
 Find more at pdfs.oreilly.com

bash Quick
Reference
By Arnold Robbins

Copyright © 2006 O'Reilly Media, Inc.

ISBN: 0596527764

In this quick reference, you'll find
everything you need to know about the
bash shell. Whether you print it out or
read it on the screen, this book gives
you the answers to the annoying
questions that always come up when
you're writing shell scripts: What
characters do you need to quote? How
do you get variable substitution to do
exactly what you want? How do you
use arrays? It's also helpful for
interactive use.

If you're a Unix user or programmer,
or if you're using bash on Windows,
you'll find this quick reference
indispensable.

Contents
History ..2

Overview of Features.................................2

Invoking the Shell3

Syntax..4

Functions ..10

Variables...10

Arithmetic Expressions19

Command History20

Job Control...25

Shell Options ..26

Command Execution28

Restricted Shells.......................................29

Built-in Commands..................................29

Resources ..64

CHAPTER 1

The Bash Shell

This reference covers Bash, which is the primary shell for GNU/Linux and Mac OS X. In
par ticular, it cov ers version 3.1 of Bash. Bash is available for Solaris and can be easily com-
piled for just about any other Unix system. This reference presents the following topics:

• Histor y

• Overvie w of features

• Invoking the shell

• Syntax

• Functions

• Variables

• Arithmetic expressions

• Command history

• Job control

• Shell options

• Command execution

• Restricted shells

• Built-in commands

• Resources

1

Histor y
The original Bourne shell distributed with V7 Unix in 1979 became the standard shell for
writing shell scripts. The Bourne shell is still be found in /bin/sh on many commercial
Unix systems. The Bourne shell itself has not changed that much since its initial release,
although it has seen modest enhancements over the years. The most notable new features
were the CDPATH variable and a built-in test command with System III (circa 1980),
command hashing and shell functions for System V Release 2 (circa 1984), and the addition
of job control features for System V Release 4 (1989).

Because the Berkeley C shell (csh) offered features that were more pleasant for interactive
use, such as command history and job control, for a long time the standard practice in the
Unix world was to use the Bourne shell for programming and the C shell for daily use. David
Korn at Bell Labs was the first developer to enhance the Bourne shell by adding csh-like fea-
tures to it: history, job control, and additional programmability. Eventually, the Korn shell’s
feature set surpassed both the Bourne shell and the C shell, while remaining compatible with
the Bourne shell for shell programming. Today, the POSIX standard defines the “standard
shell” language and behavior based on the System V Bourne shell, with a selected subset of
features from the Korn shell.

The Free Software Foundation, in keeping with its goal to produce a complete Unix work-
alike system, developed a clone of the Bourne shell, written from scratch, named “Bash,” the
Bourne-Again SHell. Over time, Bash has become a POSIX-compliant version of the shell,
with many additional features. A large part of these additional features overlap the features of
the Korn shell, but Bash is not an exact Korn shell clone.

Over view of Features
The Bash shell provides the following features:

• Input/output redirection

• Wildcard characters (metacharacters) for filename abbreviation

• Shell variables and options for customizing your environment

• A built-in command set for writing shell programs

• Shell functions, for modularizing tasks within a shell program

• Job control

• Command-line editing (using the command syntax of either vi or Emacs)

• Access to previous commands (command history)

• Integer arithmetic

• Arrays and arithmetic expressions

• Command-name abbreviation (aliasing)

• Upwards compliance with POSIX

2 Chapter 1 – The Bash Shell

• Internationalization facilities

• An arithmetic for loop

Invoking the Shell
The command interpreter for the Bash shell (bash) can be invoked as follows:

bash [options] [arguments]

Bash can execute commands from a terminal, from a file (when the first argument is a script),
or from standard input (if no arguments remain or if -s is specified). The shell automatically
prints prompts if standard input is a terminal, or if -i is given on the command line.

On many systems, /bin/sh is a link to Bash. When invoked as sh, Bash acts more like the
traditional Bourne shell: login shells read /etc/profile and ˜/.profile, and regular
shells read $ENV, if it’s set. Full details are available in the bash(1) manpage.

Options

-c str

Read commands from string str.

-D, --dump-strings
Print all $"..." strings in the program.

-i Create an interactive shell (prompt for input).

-O option

Enable shopt option option.

-p Star t up as a privileged user. Don’t read $ENV or $BASH_ENV, don’t impor t functions
from the environment, and ignore the value of $SHELLOPTS. The normal fixed-
name startup files (such as $HOME/.bash_profile) are read.

-r, --restricted
Create a restricted shell.

-s Read commands from standard input. Output from built-in commands goes to file
descriptor 1; all other shell output goes to file descriptor 2.

--debugger
Read the debugging profile at startup, turn on the extdebug option to shopt, and
enable function tracing. For use by the Bash debugger (see http://bashdb.sourceforge.net).

--dump-po-strings
Same as -D, but output in GNU gettext format.

--help
Print a usage message and exit successfully.

--init-file file, --rcfile file

Use file as the startup file instead of ˜/.bashrc for interactive shells.

Invoking the Shell 3

--login
Shell is a login shell.

--noediting
Do not use the readline librar y for input, even in an interactive shell.

--noprofile
Do not read /etc/profile or any of the personal startup files.

--norc
Do not read ˜/.bashrc. Enabled automatically when invoked as sh.

--posix
Turn on POSIX mode.

--verbose
Same as set -v; the shell prints lines as it reads them.

--version
Print a version message and exit.

-, --
End option processing.

The remaining options are listed under the set built-in command.

Ar guments

Arguments are assigned in order to the positional parameters $1, $2, etc. If the first argument
is a script, commands are read from it, and the remaining arguments are assigned to $1, $2,
etc. The name of the script is available as $0. The script file itself need not be executable, but
it must be readable.

Syntax
This section describes the many symbols peculiar to the shell. The topics are arranged as fol-
lows:

• Special files

• Filename metacharacters

• Quoting

• Command forms

• Redirection forms

Special Files

The shell reads one or more star tup files. Some of the files are read only when a shell is a
login shell. Bash reads these files:

4 Chapter 1 – The Bash Shell

1. /etc/profile. Executed automatically at login.

2. The first file found from this list: ˜/.bash_profile, ˜/.bash_login, or ˜/.pro-
file. Executed automatically at login.

3. ˜/.bashrc is read by every nonlogin shell. Ho wever, if invoked as sh, Bash instead
reads $ENV, for POSIX compatibility.

The getpwnam() and getpwuid() functions are the sources of home directories for ˜name
abbreviations. (On single-user systems, the user database is stored in /etc/passwd.
Ho wever, on networked systems, this information may come from NIS, NIS+, or LDAP, not
your workstation password file.)

Filename Metacharacters
* Match any string of zero or more characters.
? Match any single character.
[abc...] Match any one of the enclosed characters; a hyphen can specify a

range (e.g., a-z, A-Z, 0–9).
[!abc...] Match any character not enclosed as above.
˜ Home director y of the current user.
˜name Home director y of user name.
˜+ Current working director y ($PWD).
˜- Pr evious working director y ($OLDPWD).

With the extglob option on:

?(pattern) Match zero or one instance of patter n.
*(pattern) Match zero or more instances of patter n.
+(pattern) Match one or more instances of patter n.
@(pattern) Match exactly one instance of patter n.
!(pattern) Match any strings that don’t match patter n.

This patter n can be a sequence of patterns separated by |, meaning that the match applies to
any of the patterns. This extended syntax resembles that available in egrep and awk.

Bash supports the POSIX [[=c=]] notation for matching characters that have the same
weight, and [[.c.]] for specifying collating sequences. In addition, character classes, of the
form [[:class:]], allow you to match the following classes of characters:

Class Characters matched Class Characters matched

alnum Alphanumeric characters graph Nonspace characters
alpha Alphabetic characters print Printable characters
blank Space or Tab punct Punctuation characters
cntrl Control characters space Whitespace characters
digit Decimal digits upper Uppercase characters
lower Lowercase characters xdigit Hexadecimal digits

Syntax 5

Bash also accepts the [:word:] character class, which is not in POSIX. [[:word:]] is equiv-
alent to [[:alnum:]_].

Examples

$ ls new* List new and new.1
$ cat ch? Match ch9 but not ch10
$ vi[D-R]* Match files that begin with uppercase D through R
$ pr !(*.o|core) | lp Print files that are not object files or core dumps

NOTE: On modern systems, ranges such as [D-R] are not portable; the system’s locale may
include more than just the uppercase letters from D to R in the range.

Quoting

Quoting disables a character’s special meaning and allows it to be used literally. The follow-
ing table displays characters that have special meaning:

Character Meaning

; Command separator
& Background execution
() Command grouping
| Pipe
< > & Redirection symbols
* ? [] ˜ + - @ ! Filename metacharacters
" ’ \ Used in quoting other characters
‘ Command substitution
$ Variable substitution (or command or arithmetic substitution)
space tab newline Word separators

These characters can be used for quoting:

" " Ev erything between " and " is taken literally, except for the following characters that
keep their special meaning:

$ Variable (or command and arithmetic) substitution will occur.

‘ Command substitution will occur.

" This marks the end of the double quote.

’ ’ Ev erything between ’ and ’ is taken literally, except for another ’. You cannot embed
another ’ within such a quoted string.

\ The character following a \ is taken literally. Use within " " to escape ", $, and ‘.
Often used to escape itself, spaces, or newlines.

$" "

Just like " ", except that locale translation is done.

$’ ’

Similar to ’ ’, but the quoted text is processed for the following escape sequences:

6 Chapter 1 – The Bash Shell

Sequence Value Sequence Value

\a Aler t \t Tab
\b Backspace \v Vertical tab
\cX Control character X \nnn Octal value nnn
\e Escape \xnn Hexadecimal value nn
\E Escape \’ Single quote
\f Form feed \" Double quote
\n Ne wline \\ Backslash
\r Carriage return

Examples

$ echo ’Single quotes "protect" double quotes’
Single quotes "protect" double quotes
$ echo "Well, isn’t that \"special\"?"
Well, isn’t that "special"?
$ echo "You have ‘ls | wc -l‘ files in ‘pwd‘"
You have 43 files in /home/bob
$ echo "The value of \$x is $x"
The value of $x is 100

Command For ms
cmd & Execute cmd in background.
cmd1 ; cmd2 Command sequence; execute multiple cmds on the same line.
{ cmd1 ; cmd2 ; } Execute commands as a group in the current shell.
(cmd1 ; cmd2) Execute commands as a group in a subshell.
cmd1 | cmd2 Pipe; use output from cmd1 as input to cmd2.
cmd1 ‘cmd2‘ Command substitution; use cmd2 output as arguments to cmd1.
cmd1 $(cmd2) POSIX shell command substitution; nesting is allowed.
cmd $((expression)) POSIX shell arithmetic substitution. Use the result of expression as

argument to cmd.
cmd1 && cmd2 AND; execute cmd1 and then (if cmd1 succeeds) cmd2. This is a

“shor t circuit” operation: cmd2 is never executed if cmd1 fails.
cmd1 || cmd2 OR; execute either cmd1 or (if cmd1 fails) cmd2. This is a “shor t

circuit” operation; cmd2 is never executed if cmd1 succeeds.
! cmd NOT; execute cmd, and produce a zero exit status if cmd exits

with a nonzero status. Other wise, produce a nonzero status when
cmd exits with a zero status.

Examples

$ nroff file > file.txt & Format in the background
$ cd; ls Execute sequentially
$ (date; who; pwd) > logfile All output is redirected
$ sort file | pr -3 | lp Sor t file, page output, then print
$ vi ‘grep -l ifdef *.c‘ Edit files found by grep
$ egrep ’(yes|no)’ ‘cat list‘ Specify a list of files to search
$ egrep ’(yes|no)’ $(cat list) POSIX version of previous

Syntax 7

$ egrep ’(yes|no)’ $(< list) Faster; not in POSIX
$ grep XX file && lp file Print file if it contains the pattern
$ grep XX file || echo "XX not found" Other wise, echo an error message

Redirection For ms
File descriptor Name Common abbreviation Typical default

0 Standard input stdin Keyboard
1 Standard output stdout Screen
2 Standard error stderr Screen

The usual input source or output destination can be changed, as seen in the following
sections.

