

Randal K. Michael

Mastering Unix
Shell Scripting

Free & Share & Open

Dear Valued Customer,

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective
is to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking — everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

• For Dummies – The fun and easy way to learn

• The Weekend Crash Course –The fastest way to learn a new tool or technology

• Visual – For those who prefer to learn a new topic visually

• The Bible – The 100% comprehensive tutorial and reference

• The Wiley Professional list – Practical and reliable resources for IT professionals

The book you hold now, Mastering Unix Shell Scripting, is the first book to provide end-to-end scripting
solutions that will solve real-world system administration problems for those who have to automate these
often complex and repetitive tasks. Starting with a sample task and targeting the most common Unix
systems: Solaris, Linux, AIX, and HP-UX with specific command structures, this book will save precious
time with hands-on detail. The companion Web site contains all the timesaving scripts from the book.

Our commitment to you does not end at the last page of this book. We’d want to open a dialog with you
to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to
review our complete title list and explore the other resources we offer. If you have a comment,
suggestion, or any other inquiry, please locate the “contact us” link at www.wiley.com.

Thank you for your support and we look forward to hearing from you and serving your needs again
in the future.

Sincerely,

Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Technology Publishing

WILEY
advantage

The

Free & Share & Open

Mastering Unix
Shell Scripting

Free & Share & Open

Randal K. Michael

Mastering Unix
Shell Scripting

Free & Share & Open

Publisher: Robert Ipsen
Executive Editor: Carol Long
Developmental Editor: Scott Amerman
Managing Editor: Angela Smith
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright © 2003 by Randal K. Michael. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
PERMCOORDINATOR@WILEY.COM.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of Wiley Publishing, Inc., in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or ven-
dor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-21821-9

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

This book is dedicated to

My Wife Robin,

and the girls, Andrea and Ana

Free & Share & Open

The information that I gathered together in this book is the result of working with
some of the most talented UNIX professionals on the topic. I have enjoyed every
minute of my association with these UNIX gurus and it has been my pleasure to have
the opportunity to gain so much knowledge from the pros. I want to thank every one
of these experts for asking and answering questions over the last fifteen years. If my
brother, Jim, had not kept telling me, “you should write a book,” after querying me for
UNIX details on almost a weekly basis, I doubt this book would have ever been writ-
ten. So, thanks Jim!

I especially want to thank Jack Renfro at Daimler/Chrysler Corporation for giving
me my first shell scripting project so long ago. I had to start with the man pages, but
that is how I learned to dig deep to get an answer. Since then I have been on a mission
to automate, through shell scripting, everything on every system that I come in contact
with. I certainly value the years that I was able to work with Jack.

I must also thank the talented people at Wiley Publishing. Margaret Eldridge started
me on this project by letting me do my own thing, and Carol Long kept me going. Scott
Amerman kept me on schedule, and Angela Smith did the edits that make my writing
flow with ease. It has been a valuable experience for me to work with such a fine group
of professionals at Wiley. I also want to thank Carole McClendon at Waterside Produc-
tions for all of the support on this project. Carole is the best Agent that anyone could
ever ask for. She is a true professional with the highest ethics.

Of course my family had a lot to do with my success on this and every project. I
want to thank Mom, Gene, Jim, Marcia, Rusty, Mallory, and Anica. I want to thank my
Wife Robin for her understanding and support. The girls, Andrea and Ana, always
keep a smile on my face, and Steve is always on my mind.

I could not have written this book without the support of all of these people and the
many others that remain unnamed. It has been an honor!

Acknowledgments

vii

Free & Share & Open

Acknowledgments vii

Introduction xix

Chapter 1 Scripting Quick Start and Review 1
Case Sensitivity 1
Unix Special Characters 2
Shells 2
Shell Scripts 2
Functions 2

A Function Has the Form 3
Running a Shell Script 3

Declare the Shell in the Shell Script 3
Comments and Style in Shell Scripts 4
Control Structures 6
Using break, continue, exit, and return 9
Here Document 9

Syntax for a Here Document 9
Shell Script Commands 10
Symbol Commands 13
Variables 13
Command-Line Arguments 13
Shift Command 14
Special Parameters $* and $@ 15

Special Parameter Definitions 15
Double Quotes “, Forward Tics ‘, and Back Tics ` 16
Math in a Shell Script 17

Operators 17
Built-in Mathematical Functions 18

Contents

ix

Free & Share & Open

File Permissions, suid and sgid Programs 18
chmod Command Syntax for Each Purpose 19

Running Commands on a Remote Host 20
Setting Traps 21
User Information Commands 22

who Command 22
w Command 22
last Command 22

ps Command 23
Communicating with Users 23
Uppercase or Lowercase Text for Easy Testing 24
Check the Return Code 25
Time-Based Script Execution 27

cron tables 27
Cron Table Entry Syntax 27
Wildcards 28

at Command 28
Output Control 28

Silent Running 28
Using getopts to Parse Command-Line Arguments 29
Making a Co-Process with Background Function 30

Catching a Delayed Command Output 32
Fastest Ways to Process a File Line -by Line 33
Mail Notification Techniques 34

Using the mail and mailx Commands 34
Using the sendmail Command to Send Outbound Mail 34

Creating a Progress Indicator 35
A Series of Dots 35
A Rotating Line 35

Creating a Psuedo-Random Number 36
Checking for Stale Disk Partitions in AIX 37
Automated Host Pinging 37
Highlighting Specific Text in a File 38
Keeping the Printers Printing 38

AIX “Classic” Printer Subsystem 38
System V Printing 39

Automated FTP File Transfer 39
Capturing a List of Files Larger than $MEG 39
Capturing a User’s Keystrokes 40
Using the bc Utility for Floating-Point Math 40
Number Base Conversions 41

Using the typeset Command 41
Using the printf Command 41

Create a Menu with the select Command 42
Sending Pop-Up Messages to Windows 43
Removing Repeated Lines in a File 43
Removing Blank Lines from a File 44

x Contents

Testing for a Null Variable 44
Directly Access the Value of the Last Positional Parameter, $# 45
Remove the Columns Heading in a Command Output 45
Arrays 46

