var/log/messages:

Mar 26 19:29:03 hoser syslog: this is a normal message

One of the problems with the previous examples is that the log messages generated are
not sufficiently unique to locate in a log file that can easily grow to seven or eight
megabytes. openlog() comes to the rescue:

void openlog(const char *ident, int option, int facility);

facility is one of the values from Table 13.2. ident specifies a string to prepend to the
message being logged. option is a bitwise OR of zero or more of the options listed in
Table 13.3.

TaBLE 13.3 THE openlog() OPTIONS

Option Description
LOG_PID Include PID in each message
LOG_CONS Write the message to the console if it can’t be logged

LOG_NDELAY Opens the connection immediately (the default is to wait until syslog() the
first time)

syouyy
ONIMANVH

LOG_PERROR Print the message to stderr, in addition to the log

NoTE

<syslog.h> also defines LOG_ODELAY, which means delay opening the connec-
tion until syslog()’s first call. Under Linux, the value has no effect, since
LOG_ODELAY is the default behavior.

openlog() works by allocating and opening a (hidden) file descriptor syslog(). We
describe the descriptor hidden because nothing in the syslog facility’s public interface
gives you direct access to it. You simply have to trust that it exists.

openlog()’s purpose is to customize logging behavior. However, openlog() is option-
al—if you do not call it yourself, syslog() calls it automatically the first time your pro-
gram calls syslog(). A companion function, closelog(), also optional, merely closes

242

System Programming

PART Il

the file descriptor openlog() opened. To illustrate openlog()’s usage, consider the
following two code snippets:

openlog("my_program", LOG_PID, LOG_USER);
syslog(LOG_NOTICE, "Pay attention to me!\n");

This snippet produces
Mar 26 20:11:58 hoser my_program[1354]: Pay attention to me!

in /var/log/messages, while the next one

openlog("your_program", LOG_PID, LOG_USER);
syslog(LOG_INFO, "No, ignore that other program!\n")

generates this:
Mar 26 20:14:28 hoser your_program[1363]: No, ignore that other program!

Note how the ident string and the PID replaced the facility string. This makes it very
clear what program owns what log messages. In effect, openlog() sets the default facili-
ty name to facility for all future calls of syslog() from your program. As you might
have guessed, a similar call, setlogmask(), sets the default priority:

int setlogmask(int priority);

The priority argument, in this context, is either a single priority or an inclusive range
of priorities.

Calling setlogmask() sets a default mask for priorities; syslog() rejects any message
with priorities not set in the mask. <syslog.h> also defines two helper macros that help
set the mask:

int LOG_MASK(int priority)
and
LOG_UPTO(int priority)

LOG_MASK () creates a mask consisting of only one priority, the priority passed as its
argument. LOG_UPTO() on the other hand, creates a mask made of a range or priorities.
For example, LOG_UPTO(LOG_NOTICE) creates a mask that consists of any message of
level LOG_EMERG through LOG_NOTICE. A message with a level of LOG_INFO or LOG_DEBUG
won’t get through. Behold, Listing 13.8.

ListinG 13.8 mask_log.c

1 /*
2 * Listing 13.8
3 * mask_log.c - demonstrate openlog() and family

Handling Errors
& 243

CHAPTER 13

4 */

5 #include <syslog.h>

6 #include <stdio.h>

7 #include <unistd.h>

8 #include <stdlib.h>

9

10 int main(void)

11 {

12 int ret;

13

14 openlog("mask_log", LOG_PID, LOG_USER);

15 syslog(LOG_INFO, "This message courtesy of UID #%d\n",
=getuid());

16 syslog(LOG_NOTICE, "Hopefully, you see this\n");

17

18 /* Don't want to see DEBUG and INFO messages */

19 ret = setlogmask(LOG_UPTO(LOG_NOTICE));

20 syslog(LOG_INFO, "You should not be seeing this\n");

21 syslog(LOG_DEBUG, "I hope you don't see this\n");

22 syslog(LOG_NOTICE, "This should still appear\n");

23

24 closelog();

25 exit (EXIT_SUCCESS);

24}

Compiled and executed, /var/log/messages says

Mar 26 22:42:06 hoser mask_log[1718]: This message courtesy of UID #100
Mar 26 22:42:06 hoser mask_log[1718]: Hopefully, you see this
Mar 26 22:42:06 hoser mask_log[1718]: This should still appear

syouyy
ONIMANVH

Success! After we change the priority mask, the messages with LOG_INFO and LOG_DEBUG
did not pass through, but messages with higher priority, like LOG_NOTICE get through just
fine.