Simple redirection

cmd > file

Send output of cmd to file (overwrite).

cmd >> file

Send output of cmd to file (append).

cmd < file

Take input for cmd from file.

cmd << text

The contents of the shell script up to a line identical to text become the standard input
for cmd (text can be stored in a shell variable). This command form is sometimes called
a here document. Input is usually typed at the keyboard or in the shell program. Com-
mands that typically use this syntax include cat, ex, and sed. (If <<- is used, leading
tabs are stripped from the contents of the here document, and the tabs are ignored
when comparing input with the end-of-input text marker.) If any part of text is quoted,
the input is passed through verbatim. Other wise, the contents are processed for variable,
command, and arithmetic substitutions.

cmd <<< word

Supply text of word, with trailing newline, as input to cmd. (This is known as a here
string, from the free version of the rc shell.)

cmd <> file

Open file for reading and writing on the standard input. The contents are not
destroy ed.*

cmd >| file

Send output of cmd to file (overwrite), even if the shell’s noclobber option is set.

* With <, the file is opened read-only, and writes on the file descriptor will fail. With <>, the file is opened read-write;
it is up to the application to actually take advantage of this.

8 Chapter 1 – The Bash Shell

Redirection using file descriptors

cmd >&n Send cmd output to file descriptor n.
cmd m>&n Same as previous, except that output that would normally go to file descriptor m

is sent to file descriptor n instead.
cmd >&- Close standard output.
cmd <&n Take input for cmd from file descriptor n.
cmd m<&n Same as previous, except that input that would normally come from file descrip-

tor m comes from file descriptor n instead.
cmd <&- Close standard input.
cmd <&n- Mo ve input file descriptor n instead of duplicating it.
cmd >&n- Mo ve output file descriptor n instead of duplicating it.

Multiple redirection

cmd 2>file Send standard error to file; standard output remains the same
(e.g., the screen).

cmd > file 2>&1 Send both standard error and standard output to file.
cmd &> file Same as previous. Preferred form.
cmd >& file Same as previous.
cmd > f1 2>f2 Send standard output to file f1 and standard error to file f2.
cmd | tee files Send output of cmd to standard output (usually the terminal) and

to files.
cmd 2>&1 | tee files Send standard output and error output of cmd to standard output

(usually the terminal) and to files.

No space should appear between file descriptors and a redirection symbol; spacing is optional
in the other cases.

Bash allows multidigit file descriptor numbers. Other shells do not.

Examples

$ cat part1 > book
$ cat part2 part3 >> book
$ mail tim < report
$ sed ’s/ˆ/XX /g’ << END_ARCHIVE
> This is often how a shell archive is "wrapped",
> bundling text for distribution. You would normally
> run sed from a shell program, not from the command line.
> END_ARCHIVE
XX This is often how a shell archive is "wrapped",
XX bundling text for distribution. You would normally
XX run sed from a shell program, not from the command line.

To redirect standard output to standard error:

$ echo "Usage error: see administrator" 1>&2

The following command sends output (files found) to filelist, and error messages (inac-
cessible files) to file no_access:

$ find / -print > filelist 2>no_access

Syntax 9

Functions
A shell function is a grouping of commands within a shell script. Shell functions let you mod-
ularize your program by dividing it up into separate tasks. This way, the code for each task
need not be repeated ever y time you need to perform the task. The POSIX shell syntax for
defining a function follows the Bourne shell:

name () {
function body’s code come here

}

Functions are invoked just as are regular shell built-in commands or external commands. The
command-line parameters $1, $2, and so on receive the function’s arguments, temporarily
hiding the global values of $1, etc. For example:

fatal --- print an error message and die:

fatal () {
echo "$0: fatal error:" "$@" >&2 # messages to standard error
exit 1

}
...
if [$# = 0] # not enough arguments
then

fatal not enough arguments
fi

A function may use the return command to return an exit value to the calling shell pro-
gram. Be careful not to use exit from within a function unless you really wish to terminate
the entire program.

Bash allows you to define functions using an additional keyword, function, as follows:

function fatal {
echo "$0: fatal error:" "$@" >&2 # messages to standard error
exit 1

}

In Bash, all functions share traps with the “parent” shell (except the DEBUG trap, if function
tracing has been turned on). With the errtrace option enabled (either set -E or set -o
errtrace), functions also inherit the ERR trap. If function tracing has been enabled, func-
tions inherit the RETURN trap. Functions may have local variables, and they may be recursive.
Unlike the Korn shell, the syntax used to define a function is irrelevant.

Variables
This section describes the following:

• Variable assignment

• Variable substitution

• Built-in shell variables

10 Chapter 1 – The Bash Shell

• Other shell variables

• Arrays

• Special prompt strings

Variable Assignment

Variable names consist of any number of letters, digits, or underscores. Uppercase and lower-
case letters are distinct, and names may not start with a digit. Variables are assigned values
using the = operator. There may not be any whitespace between the variable name and the
value. You can make multiple assignments on the same line by separating each one with
whitespace:

firstname=Arnold lastname=Robbins numkids=4

By convention, names for variables used or set by the shell usually have all uppercase letters;
however, you can use uppercase names in your scripts if you use a name that isn’t special to
the shell.

By default, the shell treats variable values as strings, even if the value of the string is all digits.
Ho wever, when a value is assigned to an integer variable (created via declare -i), Bash eval-
uates the righthand side of the assignment as an expression (see the later section “Arithmetic
Expressions”). For example:

$ i=5+3 ; echo $i
5+3
$ declare -i jj ; jj=5+3 ; echo $jj
8

Beginning with Bash Version 3.1, the += operator allows you to add or append the righthand
side of the assignment to an existing value. Integer variables treat the righthand side as an
expression, which is evaluated and added to the value. Arrays add the new elements to the
array (see the later section “Arrays”). For example:

$ name=Arnold
$ name+=" Robbins" ; echo $name String variable
Arnold Robbins
$ declare -i jj ; jj=3+5 ; echo $jj Integer variable
8
$ jj+=2+4 ; echo $jj
14
$ pets=(blacky rusty) Array variable
$ echo ${pets[*]}
blacky rusty
$ pets+=(raincloud sparky)
$ echo ${pets[*]}
blacky rusty raincloud sparky

Variable Substitution

No spaces should be used in the following expressions. The colon (:) is optional; if it’s
included, var must be nonnull as well as set.

Variables 11

var=value ... Set each variable var to a value.
${var} Use value of var; braces are optional if var is separated from the

following text. They are required for array variables.
${var:-value} Use var if set; otherwise, use value.
${var:=value} Use var if set; otherwise, use value and assign value to var.
${var:?value} Use var if set; otherwise, print value and exit (if not interactive). If

value isn’t supplied, print the phrase “parameter null or not set.”
${var:+value} Use value if var is set; otherwise, use nothing.
${#var} Use the length of var.
${#*} Use the number of positional parameters.
${#@} Same as previous.
${var#pattern} Use value of var after removing patter n from the left. Remove the

shor test matching piece.
${var##pattern} Same as #patter n, but remove the longest matching piece.
${var%pattern} Use value of var after removing patter n from the right. Remove

the shortest matching piece.
${var%%pattern} Same as %patter n, but remove the longest matching piece.
${!prefix*}, ${!prefix@} List of variables whose names begin with prefix.
${var:pos}, ${var:pos:len} Star ting at position pos (0-based) in variable var, extract len char-

acters, or extract rest of string if no len. pos and len may be arith-
metic expressions.

${var/pat/repl} Use value of var, with first match of pat replaced with repl.
${var/pat} Use value of var, with first match of pat deleted.
${var//pat/repl} Use value of var, with ever y match of pat replaced with repl.
${var/#pat/repl} Use value of var, with match of pat replaced with repl. Match

must occur at beginning of the value.
${var/%pat/repl} Use value of var, with match of pat replaced with repl. Match

must occur at end of the value.

Bash provides a special syntax that lets one variable indirectly reference another:

$ greet="hello, world" Create initial variable
$ friendly_message=greet Aliasing variable
$ echo ${!friendly_message} Use the alias
hello, world

Examples

$ u=up d=down blank= Assign values to three variables (last is null)
$ echo ${u}root Braces are needed here
uproot
$ echo ${u-$d} Display value of u or d; since u is set, it’s printed
up
$ echo ${tmp-‘date‘} If tmp is not set, the date command is executed
Sun Jun 11 13:14:54 EDT 2006
$ echo ${blank="no data"} blank is set, so it is printed (a blank line)
$ echo ${blank:="no data"} blank is set but null, so the string is printed
no data
$ echo $blank blank now has a new value
no data
$ tail=${PWD##*/} Take the current director y name and remove the

longest character string ending with /, which
removes the leading pathname and leaves the tail

12 Chapter 1 – The Bash Shell

Built-in Shell Variables

Built-in variables are automatically set by the shell and are typically used inside shell scripts.
Built-in variables can make use of the variable substitution patterns shown previously. Note
that the $ is not actually part of the variable name, although the variable is always referenced
this way. The following are available in any Bourne-compatible shell:

$# Number of command-line arguments.
$- Options currently in effect (arguments supplied on command line or to

set). The shell sets some options automatically.
$? Exit value of last executed command.
$$ Pr ocess number of current process.
$! Pr ocess number of last background command.
$0 First word; that is, the command name. This will have the full pathname if

it was found via a PATH search.
$n Individual arguments on command line (positional parameters). The

Bourne shell allows only nine parameters to be referenced directly (n = 1–9);
Bash allows n to be greater than 9 if specified as ${n}.

$*, $@ All arguments on command line ($1 $2 ...).
"$*" All arguments on command line as one string ("$1 $2..."). The values are

separated by the first character in IFS.
"$@" All arguments on command line, individually quoted ("$1" "$2" ...).

Bash automatically sets the following additional variables. Many of these variables are for use
by the Bash Debugger (see http://bashdb.sourceforge.net) or for providing programmable com-
pletion (see the section “Pr ogrammable Completion,” later in this reference).

$_ Temporar y variable; initialized to pathname of script or pro-
gram being executed. Later, stores the last argument of previ-
ous command. Also stores name of matching MAIL file
during mail checks.

BASH The full pathname used to invoke this instance of Bash.
BASH_ARGC Array variable. Each element holds the number of arguments

for the corresponding function or dot-script invocation. Set
only in extended debug mode, with shopt -s extdebug.
Cannot be unset.

BASH_ARGV An array variable similar to BASH_ARGC. Each element is one
of the arguments passed to a function or dot-script. It func-
tions as a stack, with values being pushed on at each call.
Thus, the last element is the last argument to the most recent
function or script invocation. Set only in extended debug
mode, with shopt -s extdebug. Cannot be unset.

BASH_COMMAND The command currently executing or about to be executed.
Inside a trap handler, it is the command running when the
trap was invoked.

BASH_EXECUTION_STRING The string argument passed to the -c option.

Variables 13

BASH_LINENO Array variable, corresponding to BASH_SOURCE and FUNCNAME.
For any given function number i (star ting at 0), ${FUNC-
NAME[i]} was invoked in file ${BASH_SOURCE[i]} on line
${BASH_LINENO[i]}. The information is stored with the most
recent function invocation first. Cannot be unset.

BASH_REMATCH Array variable, assigned by the =˜ operator of the [[]] con-
str uct. Index 0 is the text that matched the entire pattern. The
other indices are the text matched by parenthesized subexpres-
sions. This variable is read-only.

BASH_SOURCE Array variable, containing source filenames. Each element
corresponds to those in FUNCNAME and BASH_LINENO. Cannot
be unset.

BASH_SUBSHELL This variable is incremented by one each time a subshell or
subshell environment is created.

BASH_VERSINFO[0] The major version number, or release, of Bash.
BASH_VERSINFO[1] The minor version number, or version, of Bash.
BASH_VERSINFO[2] The patch level.
BASH_VERSINFO[3] The build version.
BASH_VERSINFO[4] The release status.
BASH_VERSINFO[5] The machine type; same value as in MACHTYPE.
BASH_VERSION A string describing the version of Bash.
COMP_CWORD For programmable completion. Index into COMP_WORDS, indi-

cating the current cursor position.
COMP_LINE For programmable completion. The current command line.
COMP_POINT For programmable completion. The position of the cursor as

a character index in COMP_LINE.
COMP_WORDBREAKS For programmable completion. The characters that the read-

line librar y treats as word separators when doing word com-
pletion.