Loading an Array 46
Testing a String 47
Summary 51

Chapter 2 Twelve Ways to Process a File Line by Line 53
Command Syntax 53

Using File Descriptors 54
Creating a Large File to Use in the Timing Test 54

Twelve Methods to Parse a File Line by Line 56
Method 1: cat $FILENAME | while read LINE 57
Method 2: while read $FILENAME from Bottom 58
Method 3: while_line_LINE_Bottom 58
Method 4: cat $FILENAME | while LINE=`line` 59
Method 5: cat $FILENAME | while line LINE 60
Method 6: while LINE=`line` from the Bottom 61
Method 7: cat $FILENAME | while LINE=$(line) 61
Method 8: while LINE=$(line) from the Bottom 62
Method 9: while read LINE Using File Descriptors 63
Method 10: while LINE=’line’ Using File Descriptors 64
Method 11: while LINE=$(line) Using File Descriptors 65
Method 12: while line LINE Using File Descriptors 66

Timing Each Method 66
Timing Script 67

Timing Data for Each Method 73
Timing Command Substitution Methods 77

Summary 78

Chapter 3 Automated Event Notification 79
Basics of Automating Event Notification 79

Using the mail and mailx Commands 80
Problems with Outbound Mail 82

Create a “Bounce” Account with a .forward File 82
Using the sendmail Command to Send Outbound Mail 83

Dial-Out Modem Software 84
SNMP Traps 85
Summary 86

Chapter 4 Progress Indicator Using a Series of Dots,
a Rotating Line, or a Countdown to Zero 87
Indicating Progress with a Series of Dots 87
Indicating Progress with a Rotating Line 89
Creating a Countdown Indicator 91
Other Options to Consider 95
Summary 96

Contents xi

Free & Share & Open

Chapter 5 File System Monitoring 97
Syntax 98
Adding Exceptions Capability to Monitoring 103

The Exceptions File 103
Using the MB of Free Space Method 110
Using MB of Free Space with Exceptions 113
Percentage Used—MB Free and Large Filesystems 118
Running on AIX, Linux, HP-UX, and Solaris 128

Command Syntax and Output Varies between
Operating Systems 130

Other Options to Consider 143
Event Notification 143
Automated Execution 143
Modify the egrep Statement 144

Summary 144

Chapter 6 Monitoring Paging and Swap Space 145
Syntax 146

AIX lsps Command 146
HP-UX swapinfo Command 147
Linux free Command 148
Solaris swap Command 148

Creating the Shell Scripts 149
AIX Paging Monitor 149
HP-UX Swap Space Monitor 155
Linux Swap Space Monitor 160
Solaris Swap Space Monitor 164
All-in-One Paging and Swap Space Monitor 169

Other Options to Consider 176
Event Notification 177
Log File 177
Scheduled Monitoring 177

Summary 177

Chapter 7 Monitoring System Load 179
Syntax 180

Syntax for uptime 180
AIX 180
HP-UX 181
Linux 182
Solaris 183
What Is the Common Denominator? 183
Scripting an uptime Field Test Solution 184

Syntax for iostat 186
AIX 186
HP-UX 186

xii Contents

Linux 187
Solaris 187
What Is the Common Denominator? 187

Syntax for sar 188
AIX 188
HP-UX 189
Linux 189
Solaris 190
What Is the Common Denominator? 190

Syntax for vmstat 191
AIX 191
HP-UX 191
Linux 192
Solaris 192
What Is the Common Denominator? 192

Scripting the Solutions 193
Using uptime to Measure the System Load 194

Scripting with the uptime Command 194
Using sar to Measure the System Load 197

Scripting with the sar Command 198
Using iostat to Measure the System Load 203

Scripting with the iostat Command 203
Using vmstat to Measure the System Load 208

Scripting with the vmstat Command 208
Other Options to Consider 212

Stop Chasing the Floating uptime Field 212
Try to Detect Any Possible Problems for the User 213
Show the User the Top CPU Hogs 213
Gathering a Large Amount of Data for Plotting 214

Summary 214

Chapter 8 Process Monitoring and Enabling Preprocess, Startup,
and Postprocess Events 215
Syntax 216
Monitoring for a Process to Start 216
Monitoring for a Process to End 218
Monitor and Log as a Process Starts and Stops 223
Timed Execution for Process Monitoring, Showing each PID,
and Time Stamp with Event and Timing Capability 228
Other Options to Consider 248

Common Uses 248
Modifications to Consider 248

Summary 249

Chapter 9 Monitoring Processes and Applications 251
Monitoring Local Processes 252
Remote Monitoring with Secure Shell 254

Checking for Active Oracle Databases 256
Checking If the HTTP Server/Application Is Working 259

Contents xiii

Free & Share & Open

Other Things to Consider 260
Application APIs and SNMP Traps 261

Summary 261

Chapter 10 Creating Pseudo-Random Passwords 263
Randomness 263
Creating Pseudo-Random Passwords 264
Syntax 264

Arrays 265
Loading an Array 265

Building the Password Creation Script 266
Order of Appearance 266

Define Variables 266
Define Functions 267
Testing and Parsing Command-Line Arguments 275

Beginning of Main 279
Setting a Trap 280
Checking for the Keyboard File 280
Loading the “KEYS” Array 280
Using the LENGTH Variable to Build a Loop List 281
Building a New Pseudo-Random Password 282
Printing the Manager’s Password Report for Safe Keeping 283

Other Options to Consider 294
Password Reports? 294
Which Password? 295
Other Uses? 295

Summary 295

Chapter 11 Monitor for Stale Disk Partitions 297
AIX Logical Volume Manager (LVM) 298
The Commands and Methods 298

Disk Subsystem Commands 298
Method 1: Monitoring for Stale PPs at the LV Level 299
Method 2: Monitoring for Stale PPs at the PV Level 304
Method 3: VG, LV, and PV Monitoring with a resync 308

Other Options to Consider 315
SSA Disks 315
Log Files 316
Automated Execution 316
Event Notification 316

Summary 317

Chapter 12 Automated Hosts Pinging with Notification 319
Syntax 320
Creating the Shell Script 321