\\[o}

A simple way to track /var/log/messages is to open a separate xterm and tail
the file, using tail -f /var/log/messages. Each time a new messages is written
to the log, it will pop up on your screen.

User Programs

For you shell programmers out there, you have not been forgotten. There exists a user
level program, logger (1), that offers a shell interface to the syslog facility. As

244

System Programming

PART Il

mentioned, logger is a shell and command-line interface to syslog. Its complete
syntax is

logger [-is] [-f file] [-p pri] [-t tag] [message ...]

The option -1i tells logger to add the PID to the log message. Use -t to get the name of
the script calling logger into the log message. Listing 13.9 demonstrates how you might
use logger in a shell script:

Listing 13.9 logger.sh

#!/bin/sh

Listing 13.9

logger.sh - Demonstrate logger(1) interface to syslog
HAHRHHAHAR AR AR

echo "type the log message and press ENTER"
read _msg
logger -i -t logger.sh $ msg

Don’t trouble yourself with understanding the syntax, it will be covered in Chapter 34,
“Shell Programming with GNU bash.” After prompting for a log message, the script
reads in the log message, then calls logger to insert it in the log file. A sample run might
look like the following:

[kwall@hoser 13]$ logger.sh

type the log message and press ENTER

This is a long log message. I'm making it as long as I possibly can,

=even to the point of wrapping, to show that log file entries have a
=fixed length.

Here’s how the message came out in /var/log/messages:

Mar 26 23:26:49 hoser logger.sh[1888]: This is a long log message. I'm
wmaking it as long as I possibly

As you can see, syslog truncated the message at eighty characters (the shell name, the
PID, and the message itself total eighty characters), and prepended the script name and
the PID to the message.

Handling Errors
& 245

CHAPTER 13

Summary

Hopefully, after reading this chapter, you will get some sense of the value of error han-
dling. Unfortunately, there is no single error handling API, just some tools scattered
around the system that you have to collect and use together to create robust, error
tolerant software. You learned about the rich set of functions the C language provides,
including assert (), the exit functions abort(), exit(), and atexit(), and the error-
handling routines perror() and strerror(). You were also introduced to the system
logging facility and shown how to use it.

syouyg
DNIANVH

246

Memory
Management

by Kurt Wall

IN THIS CHAPTER

¢ Reviewing C Memory
Management 248

e Memory Mapping Files 252

¢ Finding and Fixing Memory
Problems 257

248

System Programming

PART Il

In many respects, memory management under Linux is comparable to memory manage-
ment for any modern PC operating system. This chapter reviews basic C memory man-
agement and then looks at some additional capabilities Linux provides. In particular, I
will discuss memory mapped files, a very fast way to perform input and output, and
memory locking, which is a method that keeps critical data in active memory rather than
allowing it be swapped out to disk. I will also cover some special tools for debugging
memory problems and LCLint, a free implementation of the classic code analysis pro-
gram lint.

Reviewing C Memory
Management

The C programming language supports dynamic memory allocation in the malloc(3),
calloc(3), realloc(3), and free(3) functions. These functions enable you to obtain,
manipulate, and return memory from the operating system on an as-needed basis.
Dynamic memory management is essential to efficient programming. Besides more effi-
cient use of memory, a critical system resource, dynamic memory management frees you
from coding arbitrary limits in your code. Instead of hitting an artificial size constraint in
an array of, say, strings, you can simply request more and avoid unnecessary hard-coded
limits. The following sections discuss each of these functions.

Using the malloc() Function

The malloc () function allocates an uninitialized memory block. It allocates a specified
number of bytes of memory, as shown in the following prototype, returning a pointer to
the newly allocated memory or NULL on failure:

void *malloc(size_t size);

Always check malloc()’s return value. It is not necessary to cast the pointer malloc ()
returns because it is automatically converted to the correct type on assignment, but you
may encounter these casts in older, pre-ANSI code. The memory block you receive is not
initialized, so don’t use it until you’ve initialized it. Memory obtained with malloc ()
must be returned to the operating system with a call to free() in order to prevent
memory leaks.