COMP_WORDS For programmable completion. Array variable containing the
individual words on the command line.

DIRSTACK Array variable, containing the contents of the director y stack
as displayed by dirs. Changing existing elements modifies
the stack, but only pushd and popd can add or remove ele-
ments from the stack.

EUID Read-only variable with the numeric effective UID of the cur-
rent user.

FUNCNAME Array variable, containing function names. Each element cor-
responds to those in BASH_SOURCE and BASH_LINENO.

GROUPS Array variable, containing the list of numeric group IDs in
which the current user is a member.

HISTCMD The history number of the current command.
HOSTNAME The name of the current host.
HOSTTYPE A string that describes the host system.
LINENO Current line number within the script or function.
MACHTYPE A string that describes the host system in the GNU cpu-

company-system format.
OLDPWD Pr evious working director y (set by cd).

14 Chapter 1 – The Bash Shell

OPTARG Name of argument to last option processed by getopts.
OPTIND Numerical index of OPTARG.
OSTYPE A string that describes the operating system.
PIPESTATUS Array variable, containing the exit statuses of the commands

in the most recent foreground pipeline.
PPID Pr ocess number of this shell’s parent.
PWD Current working director y (set by cd).
RANDOM[=n] Generate a new random number with each reference; start

with integer n, if given.
REPLY Default reply; used by select and read.
SECONDS[=n] Number of seconds since the shell was started, or, if n is

given, number of seconds since the assignment + n.
SHELLOPTS A colon-separated list of shell options (for set -o). If set in

the environment at startup, Bash enables each option present
in the list.

SHLVL Incremented by one ever y time a new Bash starts up.
UID Read-only variable with the numeric real UID of the current

user.

Other Shell Variables

The following variables are not automatically set by the shell, although many of them can
influence the shell’s behavior. You typically use them in your .profile file, where you can
define them to suit your needs. Variables can be assigned values by issuing commands of the
form:

variable=value

This list includes the type of value expected when defining these variables.

CDPATH=dirs Directories searched by cd; allows shortcuts in changing directo-
ries; unset by default.

COLUMNS=n Screen’s column width; used in line edit modes and select lists.
COMPREPLY=(words ...) Array variable from which Bash reads the possible completions

generated by a completion function.
EMACS If the value starts with t, Bash assumes it’s running in an Emacs

buffer and disables line editing.
ENV=file Name of script that gets executed at startup; useful for storing

alias and function definitions. For example,

ENV=$HOME/.shellrc.

FCEDIT=file Editor used by fc command. The default is /bin/ed when Bash
is in POSIX mode. Other wise, the default is $EDITOR if set, vi
if unset.

FIGNORE=patlist Colon-separated list of patterns describing the set of filenames to
ignore when doing filename completion.

GLOBIGNORE=patlist Colon-separated list of patterns describing the set of filenames to
ignore during pattern matching.

Variables 15

HISTCONTROL=list Colon-separated list of values controlling how commands are
saved in the history file. Recognized values are ignoredups,
ignorespace, ignoreboth, and erasedups.

HISTFILE=file File in which to store command history.
HISTFILESIZE=n Number of lines to be kept in the history file. This may be differ-

ent than the number of commands.
HISTIGNORE=list A colon-separated list of patterns that must match the entire com-

mand line. Matching lines are not saved in the history file. An
unescaped & in a pattern matches the previous history line.

HISTSIZE=n Number of history commands to be kept in the history file.
HISTTIMEFORMAT=string A format string for str ftime(3) to use for printing timestamps

along with commands from the history command. If set (even
if null), Bash saves timestamps in the history file along with the
commands.

HOME=dir Home director y; set by login (from /etc/passwd file).
HOSTFILE=file Name of a file in the same format as /etc/hosts that Bash

should use to find hostnames for hostname completion.
IFS=’chars’ Input field separators; default is space, tab, and newline.
IGNOREEOF=n Numeric value indicating how many successive EOF characters

must be typed before Bash exits. If null or nonnumeric value,
default is 10.

INPUTRC=file Initialization file for the readline librar y. This overrides the default
value of ˜/.inputrc.

LANG=locale Default value for locale; used if no LC_* variables are set.
LC_ALL=locale Current locale; overrides LANG and the other LC_* variables.
LC_COLLATE=locale Locale to use for character collation (sorting order).
LC_CTYPE=locale Locale to use for character class functions. (See the earlier section

“Filename Metacharacters.”)
LC_MESSAGES=locale Locale to use for translating $"..." strings.
LC_NUMERIC=locale Locale to use for the decimal-point character.
LC_TIME=locale Locale to use for date and time formats.
LINES=n Screen’s height; used for select lists.
MAIL=file Default file to check for incoming mail; set by login.
MAILCHECK=n Number of seconds between mail checks; default is 600 (10

minutes).
MAILPATH=files One or more files, delimited by a colon, to check for incoming

mail. Along with each file, you may supply an optional message
that the shell prints when the file increases in size. Messages are
separated from the filename by a ? character, and the default mes-
sage is You have mail in $_. $_ is replaced with the name of the
file. For example, you might have:

MAILPATH="$MAIL? Candygram!:/etc/motd?New Login Message"

OPTERR=n When set to 1 (the default value), Bash prints error messages from
the built-in getopts command.

16 Chapter 1 – The Bash Shell

PATH=dirlist One or more pathnames, delimited by colons, in which to search
for commands to execute. Default for many systems is
/bin:/usr/bin. On Solaris, the default is /usr/bin:. How ever,
the standard star tup scripts change it to:

/usr/bin:/usr/ucb:/etc:.

POSIXLY_CORRECT=string When set at startup or while running, Bash enters POSIX mode,
disabling behavior and modifying features that conflict with the
POSIX standard.

PROMPT_COMMAND=command If set, Bash executes this command each time before printing the
primar y prompt.

PS1=string Primar y prompt string; default is $.
PS2=string Secondar y prompt (used in multiline commands); default is >.
PS3=string Pr ompt string in select loops; default is #?.
PS4=string Pr ompt string for execution trace (bash -x or set -x); default

is +.
SHELL=file Name of default shell (e.g., /bin/sh). Bash sets this if it’s not in

the environment at startup.
TERM=string Terminal type.
TIMEFORMAT=string A format string for the output for the time keyword.
TMOUT=n If no command is typed after n seconds, exit the shell. Also affects

the read command and the select loop.
TMDIR=directory Place temporary files created and used by the shell in director y.
auto_resume=list Enables the use of simple strings for resuming stopped jobs. With

a value of exact, the string must match a command name
exactly. With a value of substring, it can match a substring of
the command name.

histchars=chars Two or three characters that control Bash’s csh-style history
expansion. The first character signals a history event; the second is
the “quick substitution” character; the third indicates the start of a
comment. The default value is !ˆ#. See the section “C-Shell–Style
Histor y,” later in this reference.

Arrays

Bash supports one-dimensional arrays. The first element is numbered 0. Bash has no limit on
the number of elements. Arrays are initialized with a special form of assignment:

message=(hi there how are you today)

where the specified values become elements of the array. Individual elements may also be
assigned to:

message[0]=hi This is the hard way
message[1]=there
message[2]=how
message[3]=are
message[4]=you
message[5]=today

Declaring arrays is not required. Any valid reference to a subscripted variable can create an
array.

Variables 17

When referencing arrays, use the ${ ... } syntax. This isn’t needed when referencing arrays
inside (()) (the form of let that does automatic quoting). Note that [and] are typed lit-
erally (i.e., they don’t stand for optional syntax).

${name[i]} Use element i of array name. i can be any arithmetic expression as
described under let.

${name} Use element 0 of array name.
${name[*]} Use all elements of array name.
${name[@]} Same as previous.
${#name[*]} Use the number of elements in array name.
${#name[@]} Same as previous.

Special Prompt Strings

Bash processes the values of PS1, PS2, and PS4 for the following special escape sequences:

\a An ASCII BEL character (octal 07).
\A The current time in 24-hour HH:MM format.
\d The date in “weekday month day” format.
\D{format} The date as specified by the str ftime(3) format for mat. The braces are required.
\e An ASCII Escape character (octal 033).
\h The hostname, up to the first period.
\H The full hostname.
\j The current number of jobs.
\l The basename of the shell’s terminal device.
\n A newline character.
\r A carriage return character.
\s The name of the shell (basename of $0).
\t The current time in 24-hour HH:MM:SS format.
\T The current time in 12-hour HH:MM:SS format.
\u The current user’s username.
\v The version of Bash.
\V The release (version plus patchlevel) of Bash.
\w The current director y, with $HOME abbreviated as ˜.
\W The basename of the current director y, with $HOME abbreviated as ˜.
\! The history number of this command.
\# The command number of this command.
\$ If the effective UID is 0, a #; other wise, a $.
\@ The current time in 12-hour a.m./p.m. format.
\nnn The character represented by octal value nnn.
\\ A literal backslash.
\[Star t a sequence of nonprinting characters, such as for highlighting or changing

colors on a terminal.
\] End a sequence of nonprinting characters.

18 Chapter 1 – The Bash Shell

The PS1, PS2, and PS4 variables undergo substitution for escape sequences, variable substi-
tution, command substitution, and arithmetic substitution. The escape sequences are pro-
cessed first, and then, if the promptvars shell option is enabled via the shopt command (the
default), the substitutions are per formed.

Arithmetic Expressions
The let command performs arithmetic. Bash is restricted to integer arithmetic. The shell
provides a way to substitute arithmetic values (for use as command arguments or in vari-
ables); base conversion is also possible:

$((expr)) Use the value of the enclosed arithmetic expression.
B#n Interpret integer n in numeric base B. For example, 8#100 speci-

fies the octal equivalent of decimal 64.

Operators

The shell uses arithmetic operators from the C programming language, in decreasing order of
precedence.

Operator Description

++ -- Auto-increment and auto-decrement, both prefix and postfix.
+ - ! ˜ Unar y plus and minus, logical negation and binary inversion (one’s comple-

ment).
** Exponentiation.a

* / % Multiplication; division; modulus (remainder).
+ - Addition; subtraction.
<< >> Bitwise left shift; bitwise right shift.
< <= > >= Less than; less than or equal to; greater than; greater than or equal to.
== != Equality; inequality (both evaluated left to right).
& Bitwise AND.
ˆ Bitwise exclusive OR.
| Bitwise OR.
&& Logical AND (short circuit).
|| Logical OR (short circuit).
?: Inline conditional evaluation.
= += -=

*= /= %=

<<= >>= Assignment.
&= ˆ= |=

, Sequential expression evaluation.
a The ** operator is right-associative. Prior to Version 3.1, it was left-associative.

Arithmetic Expressions 19

Examples
let "count=0" "i = i + 1" Assign i and count
let "num % 2" Test for an even number
((percent >= 0 && percent <= 100)) Test the range of a value

See the let entr y in the later section “Built-in Commands” for more information and exam-
ples.

Command Histor y
The shell lets you display or modify previous commands. Commands in the history list can
be modified using:

• Line-edit mode

• The fc command

• C-shell–style history

Line-Edit Mode

Line-edit mode emulates many features of the vi and Emacs editors. The history list is
treated like a file. When the editor is invoked, you type editing keystrokes to move to the
command line you want to execute. You can also change the line before executing it. When
you’re ready to issue the command, press the Enter key.

Emacs editing mode is the default. To control command-line editing, you must use either
set -o vi or set -o emacs; Bash does not use variables to specify the editor.

Note that vi star ts in input mode; to type a vi command, press the Escape key first.

Common editing keystrokes

vi Emacs Result

k CTRL-p Get previous command.
j CTRL-n Get next command.
/string CTRL-r string Get previous command containing string.
h CTRL-b Mo ve back one character.
l CTRL-f Mo ve for ward one character.
b ESC-b Mo ve back one word.
w ESC-f Mo ve for ward one word.
X DEL Delete previous character.
x CTRL-d Delete character under cursor.
dw ESC-d Delete word for ward.
db ESC-h Delete word backward.
xp CTRL-t Transpose two characters.