Define the Variables 321
Creating a Trap 323
The Whole Shell Script 324

xiv Contents

Other Options to Consider 332
$PINGLIST Variable Length Limit Problem 332
Ping the /etc/hosts File Instead of a List File 333
Logging 333
Notification of “Unknown host” 334
Notification Method 334
Automated Execution Using a Cron Table Entry 335

Summary 335

Chapter 13 Taking a System Snapshot 337
Syntax 338
Creating the Shell Script 340
Other Options to Consider 367
Summary 367

Chapter 14 Compiling, Installing, Configuring, and Using sudo 369
The Need for sudo 369
Downloading and Compiling sudo 370
Compiling sudo 371
Configuring sudo 378
Using sudo 384
Using sudo in a Shell Script 385
The sudo Log File 389
Summary 390

Chapter 15 hgrep: Highlighted grep Script 391
Reverse Video Control 392
Building the hgrep.ksh Shell Script 393
Other Options to Consider 400

Other Options for the tput Command 400
Summary 401

Chapter 16 Print Queue Hell: Keeping the Printers Printing 403
System V versus BSD Printer Subsystems 404

AIX Print Control Commands 404
Classic AIX Printer Subsystem 404
System V Printing on AIX 408
More System V Printer Commands 412

HP-UX Print Control Commands 414
Linux Print Control Commands 417

Controlling Queuing and Printing Individually 422
Solaris Print Control Commands 425

More System V Printer Commands 429
Putting It All Together 431
Other Options to Consider 438

Logging 439
Exceptions Capability 439
Maintenance 439
Scheduling 439

Summary 439

Contents xv

Free & Share & Open

Chapter 17 Automated FTP Stuff 441
Syntax 441
Automating File Transfers and Remote Directory Listings 444

Using FTP for Directory Listings on a Remote Machine 444
Getting One or More Files from a Remote System 446

Pre and Post Events 449
Script in Action 449

Putting One or More Files to a Remote System 450
Replacing Hard-Coded Passwords with Variables 452

Example of Detecting Variables in a Script’s Environment 453
Modifying Our FTP Scripts to Use Password Variables 456

Other Options to Consider 463
Use Command-Line Switches to Control Execution 463
Keep a Log of Activity 463
Add a Debug Mode to the Scripts 463

Summary 464

Chapter 18 Finding “Large” Files 465
Syntax 466
Creating the Script 466
Other Options to Consider 472
Summary 473

Chapter 19 Monitoring and Auditing User Key Strokes 475
Syntax 476
Scripting the Solution 477

Logging User Activity 478
Starting the Monitoring Session 479
Where Is the Repository? 479
The Scripts 480
Logging root Activity 483

Some sudo Stuff 486
Monitoring Other Administration Users 489

Other Options to Consider 492
Emailing the Audit Logs 493
Compression 493
Need Better Security? 493
Inform the Users 493
Sudoers File 494

Summary 494

Chapter 20 Turning On/Off SSA Identification Lights 495
Syntax 496

Translating an hdisk to a pdisk 496
Identifying an SSA Disk 496

The Scripting Process 497
Usage and User Feedback Functions 497
Control Functions 501
The Full Shell Script 507

xvi Contents

Other Things to Consider 520
Error Log 520
Cross-Reference 520
Root Access and sudo 520

Summary 521

Chapter 21 Pseudo-Random Number Generation 523
What Makes a Random Number? 523
The Methods 524

Method 1: Creating Numbers between 0 and 32,767 525
Method 2: Creating Numbers between 1 and a

User-Defined Maximum 526
Method 3: Fixed-Length Numbers between 1 and a

User-Defined Maximum 527
Why Pad the Number with Zeros the Hard Way? 529

Shell Script to Create Pseudo-Random Numbers 530
Creating Unique Filenames 535
Summary 543

Chapter 22 Floating-Point Math and the bc Utility 545
Syntax 545
Creating Some Shell Scripts Using bc 546

Creating the float_add.ksh Shell Script 546
Testing for Integers and Floating-Point Numbers 552
Building a Math Statement for the bc Command 554
Using a Here Document 555
Creating the float_subtract.ksh Shell Script 556
Using getopts to Parse the Command Line 561
Building a Math Statement String for bc 563
Here Document and Presenting the Result 564
Creating the float_multiply.ksh Shell Script 565
Parsing the Command Line for Valid Numbers 570
Creating the float_divide.ksh Shell Script 573
Creating the float_average.ksh Shell Script 580

Other Options to Consider 582
Remove the Scale from Some of the Shell Scripts 582
Create More Functions 582

Summary 583

Chapter 23 Scripts for Number Base Conversions 585
Syntax 585

Example 23.1: Converting from Base 10 to Base 16 586
Example 23.2: Converting from Base 8 to Base 16 586
Example 23.3 Converting Base 10 to Octal 587
Example 23.4 Converting Base 10 to Hexadecimal 587

Scripting the Solution 587
Base 2 (binary) to Base 16 (hexadecimal) Shell Script 587
Base 10 (Decimal) to Base 16 (Hexadecimal) Shell Script 590

Contents xvii

Free & Share & Open

Script to Create a Software Key Based on the Hexadecimal
Representation of an IP Address 594

Script to Translate between Any Number Base 597
Using getopts to Parse the Command Line 602

Example 23.5 Correct Usage of the Equate_any_base.ksh
Shell Script 603

Example 23.6 Incorrect Usage of the Equate_any_base.ksh
Shell Script 603

Continuing with the Script 604
Beginning of Main 606

Other Options to Consider 608
Software Key Shell Script 608

Summary 608

Chapter 24 Menu Program Suitable for Operations Staff 609
Reverse Video Syntax 610

Creating the Menu 610
Creating a Message Bar for Feedback 611

From the Top 616
Other Options to Consider 617

Shelling Out to the Command Line 618
Good Candidate for Using sudo 618

Summary 618

Chapter 25 Sending Pop-Up Messages from Unix to Windows 619
About Samba and the smbclient Command 619
Syntax 620
Building the broadcast.ksh Shell Script 621

Sending a Message to All Users 621
Adding Groups to the Basic Code 623
Adding the Ability to Specify Destinations Individually 623

Using getopts to Parse the Command Line 624
Testing User Input 627

Testing and Prompting for WINLIST Data 627
Testing and Prompting for Message Data 628