Memory Management

CHAPTER 14

In general, you can assign a void pointer to a variable of any pointer type, and
vice versa, without any loss of information.

Using the calloc() Function

The calloc() function allocates and initializes a memory block. It uses the following
prototype:

void *calloc(size_t nmemb, size_t size);

This function acts very much like malloc (), returning a pointer to enough space to hold
an array of nmemb objects of size size. The difference is that calloc () initializes the
allocated memory, setting each bit to 0, returning a pointer to the memory or NULL on
failure.

Using the realloc() Function

The realloc() function resizes a previously allocated memory block. Use realloc() to
resize memory previously obtained with a malloc() or calloc() call. This function uses
the following prototype:

void *realloc(void *ptr, size_ t size);

The ptr argument must be a pointer returned by malloc() or calloc(). The size argu-
ment may be larger or smaller than the size of the original pointer. Increases or decreases
should occur in place. If this is not possible, realloc() will copy the old data to the new
location, but the programmer must update any pointer references to the new block. The
following also apply to realloc()’s behavior:

e realloc() does not initialize the memory added to the block.

e realloc() returns NULL if it can’t enlarge the block, leaving the original data
untouched.

e realloc() called with a NULL pointer as the first argument behaves exactly like
malloc().

e realloc() called with O as the second argument frees the block.

249

INIWIDVNVAl
AMOWIN]

250

System Programming

PART Il

Using the free() Function
The free() function frees a block of memory. This function uses the following proto-
type:

void free(void *ptr);

The ptr argument must be a pointer returned from a previous call to malloc() or
calloc(). It is an error to attempt to access memory that has been freed.

Memory allocation functions obtain memory from a storage pool known as the heap.
Memory, a finite resource, can be exhausted, so be sure to return memory as you finish
using it. Beware, too, of dangling pointers. A memory leak occurs when allocated memo-
ry is never returned to the operating system. Dangling pointers are the uninitialized
pointers left behind after memory is freed. Ordinarily, dangling pointers are not a prob-
lem. Trouble only arises when you try to access a freed pointer without reinitializing the
memory to which it points, as this code snippet illustrates:

char *str;

str = malloc(sizeof(char) * 4)

free(str);
strcpy(str, "abc");

KABLOOIE! You will get a segmentation fault (SIGSEGV) on the last line.

Using the alloca() Function

The alloca() function allocates an uninitialized block of memory. This function uses the
following prototype:

void *alloca(size_t size);

The dynamic memory allocation functions covered so far, malloc(), calloc(), and
realloc(), all obtain their memory from the heap. alloca() behaves like these, except
that it obtains memory from the process’s stack rather than the heap and, when the func-
tion that invoked alloca() returns, the allocated memory is automatically freed. Listing
14.1 illustrates the standard library’s memory management functions.

LisTiNnG 14.1 UsING DYNAMIC MEMORY MANAGEMENT FUNCTIONS

1 /%

2 * Listing 14.1

3 * mem.c - Demonstrate malloc(), calloc(), realloc(),
=alloca(), and free() usage

4 */

5 #include <stdio.h>

6 #include <stdlib.h>

Memory Management

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51}

void err_quit(char *);
void prn(char *, char *, int);

int main(void)

{
char *c, *d, *e;
if((c = malloc(1@)) == NULL)
err_quit("malloc() failed");
prn("malloc", c, 10);
free(c);
if((d = calloc(10, 1)) == NULL)
err_quit("calloc() failed");
prn("calloc", d, 10);
strcpy(d, "foobar");
fprintf(stdout, "d = %s\n", d);
if((d = realloc(d, 20)) == NULL)
err_quit("realloc() failed");
fprintf(stdout, "d = %s\n", d);
prn("realloc", d, 20);
if((e = alloca(10)) == NULL)
err_quit("alloca() failed");
prn("alloca", e, 10);
exit(0);
}
void err_quit(char *msg)
{
fprintf(stderr, "%s\n", msg);
exit (EXIT_FAILURE);
}

void prn(char *memop, char *str, int len)
{
int i;
fprintf (stdout, "%8s : ", memop);
for(i = 0; i < len; ++i)
fprintf(stdout, "Ssd ", str[i]);
fprintf(stdout, "\n");

CHAPTER 14

Lines 15-18 illustrate malloc () usage. We attempt to allocate ten bytes of memory,
check malloc()’s return value, display the contents of the uninitialized memory, and
then return the memory to the heap. Lines 20-22 repeat this procedure for calloc().