20 Chapter 1 – The Bash Shell

The fc Command

fc stands for either “find command” or “fix command,” since it does both jobs. Use fc -l
to list history commands and fc -e to edit them. See the fc entr y in the later section “Built-
in Commands” for more information.

Examples

$ history List the last 16 commands
$ fc -l 20 30 List commands 20 through 30
$ fc -l -5 List the last 5 commands
$ fc -l cat List all commands since the last command beginning with cat
$ fc -l 50 List all commands since command 50
$ fc -ln 5 > doit Save command 5 to file doit
$ fc -e vi 5 20 Edit commands 5 through 20 using vi
$ fc -e emacs Edit previous command using emacs

Interactive line-editing is easier to use than fc, since you can move up and down in the saved
command history using your favorite editor commands (as long as your favorite editor is
either vi or Emacs!). You may also use the Up and Down arrow keys to traverse the com-
mand history.

C-Shell–Style Histor y

Besides the interactive editing features and POSIX fc command, Bash supports a command-
line editing mode similar to that of the Berkeley C shell (csh). It can be disabled using set
+H. Many users prefer the interactive editing features, but for those whose “finger habits” are
still those of csh, this feature comes in handy.

Ev ent designators

Ev ent designators mark a command-line word as a histor y substitution.

Command Description

! Begin a history substitution.
!! Pr evious command.
!N Command number N in history list.
!-N N th command back from current command.
!string Most recent command that starts with string.
!?string[?] Most recent command that contains string.
ˆoldˆnewˆ Quick substitution; change string old to new in previous command,

and execute modified command.

Word substitution

Word specifiers allow you to retrieve individual words from previous command lines. They
follow an initial event specifier, separated by a colon. The colon is optional if followed by any
of ˆ, $, *, -, or %.

Command Histor y 21

Specifier Description

:0 Command name
:n Argument number n
ˆ First argument
$ Last argument
% Argument matched by a !?string? search
:n-m Arguments n through m
-m Words 0 through m; same as :0-m
:n- Arguments n through next-to-last
:n* Arguments n through last; same as n-$
* All arguments; same as ˆ-$ or 1-$
Current command line up to this point (fairly useless)

Histor y modifiers

There are several ways to modify command and word substitutions. The printing, substitu-
tion, and quoting modifiers are shown in the following table.

Modifier Description

:p Display command, but don’t execute.
:s/old/new Substitute string new for old, first instance only.
:gs/old/new Substitute string new for old, all instances.
:as/old/new Same as :gs.
:Gs/old/new Like :gs, but apply the substitution to all the words in the com-

mand line.
:& Repeat previous substitution (:s or ˆ command), first instance only.
:g& Repeat previous substitution, all instances.
:q Quote a word list.
:x Quote separate words.

The truncation modifiers are shown in the following table.

Modifier Description

:r Extract the first available pathname root (the portion before the last period).
:e Extract the first available pathname extension (the portion after the last

period).
:h Extract the first available pathname header (the portion before the last

slash).
:t Extract the first available pathname tail (the portion after the last slash).

Pr ogrammable Completion

Bash and the readline librar y provide completion facilities, whereby you can type part of a
command name, hit the Tab key, and have Bash fill in part or all of the rest of the command
or filename. Pr ogrammable completion lets you, as a shell programmer, write code to

22 Chapter 1 – The Bash Shell

customize the list of possible completions that Bash will present for a particular, par tially
entered word. This is accomplished through the combination of several facilities.

• The complete command allows you provide a completion specification, or compspec,
for individual commands. You specify, via various options, how to tailor the list of pos-
sible completions for the particular command. This is simple, but adequate for many
needs. (See the complete entr y in the section “Built-in Commands,” later in this refer-
ence.)

• For more flexibility, you may use complete -F funcname command. This tells Bash to
call funcname to provide the list of completions for command. You write the funcname
function.

• Within the code for a -F function, the COMP* shell variables provide information
about the current command line. COMPREPLY is an array into which the function
places the final list of completion results.

• Also within the code for a -F function, you may use the compgen command to gener-
ate a list of results, such as “usernames that begin with a” or “all set variables.” The
intent is that such results would be used with an array assignment:

...
COMPREPLY=($(compgen options arguments))
...

Compspecs may be associated with either a full pathname for a command or, more com-
monly, an unadorned command name (/usr/bin/man versus plain man). Completions are
attempted in the following order, based on the options provided to the complete com-
mand.

1. Bash first identifies the command. If a pathname is used, Bash looks to see if a comp-
spec exists for the full pathname. Other wise, it sets the command name to the last com-
ponent of the pathname, and searches for a compspec for the command name.

2. If a compspec exists, Bash uses it. If not, Bash falls back to the default built-in comple-
tions.

3. Bash performs the action indicated by the compspec to generate a list of possible
matches. Of this list, only those that have the word being completed as a prefix are used
for the list of possible completions. For the -d and -f options, the variable FIGNORE
is used to filter out undesirable matches.

4. Bash generates filenames as specified by the -G option. GLOBIGNORE is not used to
filter the results, but FIGNORE is.

5. Bash processes the argument string provided to -W. The string is split using the charac-
ters in $IFS. The resulting list provides the candidates for completion. This is often
used to provide a list of options that a command accepts.

6. Bash runs functions and commands as specified by the -F and -C options. For both,
Bash sets COMP_LINE and COMP_POINT as described previously. For a shell func-
tion, COMP_WORDS and COMP_CWORD are also set.

Also for both functions and commands, $1 is the name of the command whose argu-
ments are being completed, $2 is the word being completed, and $3 is the word in front

Command Histor y 23

of the word being completed. Bash does not filter the results of the command or func-
tion.

a. Functions named with -F are run first. The function should set the COMPRE-
PLY array to the list of possible completions. Bash retrieves the list from there.

b. Commands provided with -C are run next, in an environment equivalent to com-
mand substitution. The command should print the list of possible completions,
one per line. An embedded newline should be escaped with a backslash.

7. Once the list is generated, Bash filters the results according to the -X option. The argu-
ment to -X is a pattern specifying files to exclude. By prefixing the pattern with a !, the
sense is reversed, and the pattern instead specifies that only matching files should be
retained in the list.

An & in the pattern is replaced with the text of the word being completed. Use \& to
produce a literal &.

8. Finally, Bash prepends or appends any prefixes or suffixes supplied with the -P or -S
options.

9. In the case that no matches were generated, if -o dirnames was used, Bash attempts
director y name completion.

10. On the other hand, if -o plusdirs was provided, Bash adds the result of director y
completion to the previously generated list.

11. Normally, when a compspec is provided, Bash’s default completions are not attempted,
nor are the readline librar y’s default filename completions.

a. If the compspec produces no results and -o bashdefault was provided, then Bash
attempts its default completions.

b. If neither the compspec nor the Bash default completions with -o bashdefault

produced any results, and -o default was provided, then Bash has the readline
librar y attempt its filename completions.

Ian Macdonald has collected a large set of useful compspecs, often distributed as the file
/etc/bash_completion. If your system does not have it, one location for downloading it
is http://www.dreamind.de/files/bash-stuff/bash_completion. It is wor th retrieving and revie wing.

Examples

Restrict files for the C compiler to C, C++ and assembler source files, and relocatable object
files:

complete -f -X ’!*.[Ccos]’ gcc cc

For the man command, restrict expansions to things that have manpages:

Simple example of programmable completion for manual pages.
A more elaborate example appears in the bash_completion file.
Assumes man [num] command command syntax.

shopt -s extglob Enable extended pattern matching

24 Chapter 1 – The Bash Shell

_man () {
local dir mandir=/usr/share/man Local variables

COMPREPLY=() Clear reply list
if [[${COMP_WORDS[1]} = +([0-9])]] Section number provided
then

section provided: man 3 foo
dir=$mandir/man${COMP_WORDS[COMP_CWORD-1]} Look in that director y

else
no section, default to commands
dir=$mandir/’man[18]’ Look in command directories

fi
COMPREPLY=($(find $dir -type f | Generate raw file list
sed ’s;..*/;;’ | Remove leading directories
sed ’s/\.[0-9].*$//’ | Remove trailing suffixes
grep "ˆ${COMP_WORDS[$COMP_CWORD]}" | Keep those that match given prefix
sort Sor t final list

))
}
complete -F _man man Associate function with command

Job Control
Job control lets you place foreground jobs in the background, bring background jobs to the
foreground, or suspend (temporarily stop) running jobs. All modern Unix systems, including
Linux and BSD systems, support job control; thus, the job control features are automatically
enabled. Many job control commands take a jobID as an argument. This argument can be
specified as follows:

%n Job number n.

%s Job whose command line starts with string s.

%?s Job whose command line contains string s.

%% Current job.

%+ Current job (same as above).

% Current job (same as above).

%- Pr evious job.

The shell provides the following job control commands. For more information on these
commands, see the section “Built-in Commands,” later in this reference.

bg Put a job in the background.

fg Put a job in the foreground.

jobs
List active jobs.

kill
Terminate a job.

Job Control 25

stty tostop

Stop background jobs if they try to send output to the terminal. (Note that stty is not
a built-in command.)

suspend
Suspend a job-control shell (such as one created by su).

wait
Wait for background jobs to finish.

CTRL-Z

Suspend a foreground job. Then use bg or fg. (Your terminal may use something other
than CTRL-Z as the suspend character.)

Shell Options
Bash provides a number of shell options, settings that you can change to modify the shell’s
behavior. You control these options with the shopt command (see the shopt entr y in the
later section “Built-in Commands”). The following descriptions describe the behavior when
set. Options marked with a dagger (†) are enabled by default.

cdable_vars

Tr eat a nondirector y argument to cd as a variable whose value is the director y to go to.

cdspell

Attempt spelling correction on each director y component of an argument to cd.
Allowed in interactive shells only.

checkhash

Check that commands found in the hash table still exist before attempting to use them.
If not, perform a normal PATH search.

checkwinsize

Check the window size after each command, and update LINES and COLUMNS if the
size has changed.

cmdhist †
Save all lines of a multiline command in one history entr y. This permits easy re-editing
of multiline commands.

dotglob

Include filenames starting with a period in the results of filename expansion.

execfail

Do not exit a noninteractive shell if the command given to exec cannot be executed.
Interactive shells do not exit in such a case, no matter the setting of this option.

expand_aliases †
Expand aliases created with alias. Disabled in noninteractive shells.

extdebug

Enable behavior needed for debuggers:

26 Chapter 1 – The Bash Shell

• declare -F displays the source filename and line number for each function name
argument.

• When a command run by the DEBUG trap fails, the next command is skipped.

• When a command run by the DEBUG trap inside a shell function or script sourced
with . (dot) or source returns with an exit status of 2, the shell simulates a call to
return.

• BASH_ARGC and BASH_ARGV are set as described earlier.

• Function tracing is enabled. Command substitutions, shell functions, and sub-
shells invoked via (...) inherit the DEBUG and RETURN traps.

• Error tracing is enabled. Command substitutions, shell functions, and subshells
invoked via (...) inherit the ERR trap.

extglob

Enable extended pattern-matching facilities such as +(...). (These were not in the
Bourne shell and are not in POSIX; thus Bash requires you to enable them if you want
them.)

extquote †
Allow $’...’ and $"..." within ${variable} expansions inside double quotes.

failglob

Cause patterns that do not match filenames to produce an error.

force_fignore †
When doing completion, ignore words matching the list of suffixes in FIGNORE, even
if such words are the only possible completions.

gnu_errfmt

Print error messages in the standard GNU format. Enabled automatically when Bash
runs in an Emacs terminal window.

histappend

Append the history list to the file named by HISTFILE upon exit, instead of overwrit-
ing the file.

histreedit

Allow a user to re-edit a failed csh-style history substitution with the readline librar y.

histverify

Place the results of csh-style history substitution into the readline librar y’s editing
buffer instead of executing it directly, in case the user wishes to modify it further.

hostcomplete †
If using readline, attempt hostname completion when a word containing an @ is being
completed.

huponexit

Send a SIGHUP to all running jobs upon exiting an interactive login shell.