Sending the Message 629
Putting It All Together 630

Watching the broadcast.ksh Script in Action 640
Downloading and Installing Samba 642

Testing the smbclient Program the First Time 643
Other Options to Consider 644

Producing Error Notifications 645
Add Logging of Unreachable Machines 645
Create Two-Way Messanging 645

Summary 645

Appendix A What’s on the Web Site 647

Index 663

xviii Contents

In Unix there are many ways to accomplish a given task. Given a problem to solve, we
may be able to get to a solution in any number of ways. Of course, some will be more
efficient, be more readable, use less disk space or memory, may or may not give the user
feedback on what is going on or give more accurate details and more precision to the
result. In this book we are going to step through every detail of writing a shell script to
solve real-world Unix problems and tasks. The shell scripts range from using a pseudo-
random number generator to create pseudo-random passwords to checking for full
filesystems on Unix machines and to sending pop-up messages to Windows desktops.
The details required to write these shell scripts include using good style and providing
good comments throughout the shell script by describing each step. Other details include
combining many commands into just one command statement when desirable, separat-
ing commands on several lines when readability and understanding of the concept may
be diminished, and making a script readable and easy to maintain. We will see the bene-
fit of using variables and files to store data, show methods to strip out unwanted or
unneeded data from a command output, and format the data for a particular use. Addi-
tionally, we are going to show how to write and include functions in our shell scripts and
demonstrate the benefits of functions over a shell script written without functions.

This book is intended for any flavor of Unix, but its emphasis includes AIX, Linux,
HP-UX, and Solaris operating systems. Most every script in the book is also included on
the book’s companion Web site (www.wiley.com/compbooks/michael). Many of the shell
scripts are rewritten for each different operating system, when it is necessary. Other shell
scripts are not platform dependent. These script rewrites are sometimes needed because
command syntax and output vary, sometimes in a major way, between Unix flavors. The
variations are sometimes as small as pulling the data out of a different column or using a
different command switch, or they can be as major as putting several commands together
to accomplish the same task to get similar output or result on different flavors of Unix.

In each chapter we start with the very basic concepts and work our way up to some
very complex and difficult concepts. The primary purpose of a shell script is automating
repetitive and complex functions. This alleviates keystroke errors and allows for time-
scheduled execution of the shell script. It is always better to have the system tell us that

Introduction

xix

Free & Share & Open

it has a problem than to find out too late to be proactive. This book will help us to be more
proactive in our dealings with the system. At every level we will gain more knowledge
to allow us to move on to ever increasingly complex ideas with ease. We are going to
show different ways to solve our real-world example tasks. There is not just one correct
way to solve a challenge, and we are going to look at the pros and cons of attacking a
problem in various ways. Our goal is to be confident and flexible problem solvers. Given
a task, we can solve it in any number of ways, and the solution will be intuitively obvi-
ous when you complete this book.

Overview of the Book and Technology

This book is intended as a learning tool and study guide to learn how to write shell
scripts to solve a multitude of problems by starting with a clear goal. While studying
with this book we will cover most shell scripting techniques about seven times, each
time from a different angle, solving a different problem. I have found this learning
technique to work extremely well for retention of the material to memory.

I urge everyone to read this book from cover to cover to get the maximum benefit.
Every script is written using Korn shell, which is the industry standard for scripting
solutions in Unix, although some may argue this point. There are several versions of
the Korn shell shipped with Unix, depending on the Unix operating system (OS) and
the version of the OS release. I have found that the shell scripts in this book will run on
any of the Korn shell versions without any modification.

This book goes from some trivial task solutions to some rather advanced concepts
that Systems Administrators will benefit from, and a lot of stuff in between. There are
several chapters for each level of complexity scattered throughout this book. The shell
scripts presented in this book are complete shell scripts, which is one of the things that
sets this book apart from other shell scripting books on the market. The solutions are
explained thoroughly, with each part of the shell script explained in minute detail
down to the philosophy and mindset of the author.

How This Book Is Organized

Each chapter starts with a typical Unix challenge that occurs every day in the comput-
ing world. With each challenge we define a specific goal and start the shell script by
defining the correct command syntax to solve the problem. When we have a goal and
the command syntax, we start building the shell script around the commands. The next
step is to filter the command(s) output to strip out the unneeded data, or we may
decide to just extract the data we need from the output. If the syntax varies between
Unix flavors we show the correct syntax to get the same, or a similar, result. When we
get to this point we go further to build options into the shell script to give the end user
more flexibility on the command line.

When a shell script has to be rewritten for each operating system, a combined shell
script is shown at the end of the chapter that joins the Unix flavor differences together
into one shell script that will run on all of the OS flavors. To do this last step we query
the system for the Unix flavor using the uname command. By knowing the flavor of
the operating system we are able to execute the proper commands for each Unix flavor

xx Introduction

by using a simple case statement. If this is new to you, do not worry; everything is
explained throughout the book in detail.

Each chapter targets a different real-world problem. Some challenges are very com-
plex, while others are just interesting to play around with. Some chapters hit the prob-
lem from several different angles in a single chapter, and others leave you the challenge
to solve on your own—of course, with a few hints to get you started. Each chapter
solves the challenge presented and can be read as a single unit without referencing
other chapters in the book. Some of the material, though, is explained in great detail in
one chapter and lightly covered in other chapters. Because of this variation we recom-
mend that you start at the beginning of the book and read and study every chapter to
the end of the book because this is a learning experience!

Who Should Read This Book

This book is intended for anyone who works with Unix on a daily basis from the
command line. The topics studied in the book are mainly for Unix professionals—
Programmers, Programmer-Analysts, System Operators, Systems Administrators, and
anyone who is interested in getting ahead in the support arena. Beginners will get a lot
out of this book, too, but some of the material may be a little high level, so a basic Unix
book may be needed to answer some questions. Everyone should have a good work-
ing knowledge of common Unix commands before starting this book, because we do
not explain common Unix commands at all.

I started my career in Unix by learning on the job how to be a Systems Operator. I
wish I had a book like this when I started. Having this history I wanted others to get a
jump start on their careers. I wrote this book with the knowledge that I was in your
shoes at one time, and I remember that I had to learn everything from the man pages,
one command at a time. Use this book as a study guide, and you will have a jump start
to get ahead quickly in the Unix world, which is getting bigger all of the time.