251

INIWIDVNVIA|
AMOWIN]

252

System Programming

PART Il

Rather than freeing d, however, we attempt to extend it on lines 26—28. Whether
realloc() succeeds or fails, it should still point to the string "foobar". The pointer, e,
as shown on lines 31-33, is allocated off the stack and, when main () returns (that is,
when the program exits), its memory is automatically freed.

Memory Mapping Files

Although memory mapped files do not, strictly speaking, fall under the “memory
management” rubric, the topic is covered here because it is an example of how Linux
manages memory. Linux allows any process to map a disk file into memory, creating a
byte-for-byte correspondence between the disk file and its image in memory.

Memory mapped files have two chief advantages. The first is faster file I/O. Ordinary I/O
calls, such as the read() and write() system calls or the fputs() and fgets() library
calls, copy the read or written data through kernel buffers. While Linux has a fast and
sophisticated disk-caching algorithm, the fastest disk access will always be slower than
the slowest memory access. I/O operations on a memory-mapped file bypass the kernel
buffers and, as a result, are much faster. They are also simpler because you can access
the mapped file using pointers rather than the usual file manipulation functions.

The second advantage of memory mapped files is data sharing. If multiple processes
need to access the same data, the data can be stored in a memory mapped file.
Effectively a shared memory model, this makes the data independent of any single
process and stores the region’s contents in a disk file.

Linux provides a family of function calls to manage memory mapping. These functions,
defined in <sys/mman.h>, include mmap (), munmap (), msync (), mprotect(), mlock(),
munlock (), mlockall(), and munlockall(). Subsequent sections discuss each of these
functions in detail.

Using the mmap () Function
The mmap () function maps a disk file into memory. It uses the following prototype:

void *mmap(void *start, size_t length, int prot,
=int flags, int fd, off_t offset);

Map the file open on file descriptor fd, beginning at offset offset in the file, into memo-
ry beginning at start. length specifies the amount of the file to map. The memory
region will have protections protection, a logical OR of the values in Table 14.1, and
attributes specified in flags, a logical OR of the values in Table 14.2. This function
returns a pointer to the memory region or -1 on failure.

Memory Management

CHAPTER 14 253

TaBLE 14.1 VALUES FOR PROTECTION
Protection Access Allowed
PROT_NONE No access is allowed
PROT_READ Mapped region may be read
PROT_WRITE Mapped region may be written
PROT_EXEC Mapped region may be executed

\\[o}

On the x86 architecture, PROT_EXEC implies PROT_READ, so PROT_EXEC is the same

as specifying PROT_EXEC | PROT_READ.

TABLE 14.2 VALUES FOR FLAGS

Flag POSIX Compliant Description

MAP_ANONYMOUS no Create an anonymous mapping, ignoring fd
MAP_FIXED yes Fail if address is invalid or already in use
MAP_PRIVATE yes Writes to region are process private
MAP_SHARED yes Writes to region are copied to file
MAP_DENYWRITE no Disallow normal writes to file
MAP_GROWSDOWN no Grow the memory downward

MAP_LOCKED no Lock pages into memory

A file descriptor is a handle to a file opened using the open() system call (file descrip-
tors are discussed in more detail in Chapter 10, “File Manipulation™). offset is usually
zero, indicating that the entire file should be mapped into memory.

A memory region must be marked either private, with MAP_PRIVATE, or shared, with
MAP_SHARED; the other values are optional. A private mapping makes any modifications
to the region process private, so they are not reflected in the underlying file or available

INIWIDVNVAl
AMOWIN]

to other processes. Shared maps, on the other hand, cause any updates to the memory
region to be immediately visible to other processes that have mapped the same file.