Shell Options 27

interactive_comments †
Allow words beginning with # to start a comment in an interactive shell.

lithist

If cmdhist is also set, save multiline commands to the history file with newlines instead
of semicolons.

login_shell

Set by the shell when it is a login shell. This is a read-only option.

mailwarn

Print the message The mail in mailfile has been read when a file being checked for
mail has been accessed since the last time Bash checked it.

no_empty_cmd_completion

If using readline, do not search $PATH when a completion is attempted on an empty
line.

nocaseglob

Ignore letter case when doing filename matching.

nocasematch

Ignore letter case when doing pattern matching for case and [[]].

nullglob

Expand patterns that do not match any files to the null string, instead of using the lit-
eral pattern as an argument.

progcomp †
Enable programmable completion.

promptvars †
Perform variable, command, and arithmetic substitution on the values of PS1, PS2, and
PS4.

restricted_shell

Set by the shell when it is a restricted shell. This is a read-only option.

shift_verbose

Causes shift to print an error message when the shift count is greater than the num-
ber of positional parameters.

sourcepath †
Causes the . (dot) and source commands to search $PATH in order to find the file to
read and execute.

xpg_echo

Causes echo to expand escape sequences, even without the -e or -E options.

Command Execution
When you type a command, Bash looks in the following places until it finds a match:

28 Chapter 1 – The Bash Shell

1. Keywords such as if and for.

2. Aliases. You can’t define an alias whose name is a shell keyword, but you can define an
alias that expands to a keyword, e.g., alias aslongas=while. When not in POSIX
mode, Bash does allow you to define an alias for a shell keyword.

3. Special built-ins like break and continue. The list of POSIX special built-ins is .
(dot), :, break, continue, eval, exec, exit, export, readonly, return, set,
shift, times, trap, and unset. Bash adds source.

4. Functions. When not in POSIX mode, Bash finds functions before built-in commands.

5. Nonspecial built-ins such as cd and test.

6. Scripts and executable programs, for which the shell searches in the directories listed in
the PATH environment variable.

The distinction between “special” built-in commands and nonspecial ones comes from
POSIX. This distinction, combined with the command command, makes it possible to write
functions that override shell built-ins, such as cd. For example:

cd () { Shell function; found before built-in cd
command cd "$@" Use real cd to change director y
echo now in $PWD Other stuff we want to do

}

Restricted Shells
A restricted shell is one that disallows certain actions, such as changing director y, setting
PATH, or running commands whose names contain a / character.

The original V7 Bourne shell had an undocumented restricted mode. Later versions of the
Bourne shell clarified the code and documented the facility. Bash also supplies a restricted
mode. (See the manual page for the details.)

Shell scripts can still be run, since in that case the restricted shell calls the unrestricted version
of the shell to run the script. This includes the /etc/profile, $HOME/.profile, and
other startup files.

Restricted shells are not used much in practice, as they are difficult to set up correctly.

Built-in Commands
Examples to be entered as a command line are shown with the $ prompt. Other wise, exam-
ples should be treated as code fragments that might be included in a shell script. For conve-
nience, some of the reser ved words used by multiline commands are also included.

!! pipeline

Negate the sense of a pipeline. Returns an exit status of 0 if the pipeline
exited nonzero, and an exit status of 1 if the pipeline exited zero. Typically
used in if and while statements.

→

Built-in Commands 29

!
←

Example

This code prints a message if user jane is not logged on:

if ! who | grep jane > /dev/null
then

echo jane is not currently logged on
fi

#

Ignore all text that follows on the same line. # is used in shell scripts as the
comment character and is not really a command.

#!shell #!shell [option]

Used as the first line of a script to invoke the named shell. Anything given on
the rest of the line is passed as a single argument to the named shell. This fea-
ture is typically implemented by the kernel, but may not be supported on
some older systems. Some systems have a limit of around 32 characters on the
maximum length of shell. For example:

#!/bin/sh

: :

Null command. Returns an exit status of 0. See this Example and the ones
under case. The line is still processed for side effects, such as variable and
command substitutions, or I/O redirection.

Example

Check whether someone is logged in:

if who | grep $1 > /dev/null
then : # Do nothing if user is found
else echo "User $1 is not logged in"
fi

. . file [arguments]

Read and execute lines in file. file does not have to be executable but must
reside in a director y searched by PATH. The arguments are stored in the posi-
tional parameters. If Bash is not in POSIX mode and file is not found in
PATH, Bash looks in the current director y for file.

30 Chapter 1 – The Bash Shell

[[]][[expression]]

Same as test expression or [expression], except that [[]] allows additional
operators. Word splitting and filename expansion are disabled. Note that the
brackets ([]) are typed literally, and that they must be surrounded by white-
space. See test.

Additional Operators

&& Logical AND of test expressions (short circuit).
|| Logical OR of test expressions (short circuit).
< First string is lexically “less than” the second.
> First string is lexically “greater than” the second.

name ()name () { commands; }

Define name as a function. POSIX syntax. The function definition can be
written on one line or across many. You may also provide the function key-
word, an alternate form that works similarly. See the earlier section “Func-
tions.”

Example

$ count () {
> ls | wc -l
> }

When issued at the command line, count now displays the number of files in
the current director y.

aliasalias [options] [name[=’cmd’]]

Assign a shorthand name as a synonym for cmd. If =’cmd’ is omitted, print
the alias for name; if name is also omitted, print all aliases. If the alias value
contains a trailing space, the next word on the command line also becomes a
candidate for alias expansion. See also unalias.

Option

-p Print the word alias before each alias.

Example

alias dir=’echo ${PWD##*/}’

Built-in Commands 31

bind bind [-m map] [options]
bind [-m map] [-q function] [-r sequence] [-u function]
bind [-m map] -f file
bind [-m map] -x sequence:command
bind [-m map] sequence:function
bind readline-command

Manage the readline librar y. Nonoption arguments have the same form as in a
.inputrc file.

Options

-f file

Read key bindings from file.

-l List the names of all the readline functions.

-m map

Use map as the keymap. Available keymaps are: emacs, emacs-

standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and
vi-insert. vi is the same as vi-command, and emacs is the same as
emacs-standard.

-p Print the current readline bindings such that they can be reread from a
.inputrc file.

-P Print the current readline bindings.

-q function

Quer y which keys invoke the readline function function.

-r sequence

Remove the binding for key sequence sequence.

-s Print the current readline key sequence and macro bindings such that
they can be reread from a .inputrc file.

-S Print the current readline key sequence and macro bindings.

-u function

Unbind all keys that invoke the readline function function.

-v Print the current readline variables such that they can be reread from a
.inputrc file.

-V Print the current readline variables.

-x sequence:command

Execute the shell command command whenever sequence is entered.

32 Chapter 1 – The Bash Shell

bgbg [jobIDs]

Put current job or jobIDs in the background. See the earlier section “Job
Control.”

breakbreak [n]

Exit from a for, while, select, or until loop (or break out of n loops).

builtinbuiltin command [arguments ...]

Run the shell built-in command command with the given arguments. This
allows you to bypass any functions that redefine a built-in command’s name.
The command command is more por table.

Example

This function lets you do your own tasks when you change director y:

cd () {
builtin cd "$@" Actually change director y
pwd Repor t location

}

callercaller [expression]

Print the line number and source filename of the current function call or dot
file. With nonzero expression, prints that element from the call stack. The
most recent is zero. This command is for use by the Bash debugger.

casecase value in
pattern1) cmds1;;
pattern2) cmds2;;
.
.
.

esac

Execute the first set of commands (cmds1) if value matches patter n1, execute
the second set of commands (cmds2) if value matches patter n2, etc. Be sure
the last command in each set ends with ;;. value is typically a positional
parameter or other shell variable. cmds are typically Unix commands, shell
programming commands, or variable assignments. Patterns can use file-gener-
ation metacharacters. Multiple patterns (separated by |) can be specified on
the same line; in this case, the associated cmds are executed whenever value
matches any of these patterns. See the Examples here and under eval.

→

Built-in Commands 33

case
←

The shell allows patter n to be preceded by an optional open parenthesis, as in
(pattern). In Bash, it’s necessar y for balancing parentheses inside a $()

constr uct. See also the nocasematch option in “Shell Options.”

Examples

Check first command-line argument and take appropriate action:

case $1 in # Match the first arg
no|yes) response=1;;
-[tT]) table=TRUE;;
*) echo "unknown option"; exit 1;;
esac

Read user-supplied lines until user exits:

while : # Null command; always true
do printf "Type . to finish ==> "

read line
case "$line" in
.) echo "Message done"

break ;;
*) echo "$line" >> $message ;;
esac

done

cd cd [-LP] [dir]
cd [-LP] [-]

With no arguments, change to home director y of user. Other wise, change
working director y to dir. Bash searches the CDPATH variable first, and then
looks in the current director y for dir. A director y of - stands for the previous
director y.

Options

-L Use the logical path (what the user typed, including any symbolic links)
for cd .. and the value of PWD. This is the default.

-P Use the actual filesystem physical path for cd .. and the value of
PWD.

Example

$ ls -ld /usr/tmp /usr/tmp is a symbolic link
lrwxrwxrwx 1 root root 10 Dec 30 2004 /usr/tmp -> ../var/tmp
$ cd -L /usr/tmp Logical change director y
$ pwd Show location
/usr/tmp Result is logical location
$ cd -P /usr/tmp Physical change director y
$ pwd Show location
/var/tmp Result is physical location

34 Chapter 1 – The Bash Shell

commandcommand [-pvV] name [arg ...]

Without -v or -V, execute name with given arguments. This command
bypasses any aliases or functions that may be defined for name. When used
with a special built-in, prevents the built-in from exiting the script if it fails.

Options

-p Use a predefined default search path, not the current value of PATH.

-v Print a description of how the shell interprets name.

-V Print a more verbose description of how the shell interprets name.

Example

Create an alias for rm that will get the system’s version, and run it with the
-i option:

$ alias ’rm=command -p rm -i’

compgencompgen [options] [string]

Generate possible completions for string according to the options. Options
are those accepted by complete, except for -p and -r. For more informa-
tion, see the entry for complete.

completecomplete [options] command ...

Specifies the way to complete arguments for each command. This is discussed
in the section “Pr ogrammable Completion,” earlier in the reference.

Options

-a Same as -A alias.

-A type

Use type to specify a list of possible completions. The type may be one of
the following:

alias Alias names.
arrayvar Array variable names.
binding Bindings from the readline librar y.
builtin Shell built-in command names.
command Command names.
directory Director y names.
disabled Names of disabled shell built-in commands.
enabled Names of enabled shell built-in commands.
export Expor ted variables.

→

Built-in Commands 35

complete
←

file Filenames.
function Names of shell functions.
group Gr oup names.
helptopic Help topics as allowed by the help built-in command.
hostname Hostnames, as found in the file named by $HOSTFILE.
job Job names.
keyword Shell reser ved keywords.
running Names of running jobs.
service Service names (from /etc/services).
setopt Valid arguments for set -o.
shopt Valid option names for the shopt built-in command.
signal Signal names.
stopped Names of stopped jobs.
user Usernames.
variable Shell variable names.

-b Same as -A builtin.

-c Same as -A command.

-C command

Run command in a subshell and use its output as the list of completions.

-d Same as -A directory.

-e Same as -A export.

-f Same as -A file.

-F function

Run shell function function in the current shell. Upon its return, retrieve
the list of completions from the COMPREPLY array.

-g Same as -A group.

-G pattern

Expand patter n to generate completions.

-j Same as -A job.

-k Same as -A keyword.

-o option

Control the behavior of the completion specification. The value for
option is one of the following:

bashdefault Fall back to the normal Bash completions if no matches
are produced.

default Use the default readline completions if no matches are
produced.

36 Chapter 1 – The Bash Shell

completedirnames Do director y name completion if no matches are
produced.

filenames Inform the readline librar y that the intended output is
filenames, so the library can do any filename-specific
processing, such as adding a trailing slash for directories
or removing trailing spaces.

nospace Inform the readline librar y that it should not append a
space to words completed at the end of a line.

plusdirs Attempt director y completion and add any results to the
list of completions already generated.