Tools You Will Need

To get the most benefit from this book you need access to a Unix machine, preferably
with AIX, HP-UX, Linux, or Solaris installed. You can run Linux and Solaris on stan-
dard PC hardware, and it is relatively inexpensive. It is a good idea to make your
default shell environment the Korn shell (ksh); the standard shell on Linux is the
Bourne Again shell (bash) shell, and some others use Bourne shell (sh) as the default.
You can find your default shell by entering echo $SHELL from the command line.
None of the shell scripts in this book requires a graphical terminal, but it sure does not
hurt to have GNOME, CDE, KDE2, or X-Windows running. This way you can work in
multiple windows at the same time and cut and paste code between windows.

You also need a text editor that you are comfortable using. Most Unix operating sys-
tems come with the vi editor, and a lot also include emacs. Remember that the editor
must be a text editor that stores files in a standard ANSII format. The CDE and other
X-editors work just fine, too. You will also need some time, patience, and an open,
creative mind that is ready to learn.

Introduction xxi

Free & Share & Open

Another thing to note is that all of the variables used in the shell scripts and func-
tions in this book are in uppercase. I did this because it is much easier to follow along
with a shell script if you know quickly where the variables are located in the code.
When you write your own shell scripts, please use lowercase for all shell script and
function variables. The reason this is important is that the operating system, and appli-
cations, use environment variables that are in uppercase. If you are not careful, you can
overwrite a critical system or application variable with your own value and hose up
the system; however this is dependent on the scope of where the variable is visible in
the code. Just a word of warning, be careful with uppercase variables!

What’s on the Web Site

On the book’s companion Web site, www.wiley.com/compbooks/michael, all of the
shell scripts and most of the functions that are studied in the book can be found. The
functions are easy to cut and paste directly into your own shell scripts to make the
scripting process a little easier. Additionally, there is a shell script stub that you can
copy to another filename. This script stub has everything to get you started writing
quickly. The only thing you need to do is fill in the fields for the following: Script
Name, Author, Date, Version, Platform, Purpose, and Rev List, when revisions are
made. There is a place to define variables and functions, and then you have a
“BEGINNNG OF MAIN” section to start the main body of the shell script.

Summary

This book is for learning how to be creative, proactive, and a professional problem
solver. Given a task, the solution will be intuitively obvious to you on completion of this
book. This book will help you attack problems logically and present you with a tech-
nique of building on what you know. With each challenge presented you will see how
to take the basic syntax and turn it into the basis for a shell scripting solution. We
always start with the basics and build more and more logic into the solution before we
add other options the end user can use for more flexibility.

Speaking of end users, we must always keep our users informed about how pro-
cessing is progressing. Giving a user a blank screen to look at is the worst thing that
you can do, so for this we can create progress indicators. You will learn how to be
proactive by building tools that monitor for specific situations that indicate the begin-
ning stages of an upcoming problem. This is where knowing how to query the system
puts you ahead of the rest of your staff.

With the techniques presented in this book, you will learn. You will learn about
problem resolution. You will learn about starting with what you know about a situa-
tion and building a solution effectively. You will learn how to make a single shell script
work on other platforms without further modification. You will learn how to be proac-
tive. You will learn how to write a shell script that is easily maintained. You will learn
how to use plenty of comments in a shell script. You will learn how to write a shell
script that is easy to read and follow through the logic. Basically, you will learn to be an
effective problem solver where the solution to any challenge is intuitively obvious!

xxii Introduction

1

Scripting Quick Start
and Review

C H A P T E R

1

We are going to start out by giving a very targeted refresher course. The topics that
follow are short explanations of techniques that we always have to search the book
to find; here they are all together in one place. The explanations range from showing
the fastest way to process a file line by line to the simple matter of case sensitivity of
Unix and shell scripts. This should not be considered a full and complete list of script-
ing topics, but it is a very good starting point and it does point out a sample of the top-
ics covered in the book. For each topic listed in this chapter there is a very detailed
explanation later in the book.

I urge everyone to study this entire book. Every chapter hits a different topic using
a different approach. The book is written this way to emphasize that there is never only
one technique to solve a challenge in Unix. All of the shell scripts in this book are real-
world examples of how to solve a problem. Thumb through the chapters, and you can
see that I tried to hit most of the common (and some uncommon!) tasks in Unix. All of
the shell scripts have a good explanation of the thinking process, and we always start
out with the correct command syntax for the shell script targeting a specific goal. I hope
you enjoy this book as much as I enjoyed writing it. Let’s get started!

Case Sensitivity

Unix is case sensitive. Because Unix is case sensitive our shell scripts are also case
sensitive.

Free & Share & Open

Unix Special Characters

All of the following characters have a special meaning or function. If they are used in a
way that their special meaning is not needed then they must be escaped. To escape, or
remove its special function, the character must be immediately preceded with a back-
slash, \, or enclosed within ‘ ‘ forward tic marks (single quotes).

\ (; # $? & * () [] ` ‘ “ +

Shells

A shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of shells, just as there are different flavors of operat-
ing systems. Each flavor of shell has its own set of recognized commands and func-
tions. This book works entirely with the Korn shell.

Korn Shell /bin/ksh OR /usr/bin/ksh

Shell Scripts

The basic concept of a shell script is a list of commands, which are listed in the order of
execution. A good shell script will have comments, preceded by a pound sign, #,
describing the steps. There are conditional tests, such as value A is greater than value
B, loops allowing us to go through massive amounts of data, files to read and store
data, and variables to read and store data, and the script may include functions.

We are going to write a lot of scripts in the next several hundred pages, and we
should always start with a clear goal in mind. By clear goal, we have a specific purpose
for this script, and we have a set of expected results. We will also hit on some tips,
tricks, and, of course, the gotchas in solving a challenge one way as opposed to another
to get the same result. All techniques are not created equal.

Shell scripts and functions are both interpreted. This means they are not compiled.
Both shell scripts and functions are ASCII text that is read by the Korn shell command
interpreter. When we execute a shell script, or function, a command interpreter goes
through the ASCII text line by line, loop by loop, test by test and executes each state-
ment, as each line is reached from the top to the bottom.