To prevent writes to the underlying disk file, specify MAP_DENYWRITE (but note that this is
not a POSIX value and as such is not portable). Anonymous maps, created with
MAP_ANONYMOUS, involve no physical file and simply allocate memory for the process’s

254

System Programming

PART Il

private use, such as a custom malloc() implementation. MAP_FIXED causes the kernel to
place the map at a specific address. If the address is already in use or otherwise unavail-
able, mmap () fails. If MAP_FIXED is not specified and address is unavailable, the kernel
will attempt to place the region elsewhere in memory. MAP_LOCKED allows processes with
root privilege to lock the region into memory so it will never be swapped to disk. User
space programs cannot use MAP_LOCKED, a security feature that prevents unauthorized
processes from locking all available memory, which would essentially bring the system
to a standstill.

Using the munmap () Function

When you have finished using a memory mapped file, call munmap () to unmap the region
and return the memory to the operating system. This function uses the following proto-
type:

int munmap(void *start, size_t length);

The start argument points to the beginning of the region to unmap, and length indi-
cates how much of the region to unmap. After a memory block has been unmapped, fur-
ther attempts to access start will cause a segmentation fault (generate a SIGSEGV). When
a process terminates, all memory maps are unmapped. The munmap () function returns O
on success or, on failure, -1 and sets errno.

Using the msync() Function
The msync () function writes a mapped file to disk. It uses the following prototype:

int msync(const void *start, size_t length, int flags);

Call msync () to update the disk file with changes made to the in-core map. The region to
flush to disk begins at the start address; length bytes will be flushed. The flags argu-
ment is a bitwise OR of one or more of the following:

MS_ASYNC Schedules a write and returns
MS_SYNC Data are written before msync () returns
MS_INVALIDATE Invalidate other maps of the same file so they will be

updated with new data

Using the mprotect() Function

The mprotect () function modifies the protection on a memory map. This function uses
the following prototype:

int protect(const void *addr, size_t len, int prot);

Memory Management

255

CHAPTER 14

This function call modifies the protections on the memory region that begins at addr to
the protections specified in prot, a bitwise OR of one or more of the flags listed in Table
14.1. It returns zero on success or, on failure, -1 and sets errno.

Locking Memory

Without going into the nitty-gritty details of how it works, memory locking means pre-
venting a memory area from being swapped to disk. In a multitasking, multiuser system
such as Linux, areas of system memory (RAM) not in active use may be temporarily
written to disk (swapped out) in order for that memory to be put to other uses. Locking
the memory sets a flag that prevents it from being swapped out.

There are four functions for locking and unlocking memory: mlock(), mlockall(),
munlock (), and munlockall(). Their prototypes are listed below.

int mlock(const void *addr, size_t len);

int munlock(void *addr, size_t len);

int mlockall(int flags);
int munlockall(void);

The memory region to be locked or unlocked is specified in addr and 1len indicates how
much of the region to lock or unlock. Values for flags may be one or both of MCL_CUR-
RENT, which requests that all pages are locked before the call returns, or MCL_FUTURE,
indicating that all pages added to the process’ address space should be locked. As noted
in the discussion of mmap (), only processes with root privilege may lock or unlock mem-
ory regions.

Using the mremap () Function

Use the mremap () function to change the size of a mapped file. This function uses the
following prototype:

void *mremap(void *old_addr, size_t old_len,
=size t new_len, unsigned long flags);

You will occasionally need to resize a memory region, which is the reason for this func-
tion. An analogue of the realloc () call discussed earlier, mremap () resizes the memory
region beginning at o1d_addr, originally with size old_len, to new_len. flags indicates
whether the region can be moved in memory if necessary. MREMAP_MAYMOVE permits the
address to change; if not specified, the resize operation fails. mremap () returns the
address of the resized region or NULL on failure.

INIWIDVNVIA|
AMOWIN]

System Programming

256

PART Il

Implementing cat (1) Using Memory Maps
Listing 14.2 illustrates using memory mapped files. Although it is a naive cat (1) imple-
mentation, it clearly demonstrates using memory mapped files.

LisTING 14.2 A cat(1) IMPLEMENTATION USING MEMORY MAPS

1 /%

2 * Listing 14.2

3 * mmcat.c - Implement the cat(1) command using mmap() and family
4 */

5 #include <sys/types.h>

6 #include <sys/mman.h>

7 #include <sys/stat.h>

8 #include <unistd.h>

9 #include <fcntl.h