-p With no commands, print all completion settings in a way that can be
reread.

-P prefix

The prefix is added to each resulting string as a prefix after all the other
options have been applied.

-r Remove the completion settings for the given commands, or all settings
if no commands.

-s Save as -A service.

-S suffix

The suffix is added to each resulting string as a suffix after all the other
options have been applied.

-u Same as -A user.

-v Same as -A variable.

-W wordlist

Split wordlist (a single shell word) using $IFS. The generated list con-
tains the members of the split list that matched the word being com-
pleted. Each member is expanded using brace expansion, tilde expan-
sion, parameter and variable expansion, command substitution, and
arithmetic expansion. Shell quoting is respected.

-X pattern

Exclude filenames matching patter n from the filename completion list.
With a leading !, the sense is reversed, and only filenames matching pat-
ter n are retained.

continuecontinue [n]

Skip remaining commands in a for, while, select, or until loop, resuming
with the next iteration of the loop (or skipping n loops).

Built-in Commands 37

declare declare [options] [name[=value]]

Declare variables and manage their attributes. In function bodies, variables
are local, as if declared with the local command.

Options

-a Each name is an array.

-f Each name is a function.

-F For functions, print just the function’s name and attributes, not the
function definition (body).

-i Each variable is an integer; in an assignment, the value is evaluated as an
arithmetic expression.

-p With no names, print all variables and their values. With names, print
the names, attributes, and values of the given variables.

-r Mark names as read-only. Subsequent assignments will fail, and read-
only variables cannot be unset.

-t Apply the trace attribute to each name. Traced functions inherit the
DEBUG trap. This attribute has no meaning for variables.

-x Mark names for export into the environment of child processes.

With a + instead of a -, the given attribute is disabled. With no variable
names, all variables having the given attribute(s) are printed in a form that
can be reread as input to the shell.

Examples

$ declare -i val Make val an integer
$ val=4+7 Ev aluate value
$ echo $val Show result
11

$ declare -r z=42 Make z read-only
$ z=31 Tr y to assign to it
bash: z: readonly variable Assignment fails
$ echo $z
42

$ declare -p val z Show attributes and values
declare -i val="11"
declare -r z="42"

dirs dirs [-clpv] [+n] [-n]

Print the director y stack, which is managed with pushd and popd.

38 Chapter 1 – The Bash Shell

dirsOptions

+n Print the nth entry from the left; first entry is zero.

-n Print the nth entry from the right; first entry is zero.

-c Remove all entries from (clear) the director y stack.

-l Pr oduce a longer listing, one that does not replace $HOME with ˜.

-p Print the director y stack, one entry per line.

-v Print the director y stack, one entry per line, with each entry preceded by
its index in the stack.

disowndisown [-ahr] [job ...]

Removes jobs from the list of jobs managed by Bash.

Options

-a Remove all jobs. With -h, mark all jobs.

-h Instead of removing jobs from the list of known jobs, mark them to not
receive SIGHUP when Bash exits.

-r With no jobs, remove (or mark) only running jobs.

dodo

Reser ved word that precedes the command sequence in a for, while, until,
or select statement.

donedone

Reser ved word that ends a for, while, until, or select statement.

echoecho [-eEn] [string]

Built-in version. Write string to standard output.

Options

If the xpg_echo shell option is set, along with POSIX mode (set -o posix),
echo does not interpret any options.

→

Built-in Commands 39

echo
←

-e Enable interpretation of the following escape sequences, which must be
quoted (or escaped with a \) to prevent interpretation by the shell:

\a Aler t (ASCII BEL).

\b Backspace.

\c Suppress the terminating newline (same as -n).

\e ASCII Escape character.

\f Formfeed.

\n Ne wline.

\r Carriage return.

\t Tab character.

\v Vertical-tab character.

\\ Backslash.

\0nnn

ASCII character represented by octal number nnn, where nnn is
zero, one, two, or three digits and is preceded by a 0.

\nnn

ASCII character represented by octal number nnn, where nnn is
one, two, or three digits.

\xHH

ASCII character represented by hexadecimal number HH, where
HH is one or two hexadecimal digits.

-E Do not interpret escape sequences, even on systems where the default
behavior of the built-in echo is to interpret them.

-n Do not print the terminating newline.

Examples

$ echo "testing printer" | lp
$ echo "Warning: ringing bell \a"

enable enable [-adnps] [-f file] [command ...]

Enable or disable shell built-in commands. Disabling a built-in lets you use
an external version of a command that would otherwise use a built-in version,
such as echo or test.

40 Chapter 1 – The Bash Shell

enableOptions

-a For use with -p; print information about all built-in commands, dis-
abled and enabled.

-d Remove (delete) a built-in previously loaded with -f.

-f file

Load a new built-in command command from the shared library file file.

-n Disable the named built-in commands.

-p Print a list of enabled built-in commands.

-s Print only the POSIX special built-in commands. When combined with
-f, the new built-in command becomes a POSIX special built-in.

esacesac

Reser ved word that ends a case statement.

evaleval args

Typically, eval is used in shell scripts, and args is a line of code that contains
shell variables. eval forces variable expansion to happen first and then runs
the resulting command. This “double-scanning” is useful any time shell vari-
ables contain input/output redirection symbols, aliases, or other shell vari-
ables. (For example, redirection normally happens before variable expansion,
so a variable containing redirection symbols must be expanded first using
eval; other wise, the redirection symbols remain uninterpreted.)

Example

This fragment of a shell script shows how eval constr ucts a command that is
interpreted in the right order:

for option
do

case "$option" inDefine where output goes
save) out=’ > $newfile’ ;;
show) out=’ | more’ ;;
esac

done

eval sort $file $out

Built-in Commands 41

exec exec [command args ...]
exec [-a name] [-cl] [command args ...]

Execute command in place of the current process (instead of creating a new
process). exec is also useful for opening, closing, or copying file descriptors.

Options

-a Use name for the value of argv[0].

-c Clear the environment before executing the program.

-l Place a minus sign at the front of argv[0], just as login(1) does.

Examples

trap ’exec 2>&-’ 0 Close standard error when shell script exits (signal 0)

$ exec /bin/csh Replace shell with C shell
$ exec < infile Reassign standard input to infile

exit exit [n]

Exit a shell script with status n (e.g., exit 1). n can be 0 (success) or nonzero
(failure). If n is not given, the shell’s exit status is that of the most recent com-
mand. exit can be issued at the command line to close a window (log out).
Exit statuses can range in value from 0 to 255.

Example

if [$# -eq 0]
then

echo "Usage: $0 [-c] [-d] file(s)" 1>&2
exit 1 # Error status

fi

expor t export [variables]
export [name=[value] ...]
export -p
export [-fn] [name=[value] ...]

Pass (export) the value of one or more shell variables, giving global meaning
to the variables (which are local by default). For example, a variable defined
in one shell script must be exported if its value is used in other programs
called by the script. If no variables are given, export lists the variables
expor ted by the current shell. The second form is the POSIX version, which
is similar to the first form, except that you can set a variable name to a value
before expor ting it.

42 Chapter 1 – The Bash Shell

expor tOptions

-f Names refer to functions; the functions are expor ted in the environ-
ment.

-n Remove the named variables or functions from the environment.

-p Print export before printing the names and values of exported variables.
This allows saving a list of exported variables for rereading later.

Examples

In the original Bourne shell, you would type:

TERM=vt100
export TERM

In Bash, you could type this instead:

export TERM=vt100

falsefalse

Built-in command in that exits with a false return value.

fcfc [options] [first [last]]
fc -e - [old=new] [command]
fc -s [old=new] [command]

Display or edit commands in the history list. (Use only one of -e, -l or
-s.) first and last are numbers or strings specifying the range of commands to
display or edit. If last is omitted, fc applies to a single command (specified
by first). If both first and last are omitted, fc edits the previous command or
lists the last 16. The second form of fc takes a history command, replaces old
with new, and executes the modified command. If no strings are specified,
command is just reexecuted. If no command is given either, the previous com-
mand is reexecuted. command is a number or string like first. See the exam-
ples in the earlier section “Command Histor y.” The third form is equivalent to
the second form.

Options

-e [editor]
Invoke editor to edit the specified history commands. The default editor
is set by the shell variable FCEDIT. If that variable is not set, the default
is /bin/ed. (Bash defaults to vi; versions 3.1 and newer default to
/bin/ed when in POSIX mode.) Bash tries FCEDIT, then EDITOR,
and then /bin/ed.

→

Built-in Commands 43

fc
←

-e -

Execute (or redo) a history command; refer to second syntax line above.

-l List the specified command or range of commands, or list the last 16.

-n Suppress command numbering from the -l listing.

-r Reverse the order of the -l listing.

-s Equivalent to -e -.

fg fg [jobIDs]

Bring current job or jobIDs to the foreground. See the earlier section “Job
Control.”

fi fi

Reser ved word that ends an if statement. (Don’t forget to use it!)

for for x [in list]
do
commands

done

For variable x (in optional list of values), do commands. If in list is omitted,
"$@" (the positional parameters) is assumed.

Examples

Paginate files specified on the command line, and save each result:

for file; do
pr $file > $file.tmp

done

Same, but put entire loop into the background:

for file; do
pr $file > $file.tmp

done &

Search chapters for a list of words (like fgrep -f):

for item in ‘cat program_list‘
do

echo "Checking chapters for"
echo "references to program $item..."
grep -c "$item.[co]" chap*

done

44 Chapter 1 – The Bash Shell

forExtract a one-word title from each file and use as new filename:

for file
do

name=‘sed -n ’s/NAME: //p’ $file‘
mv $file $name

done

forfor ((init; cond; incr))
do
commands

done

Arithmetic for loop, similar to C’s. Evaluate init. While cond is true, execute
the body of the loop. Evaluate incr before retesting cond. Any one of the
expressions may be omitted; a missing cond is treated as being true.

Example

Search for a phrase in each odd chapter:

for ((x=1; x <= 20; x += 2))
do

grep $1 chap$x
done

functionfunction name { commands; }
function name () { commands; }

Define name as a shell function. See the description of function semantics in
the earlier section “Functions.”

Example

Define a function to count files.

$ function fcount {
> ls | wc -l
> }

getoptsgetopts string name [args]

Pr ocess command-line arguments (or args, if specified) and check for legal
options. getopts is used in shell script loops and is intended to ensure stan-
dard syntax for command-line options. Standard syntax dictates that
command-line options begin with a -. Options can be stacked; i.e., consecu-
tive letters can follow a single -. End processing of options by specifying --
on the command line. string contains the option letters to be recognized by
getopts when running the shell script. Valid options are processed in turn
and stored in the shell variable name. If an option character in the options

→

Built-in Commands 45

getopts
←

string is followed by a colon, the actual option must be followed by one or
more arguments. (Multiple arguments must be given to the command as one
shell word. This is done by quoting the arguments or separating them with
commas. The application must be written to expect multiple arguments in
this format.) getopts uses the shell variables OPTARG, OPTIND, and
OPTERR.

hash hash [-dlrt] [-p file] [commands]

As the shell finds commands along the search path ($PATH), it remembers
the found location in an internal hash table. The next time you enter a com-
mand, the shell uses the value stored in its hash table.

With no arguments, hash lists the current hashed commands. The display
shows hits (the number of times the command has been called by the shell)
and the command name.

With commands, the shell adds those commands to the hash table.

Options

-d Remove (delete) just the specified commands from the hash table.

-l Pr oduce output in a format that can be reread to rebuild the hash table.

-p file

Associate file with command in the hash table.

-r Remove all commands from the hash table.

-t With one name, print the full pathname of the command. With more
than one name, print the name and the full path, in two columns.

Besides the -r option, the hash table is also cleared when PATH is assigned.
Use PATH=$PATH to clear the hash table without affecting your search path.
This is most useful if you have installed a new version of a command in a
director y that is earlier in $PATH than the current version of the command.

help help [-s] [pattern]

Print usage information on standard output for each command that matches
patter n. The information includes descriptions of each command’s options.
With the -s option, print only brief usage information.