Functions

A function is written in much the same way as a shell script but is different in that it is
defined, or written, within a shell script, most of the time, and is called within the script.
This way we can write a piece of code, which is used over and over, just once and use it
without having to rewrite the code every time. We just call the function instead.

2 Chapter 1

We can also define functions at the system level that is always available in our envi-
ronment, but this is a later topic for discussion.

A Function Has the Form

function function_name

{

commands to execute

}

or

function_name ()

{

commands to execute

}

When we write functions into our scripts we must remember to declare, or write, the
function before we use it: The function must appear above the command statement call-
ing the function. We can’t use something that does not yet exist.

Running a Shell Script

A shell script can be executed in the following ways:

ksh shell_script_name

will create a Korn shell and execute the shell_script_name in the newly created
Korn shell environment.

shell_script_name

will execute shell_script_name if the execution bit is set on the file (see the man page
on the chmod command). The script will execute in the shell that is declared on the first
line of the shell script. If no shell is declared on the first line of the shell script, it will
execute in the default shell, which is the user’s system-defined shell. Executing in an
unintended shell may result in a failure and give unpredictable results.

Declare the Shell in the Shell Script
Declare the shell! If we want to have complete control over how a shell script is going
to run and in which shell it is to execute, we MUST declare the shell in the very first line

Scripting Quick Start and Review 3

Free & Share & Open

of the script. If no shell is declared, the script will execute in the default shell, defined by
the system for the user executing the shell script. If the script was written, for example,
to execute in Korn shell ksh, and the default shell for the user executing the shell script
is the C shell csh, then the script will most likely have a failure during execution. To
declare a shell, one of the declaration statements in Table 1.1 must appear on the very
first line of the shell script:

NOTE This book uses only the Korn shell, #!/usr/bin/ksh OR #!/bin/ksh.

Comments and Style in Shell Scripts

Making good comments in our scripts is stressed throughout this book. What is intu-
itively obvious to us may be total Greek to others who follow in our footsteps. We have
to write code that is readable and has an easy flow. This involves writing a script that
is easy to read and easily maintained, which means that it must have plenty of com-
ments describing the steps. For the most part, the person who writes the shell script is
not the one who has to maintain it. There is nothing worse than having to hack through
someone else’s code that has no comments to find out what each step is supposed to
do. It can be tough enough to modify the script in the first place, but having to figure
out the mind set of the author of the script will sometimes make us think about rewrit-
ing the entire shell script from scratch. We can avoid this by writing a clearly readable
script and inserting plenty of comments describing what our philosophy is and how
we are using the input, output, variables, and files.

For good style in our command statements, we need it to be readable. For this rea-
son it is sometimes better, for instance, to separate a command statement onto three
separate lines instead of stringing, or piping, everything together on the same line of
code; in some cases, it is more desirable to create a long pipe. In some cases, it may be
just too difficult to follow the pipe and understand what the expected result should be
for a new script writer. And, again, it should have comments describing our thinking
step by step. This way someone later will look at our code and say, “Hey, now that’s a
groovy way to do that.”

Table 1.1 Different Types of Shells to Declare

#!/usr/bin/sh OR #!/bin/sh Declares a Bourne shell

#!/usr/bin/ksh OR #!/bin/ksh Declares a Korn shell

#!/usr/bin/csh OR #!/bin/csh Declares a C shell

#!/usr/bin/bash OR #!/bin/bash Declares a Bourne-Again shell

4 Chapter 1

Command readability and step-by-step comments are just the very basics of a well-
written script. Using a lot of comments will make our life much easier when we have
to come back to the code after not looking at it for six months, and believe me, we will
look at the code again. Comment everything! This includes, but is not limited to,
describing what our variables and files are used for, describing what loops are doing,
describing each test, maybe including expected results and how we are manipulating
the data and the many data fields.

A hash mark, #, precedes each line of a comment.
The script stub that follows is on this book’s companion Web site at www.wiley.

com/compbooks/michael. The name is script.stub. It has all of the comments
ready to get started writing a shell script. The script.stub file can be copied to a
new filename. Edit the new filename, and start writing code. The script.stub file
is shown in Listing 1.1.

#!/usr/bin/ksh

#

SCRIPT: NAME_of_SCRIPT

AUTHOR: AUTHORS_NAME

DATE: DATE_of_CREATION

REV: 1.1.A (Valid are A, B, D, T and P)

(For Alpha, Beta, Dev, Test and Production)

#

PLATFORM: (SPECIFY: AIX, HP-UX, Linux, Solaris

or Not platform dependent)

#

PURPOSE: Give a clear, and if necessary, long, description of the

purpose of the shell script. This will also help you stay

focused on the task at hand.

#

REV LIST:

DATE: DATE_of_REVISION

BY: AUTHOR_of_MODIFICATION

MODIFICATION: Describe what was modified, new features, etc--

#

#

set -n # Uncomment to check your syntax, without execution.

NOTE: Do not forget to put the comment back in or

the shell script will not execute!

set -x # Uncomment to debug this shell script (Korn shell only)

##

########### DEFINE FILES AND VARIABLES HERE ##############

##

##

Listing 1.1 script.stub shell script starter listing. (continues)

Scripting Quick Start and Review 5

Free & Share & Open

############### DEFINE FUNCTIONS HERE ####################

##

##

################ BEGINNING OF MAIN #######################

##

End of script

Listing 1.1 script.stub shell script starter listing. (continued)

The shell script starter shown in Listing 1.1 gives you the framework to start writing
the shell script with sections to declare variables and files, create functions, and write
the final section, BEGINNING OF MAIN, where the main body of the shell script is
written.

Control Structures

The following control structures will be used extensively.

if ... then Statement

if [test_command]

then

commands

fi

if ... then ... else Statement

if [test_command]

then

commands

else

commands

fi

6 Chapter 1

if ... then ... elif ... (else) Statement

if [test_command]

then

commands

elif [test_command]

then

commands

elif [test_command]

then

commands

.

.