Examples

$ help -s cd Shor t help
cd: cd [-L|-P] [dir]

$ help true Full help
true: true
Return a successful result.

46 Chapter 1 – The Bash Shell

histor yhistory [count]
history [options]

Print commands in the history list or manage the history file. With no
options or arguments, display the history list with command numbers. With
a count argument, print only that many of the most recent commands.

Options

-a Append new histor y lines (those executed since the beginning of the ses-
sion) to the history file.

-c Clear the history list (remove all entries).

-d position

Delete the history item at position position.

-n Read unread history lines from the history file into the history list.

-p argument ...

Perform csh-style history expansion on each argument, printing the
results to standard output. The results are not saved in the history list.

-r Read the history file and replace the history list with its contents.

-s argument ...

Store the arguments in the history list, as a single entry.

-w Write the current history list to the history file, overwriting it entirely.

ifif condition1
then commands1
[elif condition2
then commands2]
.
.
.

[else commands3]
fi

If condition1 is met, do commands1; other wise, if condition2 is met, do com-
mands2; if neither is met, do commands3. Conditions are often specified with
the test and [[]] commands. See test and [[]] for a full list of conditions,
and see additional Examples under : and exit.

Examples

Inser t a 0 before numbers less than 10:

if [$counter -lt 10]
then number=0$counter
else number=$counter
fi

→

Built-in Commands 47

if
←

Make a director y if it doesn’t exist:

if [! -d $dir]; then
mkdir $dir
chmod 775 $dir

fi

jobs jobs [options] [jobIDs]

List all running or stopped jobs, or list those specified by jobIDs. For exam-
ple, you can check whether a long compilation or text format is still running.
Also useful before logging out. See the earlier section “Job Control.”

Options

-l List job IDs and process group IDs.

-n List only jobs whose status changed since last notification.

-p List process group IDs only.

-r List running jobs only.

-x cmd

Replace each job ID found in cmd with the associated process ID and
then execute cmd.

kill kill [options] IDs

Terminate each specified process ID or job ID. You must own the process or
be a privileged user. This built-in is similar to the external kill command,
but also allows symbolic job names. Stubborn processes can be killed using
signal 9. See the earlier section “Job Control.”

The command kill -l prints a list of the available signal names. The list
varies by system architecture; for a PC-based system, it looks like this:

$ kill -l Fr om Bash on GNU/Linux
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 33) SIGRTMIN 34) SIGRTMIN+1
35) SIGRTMIN+2 36) SIGRTMIN+3 37) SIGRTMIN+4 38) SIGRTMIN+5
39) SIGRTMIN+6 40) SIGRTMIN+7 41) SIGRTMIN+8 42) SIGRTMIN+9
43) SIGRTMIN+10 44) SIGRTMIN+11 45) SIGRTMIN+12 46) SIGRTMIN+13
47) SIGRTMIN+14 48) SIGRTMIN+15 49) SIGRTMAX-15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX

48 Chapter 1 – The Bash Shell

killThe signals and their numbers are defined in the C <signal.h> header file.
This file may include others, thus the actual location varies across systems.

Options

-l List the signal names. (Used by itself.)

-n num

Send the given signal number.

-s name

Send the given signal name.

-signal

The signal number (from <signal.h>) or name (from kill -l). With a
signal number of 9, the kill is absolute.

letlet expressions
((expressions))

Perform arithmetic as specified by one or more expressions. expressions consist
of numbers, operators, and shell variables (which don’t need a preceding $).
Expressions must be quoted if they contain spaces or other special characters.
The (()) form does the quoting for you. For more information and exam-
ples, see the section “Arithmetic Expressions,” earlier in this reference. See also
expr(1).

Examples

Each of these examples adds 1 to variable i:

i=‘expr $i + 1‘ All Bour ne shells
let i=i+1 Bash
let "i = i + 1"
((i = i + 1))
((i += 1))
((i++))

locallocal [options] [name[=value]]

Declares local variables for use inside functions. The options are the same as
those accepted by declare; see declare for the full list. It is an error to use
local outside a function body.

logoutlogout

Exit a login shell. The command fails if the current shell is not a login shell.

Built-in Commands 49

popd popd [-n] [+count] [-count]

Pop the top director y off the director y stack (as shown by the dirs com-
mand), and change to the new top director y, or manage the director y stack.

Options

-n Don’t change to the new top director y; just manipulate the stack.

+count

Remove the item count entries from the left, as shown by dirs. Count-
ing starts at zero. No director y change occurs.

-count

Remove the item count entries from the right, as shown by dirs.
Counting starts at zero. No director y change occurs.

printf printf [-v var] format [val ...]

Formatted printing, like the ANSI C printf function.

Option

-v var

Save the result in var instead of printing it to standard output.

Additional For mat Letters

Bash accepts these additional format letters:

%b Expand escape sequences in strings (e.g., \t to tab, and so on).

%q Print a quoted string that can be reread later on.

pw d pwd [-LP]

Print your present working director y on standard output.

Options

Options give control over the use of logical versus physical treatment of the
printed path. See also the entry for cd, earlier in this section.

-L Use logical path (what the user typed, including any symbolic links) and
the value of PWD for the current director y. This is the default.

-P Use the actual filesystem physical path for the current director y.

50 Chapter 1 – The Bash Shell

pushdpushd [-n] [directory]
pushd [-n] [+count] [-count]

Add director y to the director y stack, or rotate the director y stack. With no
arguments, swap the top two entries on the stack, and change to the new top
entr y.

Options

-n Don’t change to the new top director y; just manipulate the stack.

+count

Rotate the stack so that the count’th item from the left, as shown by
dirs, is the new top of the stack. Counting starts at zero. The new top
becomes the current director y.

-count

Rotate the stack so that the count’th item from the right, as shown by
dirs, is the new top of the stack. Counting starts at zero. The new top
becomes the current director y.

readread [options] [variable1 [variable2 ...]]

Read one line of standard input and assign each word to the corresponding
variable, with all leftover words assigned to the last variable. If only one vari-
able is specified, the entire line is assigned to that variable. See the Examples
here and under case. The return status is 0 unless EOF is reached. If no vari-
ables are given, input is stored in the REPLY variable.

Options

-a array

Read into indexed array array.

-d delim

Read up to first occurrence of delim, instead of newline.

-e Use the readline librar y if reading from a terminal.

-n count

Read at most count bytes.

-p prompt

Print prompt before reading input.

-r Raw mode; ignore \ as a line-continuation character.

-s Read silently; characters are not echoed.

-t timeout

When reading from a terminal or pipe, if no data is entered after timeout
seconds, return 1. This prevents an application from hanging forever,
waiting for user input.

→

Built-in Commands 51

read
←

-u[n]
Read input from file descriptor n (default is 0).

Examples

Read three variables:

$ read first last address
Sarah Caldwell 123 Main Street

$ echo "$last, $first\n$address"
Caldwell, Sarah
123 Main Street

Pr ompt yourself to enter two temperatures:

$ read -p "High low: " n1 n2
High low: 65 33

readonly readonly [-afp] [variable[=value] ...]

Pr event the specified shell variables from being assigned new values. An initial
value may be supplied using the assignment syntax, but that value may not be
changed subsequently. Read-only variables may not be unset.

Options

-a Each variable must refer to an array.

-f Each variable must refer to a function.

-p Print readonly before printing the names and values of read-only vari-
ables. This allows saving a list of read-only variables for rereading later.

return return [n]

Use inside a function definition. Exit the function with status n or with the
exit status of the previously executed command.

select select x [in list]
do
commands

done

Display a list of menu items on standard error, numbered in the order they
are specified in list. If no in list is given, items are taken from the command
line (via "$@"). Following the menu is a prompt string (set by PS3). At the
PS3 prompt, users select a menu item by typing its number, or they redisplay
the menu by pressing the Enter key. User input is stored in the shell variable
REPLY. If a valid item number is typed, commands are executed. Typing EOF

52 Chapter 1 – The Bash Shell

selectterminates the loop.

Example

PS3="Select the item number: "
select event in Format Page View Exit
do

case "$event" in
Format) nroff $file | lp;;
Page) pr $file | lp;;
View) more $file;;
Exit) exit 0;;
*) echo "Invalid selection";;
esac

done

The output of this script looks like this:

1. Format
2. Page
3. View
4. Exit
Select the item number:

setset [options arg1 arg2 ...]

With no arguments, set prints the values of all variables known to the cur-
rent shell. Options can be enabled (-option) or disabled (+option). Options
can also be set when the shell is invoked. (See the earlier section “Invoking the
Shell.”) Arguments are assigned in order to $1, $2, etc.

Options

-a Fr om now on, automatically mark variables for export after defining or
changing them.

-b Print job completion messages as soon as jobs terminate; don’t wait until
the next prompt.

-B Enable brace expansion. On by default.

-C Pr event overwriting via > redirection; use >| to overwrite files.

-e Exit if a command yields a nonzero exit status. The ERR trap executes
before the shell exits.

-E Cause shell functions, command substitutions, and subshells to inherit
the ERR trap.

-f Ignore filename metacharacters (e.g., * ? []).

-h Locate commands as they are defined. On by default. See hash.

→

Built-in Commands 53

set
←

-H Enable csh-style history substitution. On by default.

-k Assignment of environment variables (var=value) takes effect regardless
of where they appear on the command line. Normally, assignments must
precede the command name.

-m Enable job control; background jobs execute in a separate process group.
-m is usually set automatically.

-n Read commands but don’t execute; useful for checking syntax. The shell
ignores this option if interactive.

+o [mode]
With mode, disable the given shell option. Plain set +o prints the set-
tings of all the current options. This is in a form that can be reread by
the shell later.

-o [mode]
List shell modes, or turn on mode mode. Many modes can be set by
other options. Modes are:

allexport Same as -a.
braceexpand Same as -B.
emacs Set command-line editor to emacs.
errexit Same as -e.
errtrace Same as -E.
functrace Same as -T.
hashall Same as -h.
histexpand Same as -H.
history Enable command history. On by default.
ignoreeof Don’t process EOF signals. To exit the shell, type exit.
keyword Same as -k.
monitor Same as -m.
noclobber Same as -C.
noexec Same as -n.
noglob Same as -f.
nolog Omit function definitions from history file. Accepted

but ignored by Bash.
notify Same as -b.
nounset Same as -u.
onecmd Same as -t.
physical Same as -P.
pipefail Change pipeline exit status to be that of the rightmost

command that failed, or zero if all exited successfully.
posix Change to POSIX mode.
privileged Same as -p.
verbose Same as -v.

54 Chapter 1 – The Bash Shell

setvi Set command-line editor to vi.
xtrace Same as -x.

+p Reset effective UID to real UID.

-p Star t up as a privileged user. Don’t read $ENV or $BASH_ENV, don’t
impor t functions from the environment, and ignore the value of
$SHELLOPTS.

-P Always use physical paths for cd and pwd.

-t Exit after one command is executed.

-T Cause shell functions, command substitutions, and subshells to inherit
the DEBUG trap.

-u In substitutions, treat unset variables as errors.

-v Show each shell command line when read.

-x Show commands and arguments when executed, preceded by the value
of PS4. This provides step-by-step tracing of shell scripts.

- Turn off -v and -x, and turn off option processing. Included for com-
patibility with older versions of the Bourne shell.

-- Used as the last option; -- turns off option processing so that argu-
ments beginning with - are not misinterpreted as options. (For example,
you can set $1 to -1.) If no arguments are given after --, unset the posi-
tional parameters.

Option Summar y

Option Same as

-a -o allexport

-b -o notify

-B -o braceexpand

-C -o noclobber

-e -o errexit

-E -o errtrace

-f -o noglob

-h -o hashall

-H -o histexpand

-k -o keyword

-m -o monitor

-n -o noexec

-o allexport -a

-o braceexpand -B

-o emacs

-o errexit -e

→

Built-in Commands 55

set
←

Option Same as

-o errtrace -E

-o functrace -T

-o hashall -h

-o history

-o histexpand -H

-o ignoreeof

-o keyword -k

-o monitor -m

-o noclobber -C

-o noexec -n

-o noglob -f

-o nolog

-o notify -b

-o nounset -u

-o onecmd -t

-o physical -P

-o pipefail

-o posix

-o privileged -p

-o verbose -v

-o vi

-o xtrace -x

-p -o privileged

-P -o physical

-t -o onecmd

-T -o functrace

-u -o nonunset

-v -o verbose

-x -o xtrace

Examples

set -- "$num" -20 -30 Set $1 to $num, $2 to -20, $3 to -30
set -vx Read each command line; show it;

execute it; show it again (with arguments)
set +x Stop command tracing
set -o noclobber Pr event file overwriting
set +o noclobber Allow file overwriting again

shopt shopt [-opqsu] [option]

Set or unset shell options. With no options or just -p, prints the names and
settings of the options.