.

else (Optional)

commands

fi

for ... in Statement

for loop_variable in argument_list

do

commands

done

while Statement

while test_command_is_true

do

commands

done

until Statement

until test_command_is_true

do

Scripting Quick Start and Review 7

Free & Share & Open

commands

done

case Statement

case $variable in

match_1)

commands_to_execute_for_1

;;

match_2)

commands_to_execute_for_2

;;

match_3)

commands_to_execute_for_3

;;

.

.

.

*) (Optional - any other value)

commands_to_execute_for_no_match

;;

esac

NOTE The last part of the case statement:

*)

commands_to_execute_for_no_match

;;
is optional.

8 Chapter 1

Using break, continue, exit, and return

It is sometimes necessary to break out of a for or while loop, continue in the next block
of code, exit completely out of the script, or return a function’s result back to the script
that called the function.

break is used to terminate the execution of the entire loop, after completing the exe-
cution of all of the lines of code up to the break statement. It then steps down to the
code following the end of the loop.

continue is used to transfer control to the next set of code, but it continues execution
of the loop.

exit will do just what one would expect: It exits the entire script. An integer may be
added to an exit command (for example, exit 0), which will be sent as the return
code.

return is used in a function to send data back, or return a result, to the calling script.

Here Document

A here document is used to redirect input into an interactive shell script or program. We
can run an interactive program within a shell script without user action by supplying
the required input for the interactive program, or interactive shell script. This is why it
is called a here document: The required input is here, as opposed to somewhere else.

Syntax for a Here Document

program_name <<LABEL

Program_Input_1

Program_Input_2

Program_Input_3

Program_Input_#

LABEL

EXAMPLE:

/usr/local/bin/My_program << EOF

Randy

Robin

Rusty

Jim

EOF

Scripting Quick Start and Review 9

Free & Share & Open

Notice in the here documents that there are no spaces in the program input lines,
between the two EOF labels. If a space is added to the input, then the here document
may fail. The input that is supplied must be the exact data that the program is expect-
ing, and many programs will fail if spaces are added to the input.

Shell Script Commands

The basis for the shell script is the automation of a series of commands. We can execute
most any command in a shell script that we can execute from the command line. (One
exception is trying to set an execution suid or sgid, sticky bit, within a shell script is not
supported for security reasons.) For commands that are executed often, we reduce
errors by putting the commands in a shell script. We will eliminate typos and missed
device definitions, and we can do conditional tests that can ensure there are not any
failures due to unexpected input or output. Commands and command structure will
be covered extensively throughout this book.

Most of the commands shown in Table 1.2 are used at some point in this book,
depending on the task we are working on in each chapter.

Table 1.2 Unix Commands Review

COMMAND DESCRIPTION

passwd Change user password

pwd Print current directory

cd Change directory

ls List of files in a directory

wildcards * matches any number of characters, ? matches a single
character

file Print the type of file

cat Display the contents of a file

pr Display the contents of a file

pg or page Display the contents of a file one page at a time

more Display the contents of a file one page at a time

clear Clear the screen

cp or copy Copy a file

chown Change the owner of a file

chgrp Change the group of a file

chmod Change file modes, permissions

10 Chapter 1

Table 1.2 (Continued)

COMMAND DESCRIPTIONp

rm Remove a file from the system

mv Rename a file

mkdir Create a directory

rmdir Remove a directory

grep Pattern matching

egrep grep command for extended regular expressions

find Used to locate files and directories

>> Append to the end of a file

> Redirect, create, or overwrite a file

| Pipe, used to string commands together

|| Logical OR—command1 || command2—execute command2
if command1 fails

& Execute in background

&& Logical AND—command1 && command2—execute
command2 if command1 succeeds

date Display the system date and time

echo Write strings to standard output

sleep Execution halts for the specified number of seconds

wc Count the number of words, lines, and characters in a file

head View the top of a file

tail View the end of a file

diff Compare two files

sdiff Compare two files side by side (requires 132-character
display)

spell Spell checker

lp, lpr, enq, qprt Print a file

lpstat Status of system print queues

enable Enable, or start, a print queue

disable Disable, or stop, a print queue

(continues)

Scripting Quick Start and Review 11

Free & Share & Open

Table 1.2 Unix Commands Review (Continued)

COMMAND DESCRIPTIONp

cal Display a calendar

who Display information about users on the system

w Extended who command

whoami Display $LOGNAME or $USER environment parameter

who am I Display login name, terminal, login date/time, and where
logged in

f, finger Information about logged-in users including the users .plan
and .project

talk Two users have a split screen conversation

write Display a message on a user’s screen

wall Display a message on all logged-in users’ screens

rwall Display a message to all users on a remote host

rsh or remsh Execute a command, or log in, on a remote host

df Filesystems statistics

ps Information on currently running processes

netstat Show network status

vmstat Show virtual memory status

iostat Show input/output status

uname Name of the current operating system, as well as machine
information

sar System activity report

basename Base filename of a string parameter

man Display the on-line reference manual

su Switch to another user, also known as super-user

cut Write out selected characters

awk Programming language to parse characters

sed Programming language for character substitution

vi Start the vi editor

emacs Start the emacs editor

Most of the commands shown in Table 1.2 are used at some point in this book,
depending on the task we are working on in each chapter.

12 Chapter 1

Symbol Commands

The symbols shown in Table 1.3 are actually commands.
All of the symbol commands shown in Table 1.3 are used extensively in this book.

Variables

A variable is a character string to which we assign a value. The value assigned could be
a number, text, filename, device, or any other type of data. A variable is nothing more
than a pointer to the actual data. We are going to use variables so much in our scripts
that it will be unusual for us not to use them. In this book we are always going to spec-
ify a variable in uppercase—for example, UPPERCASE. Using uppercase variable
names is not recommended in the real world of shell programming, though, because
these uppercase variables may step on system environment variables, which are also in
uppercase. Uppercase variables are used in this book to emphasize the variables and to
make them stand out in the code. When you write your own shell scripts or modify the
scripts in this book, make the variables lowercase text. To assign a variable to point to
data, we use UPPERCASE=”value_to_assign” as the assignment syntax. To access
the data that the variable, UPPERCASE, is pointing to, we must add a dollar sign, $, as
a prefix—for example, $UPPERCASE. To view the data assigned to the variable, we use
echo $UPPERCASE, print $UPPERCASE for variables, or cat $UPPERCASE, if the
variable is pointing to a file, as a command structure.