56 Chapter 1 – The Bash Shell

shoptOptions

-o Each option must be one of the shell option names for set -o, instead
of the options listed earlier in “Shell Options.”

-p Print the option settings as shopt commands that can be reread later.

-q Quiet mode. The exit status is zero if the given option is set, nonzero
other wise. With multiple options, all of them must be set for a zero exit
status.

-s Set the given options. With no options, prints only those that are set.

-u Unset the given options. With no options, prints only those that are
unset.

shiftshift [n]

Shift positional arguments (e.g., $2 becomes $1). If n is given, shift to the left
n places. Used in while loops to iterate through command-line arguments.

Examples

shift $(($1 + $6)) Use expression result as shift count

sourcesource file [arguments]

Identical to the . (dot) command; see that entry.

suspendsuspend [-f]

Suspend the current shell. Often used to stop an su command.

Option

-f Force the suspension, even if the shell is a login shell.

testtest condition
[condition]
[[condition]]

Ev aluate a condition and, if its value is true, return a zero exit status; other-
wise, return a nonzero exit status. An alternate form of the command uses
[] rather than the word test. An additional alternate form uses [[]], in
which case word splitting and pathname expansion are not done. (See the
[[]] entr y.) condition is constructed using the following expressions. Condi-
tions are true if the description holds true.

→

Built-in Commands 57

test
←

File Conditions

-a file file exists.
-b file file exists and is a block special file.
-c file file exists and is a character special file.
-d file file exists and is a director y.
-e file file exists. (Same as -a, for POSIX compatibility.)
-f file file exists and is a regular file.
-g file file exists, and its set-group-id bit is set.
-G file file exists, and its group is the effective group ID.
-h file file exists and is a symbolic link.
-k file file exists, and its sticky bit is set.
-L file file exists and is a symbolic link.
-N file file exists and was modified after it was last read.
-O file file exists, and its owner is the effective user ID.
-p file file exists and is a named pipe (FIFO).
-r file file exists and is readable.
-s file file exists and has a size greater than zero.
-S file file exists and is a socket.
-t [n] The open file descriptor n is associated with a terminal device;

default n is 1.
-u file file exists, and its set-user-id bit is set.
-w file file exists and is writable.
-x file file exists and is executable.
f1 -ef f2 Files f1 and f2 are linked (refer to same file).
f1 -nt f2 File f1 is newer than f2.
f1 -ot f2 File f1 is older than f2.

String Conditions

string string is not null.
-n s1 String s1 has nonzero length.
-z s1 String s1 has zero length.
s1 == s2 Strings s1 and s2 are identical. Inside [[...]], s2 can be a wild-

card pattern. Quote s2 to treat it literally. (See the section “File-
name Metacharacters,” earlier in this reference.) See also the
nocasematch option in “Shell Options.”

s1 != s2 Strings s1 and s2 are not identical. Inside [[...]], s2 can be a
wildcard pattern. Quote s2 to treat it literally.

s1 =˜ s2 String s1 matches extended regular expression s2. Only available
inside [[...]]. Quote s2 to keep the shell from expanding
embedded shell metacharacters. Strings matched by parenthe-
sized subexpressions are placed into elements of the
BASH_REMATCH array. See the description of
BASH_REMATCH in the “Built-in Shell Variables” section,
earlier in this reference.

58 Chapter 1 – The Bash Shell

tests1 < s2 ASCII value of s1 precedes that of s2. (Use only within [[]].)
s1 > s2 ASCII value of s1 follows that of s2. (Use only within [[]].)

Inter nal Shell Conditions

-o opt Option opt for set -o is on.

Integer Comparisons

n1 -eq n2 n1 equals n2.
n1 -ge n2 n1 is greater than or equal to n2.
n1 -gt n2 n1 is greater than n2.
n1 -le n2 n1 is less than or equal to n2.
n1 -lt n2 n1 is less than n2.
n1 -ne n2 n1 does not equal n2.

Combined For ms

(condition)

Tr ue if condition is true (used for grouping). For test and [], the ()s
should be quoted by a \. The form using [[]] doesn’t require quoting
the parentheses.

! condition

Tr ue if condition is false.

condition1 -a condition2

Tr ue if both conditions are true.

condition1 && condition2

Tr ue if both conditions are true. (Use only within [[]].)

condition1 -o condition2

Tr ue if either condition is true.

condition1 || condition2

Tr ue if either condition is true. (Use only within [[]].)

Examples

The following examples show the first line of various statements that might
use a test condition:

while test $# -gt 0 While there are arguments...
while [-n "$1"] While there are nonempty arguments...
if [$count -lt 10] If $count is less than 10...
if [-d RCS] If the RCS director y exists...
if ["$answer" != "y"] If the answer is not y...
if [! -r "$1" -o ! -f "$1"] If the first argument is not a

readable file or a regular file...

Built-in Commands 59

time time command

Execute command and print the total elapsed time, user time, and system
time (in seconds). Same as the external command time, except that the
built-in version can also time other built-in commands as well as all com-
mands in a pipeline.

times times

Print accumulated process times for user and system.

trap trap [[commands] signals]
trap -p
trap -l

Execute commands if any signals are received. The second form prints the
current trap settings in a form suitable for rereading later. The third form lists
all signals and their numbers, like kill -l.

Common signals include EXIT (0), HUP (1), INT (2), and TERM (15). Multiple
commands must be quoted as a group and separated by semicolons internally.
If commands is the null string (i.e., trap "" signals), signals are ignored by
the shell. If commands are omitted entirely, reset processing of specified sig-
nals to the default action. If commands is “-”, reset signals to their initial
defaults.

If both commands and signals are omitted, list current trap assignments. See
the Examples here and in exec.

Signals

A list of signal names, numbers, and meanings were given earlier in the kill
entr y. The shell allows you to use either the signal number or the signal name
(without the SIG prefix). In addition, the shell supports “pseudo-signals,” sig-
nal names or numbers that aren’t real operating system signals but which
direct the shell to perform a specific action. These signals are:

DEBUG Execution of any command.
ERR Nonzero exit status.
EXIT Exit from shell (usually when shell script finishes).
0 Same as EXIT, for historical compatibility with the Bourne shell.
RETURN A return is executed, or a script run with . (dot) or source

finishes.

Examples

trap "" INT Ignore interr upts (signal 2)
trap INT Obey interrupts again

60 Chapter 1 – The Bash Shell

trapRemove a $tmp file when the shell program exits, or if the user logs out,
presses CTRL-C, or does a kill:

trap "rm -f $tmp; exit" EXIT HUP INT TERM POSIX style
trap "rm -f $tmp; exit" 0 1 2 15 Pr e-POSIX Bourne shell style

Print a “clean up” message when the shell program receives signals SIGHUP,
SIGINT, or SIGTERM:

trap ’echo Interrupt! Cleaning up...’ HUP INT TERM

tr uetrue

Built-in command that exits with a true return value.

typetype [-afpPt] commands

Show whether each command name is an external command, a built-in com-
mand, an alias, a shell keyword, or a defined shell function.

Options

-a Print all locations in $PATH that include command, including aliases
and functions. Use -p together with -a to suppress aliases and func-
tions.

-f Suppress function lookup, as with command.

-p If type -t would print file for a given command, this option prints the
full pathname for the executable files. Other wise, it prints nothing.

-P Like -p, but force a PATH search, even if type -t would not print
file.

-t Print a word describing each command. The word is one of alias,
builtin, file, function, or keyword, depending upon the type of each
command.

Example

$ type mv read if
mv is /bin/mv
read is a shell builtin
if is a shell keyword

typesettypeset [options] [variable[=value ...]]

Identical to declare. See declare.

Built-in Commands 61

ulimit ulimit [options] [n]

Print the value of one or more resource limits, or, if n is specified, set a
resource limit to n. Resource limits can be either hard (-H) or soft (-S). By
default, ulimit sets both limits or prints the soft limit. The options deter-
mine which resource is acted on.

Options

-H Hard limit. Anyone can lower a hard limit; only privileged users can
raise it.

-S Soft limit. Must be less than or equal to the hard limit.

-a Print all limits.

-c Maximum size of core files.

-d Maximum kilobytes of data segment or heap.

-f Maximum size of files (the default option).

-i Maximum number of pending signals.

-l Maximum size of address space that can be locked in memory.

-m Maximum kilobytes of physical memory. (Not effective on all Unix
systems.)

-n Maximum number of file descriptors.

-p Size of pipe buffers. (Not effective on all Unix systems.)

-q Maximum number of bytes in POSIX message queues.

-s Maximum kilobytes of stack segment.

-t Maximum CPU seconds.

-u Maximum number of processes a single user can have.

-v Maximum kilobytes of virtual memory.

-x Maximum number of file locks.

umask umask [nnn]
umask [-pS] [mask]

Display file creation mask or set file creation mask to octal value nnn. The file
creation mask determines which permission bits are turned off (e.g., umask
002 produces rw-rw-r- -). For the second form, a symbolic mask represents
permissions to keep.

62 Chapter 1 – The Bash Shell

umaskOptions

-p Output is in a form that can be reread later by the shell.

-S Print the current mask using symbolic notation.

unaliasunalias names
unalias -a

Remove names from the alias list. See also alias.

Option

-a Remove all aliases.

unsetunset [options] names

Erase definitions of functions or variables listed in names.

Options

-f Unset functions names.

-v Unset variables names (default).

untiluntil condition
do
commands

done

Until condition is met, do commands. condition is often specified with the
test command. See the Examples under case and test.

waitwait [ID]

Pause in execution until all background jobs complete (exit status 0 is
returned), or pause until the specified background process ID or job ID com-
pletes (exit status of ID is returned). Note that the shell variable $! contains
the process ID of the most recent background process.

Example

wait $! Wait for most recent background process to finish

Built-in Commands 63

while while condition
do
commands

done

While condition is met, do commands. condition is often specified with the
test commands. See the Examples under case and test.

filename filename [arguments]

Read and execute commands from executable file filename, or execute a
binar y object file.

Resources
This section briefly describes other sources of information about Bash.

Online Resources

ftp://ftp.gnu.org/gnu/bash
The top-level director y for Bash source code releases. Source code is usually made avail-
able as .tar.gz files, such as bash-3.1.tar.gz.

ftp://ftp.gnu.org/pub/gnu/bash/bash-3.1-patches
Patches for Bash 3.1 are in this director y.

http://www.gnu.org/software/bash/bash.html
http://cnswww.cns.cwr u.edu/˜chet/bash/bashtop.html

The two “home pages” for the Bash shell.

http://bashdb.sourceforge.net
The Bash debugger.

Books

1. Classic Shell Scripting, by Arnold Robbins and Nelson H.F. Beebe. O’Reilly Media,
Sebastopol, CA, USA, 2005. ISBN 0-596-00595-4.

2. Lear ning the bash Shell, Third Edition, by Cameron Newham. O’Reilly Media,
Sebastopol, CA, USA, 2005. ISBN 0-596-00965-8.

Acknowledgments
Thanks to Chet Ramey, the Bash maintainer, for his comments on this reference. They
helped materially. Thanks also to Mike Loukides at O’Reilly Media for his support of this
project.

—Arnold Robbins

64 Chapter 1 – The Bash Shell

	bash Quick Reference
	Contents
	History
	Overview of Features
	Invoking the Shell
	Syntax
	Functions
	Variables
	Arithmetic Expressions
	Command History
	Job Control
	Shell Options
	Command Execution
	Restricted Shells
	Built-in Commands
	Resources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