Command-Line Arguments

The command-line arguments $1, $2, $3,...$9 are positional parameters, with
$0 pointing to the actual command, program, shell script, or function and $1, $2,
$3, ...$9 as the arguments to the command.

Table 1.3 Symbol Commands

() Run the enclosed command in a sub-shell

(()) Evaluate and assign value to variable and do math in a shell

$(()) Evaluate the enclosed expression

[] Same as the test command

[[]] Used for string comparison

$() Command substitution

`command` Command substitution

Scripting Quick Start and Review 13

Free & Share & Open

The positional parameters, $0, $2, etc., in a function, are for the function’s use and
may not be in the environment of the shell script that is calling the function. Where a
variable is known in a function or shell script is called the scope of the variable.

Shift Command

The shift command is used to move positional parameters to the left; for example,
shift causes $2 to become $1. We can also add a number to the shift command to move
the positions more than one position; for example, shift 3 causes $4 to move to the $1
position.

Sometimes we encounter situations where we have an unknown or varying number
of arguments passed to a shell script or function, $1, $2, $3... (also known as posi-
tional parameters). Using the shift command is a good way of processing each posi-
tional parameter in the order they are listed.

To further explain the shift command, we will show how to process an unknown
number of arguments passed to the shell script shown in Listing 1.2. Try to follow
through this example shell script structure. This script is using the shift command to
process an unknown number of command-line arguments, or positional parameters.
In this script we will refer to these as tokens.

#!/usr/bin/sh

#

SCRIPT: shifting.sh

#

AUTHOR: Randy Michael

#

DATE: 01-22-1999

#

REV: 1.1.A

#

PLATFORM: Not platform dependent

#

PURPOSE: This script is used to process all of the tokens which

Are pointed to by the command-line arguments, $1, $2, $3,etc...

#

REV. LIST:

#

#

Initialize all variables

COUNT=0 # Initialize the counter to zero

NUMBER=$# # Total number of command-line arguments to process

Start a while loop

while [$COUNT -lt $NUMBER]

Listing 1.2 Example of using the shift command.

14 Chapter 1

do

COUNT=`expr $COUNT + 1` # A little math in the shell script

TOKEN=’$’$COUNT # Loops through each token starting with $1

process each $TOKEN

shift # Grab the next token, i.e. $2 becomes $1

done

Listing 1.2 Example of using the shift command. (continued)

We will go through similar examples of the shift command in great detail later in the
book.

Special Parameters $* and $@

There are special parameters that allow accessing all of the command-line arguments
at once. $* and $@ both will act the same unless they are enclosed in double quotes,
“ “.

Special Parameter Definitions

The $* special parameter specifies all command-line arguments.

The $@ special parameter also specifies all command-line arguments.

The “$*” special parameter takes the entire list as one argument with spaces
between.

The “$@” special parameter takes the entire list and separates it into separate
arguments.

We can rewrite the shell script shown in Listing 1.2 to process an unknown number
of command-line arguments with either the $* or $@ special parameters:

#!/usr/bin/sh

#

SCRIPT: shifting.sh

AUTHOR: Randy Michael

DATE: 01-22-1999

REV: 1.1.A

PLATFORM: Not platform dependent

#

PURPOSE: This script is used to process all of the tokens which

Scripting Quick Start and Review 15

Free & Share & Open

Are pointed to by the command-line arguments, $1, $2, $3, etc... -

#

REV LIST:

#

#

Start a for loop

for TOKEN in $*

do

process each $TOKEN

done

We could have also used the $@ special parameter just as easily. As we see in the
previous code segment, the use of the $@ or $* is an alternative solution to the same
problem, and it was less code to write. Either technique accomplishes the same task.

Double Quotes “, Forward Tics ’, and Back Tics `

How do we know which one of these to use in our scripts, functions, and command
statements? This decision causes the most confusion in writing scripts. We are going to
set this straight now.

Depending on what the task is and the output desired, it is very important to use the
correct enclosure. Failure to use these correctly will give unpredictable results.

We use “, double quotes, in a statement where we want to allow character or com-
mand substitution. The “-key is located next to the Enter key on a standard USA
QWERT keyboard. Use the SHIFT “-key sequence.

We use ‘, forward tics, in a statement where we do not want character or command
substitution. Enclosing in ‘, forward tics, is intended to use the literal text in the variable
or command statement, without any substitution. All special meanings and functions
are removed. It is also used when you want a variable reread each time it is used; for
example, ‘$PWD‘ is used a lot in processing the PS1 command-line prompt. The ‘-key
is located next to the Enter key on a standard USA QWERT keyboard. Additionally,
preceding the same string with a backslash, \, also removes the special meaning of a
character, or string.

We use `, back tics, in a statement where we want to execute a command, or script,
and have its output substituted instead; this is command substitution. The `-key is
located below the Escape key, Esc, in the top-left corner of a standard USA QWERT
keyboard. Command substitution is also accomplished by using the $(command)
command syntax. We are going to see many different examples of these throughout
this book.

16 Chapter 1

Math in a Shell Script

We can do arithmetic in a shell script easily. The Korn shell let command and the
((expr)) command expressions are the most commonly used methods to evaluate
an integer expression. Later we will also cover the bc function to do floating-point
arithmetic.

Operators
The Korn shell uses arithmetic operators from the C programming language (see Table
1.4), in decreasing order of precedence.

A lot of these math operators are used in the book, but not all. In this book we try to
keep things very straightforward and not confuse the reader with obscure expressions.

Table 1.4 Math Operators

OPERATOR DESCRIPTION

++ — Auto-increment and auto-decrement, both prefix and postfix

+ Unary plus

- Unary minus

! ~ Logical negation; binary inversion (one’s complement)

* / % Multiplication; division; modulus (remainder)

+ - Addition; subtraction

<< >> Bitwise left shift; bitwise right shift

<= >= Less than or equal to; greater than or equal to

< > Less than; greater than

== != Equality; inequality (both evaluated left to right)

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

Scripting Quick Start and Review 17

Free & Share & Open

Built-In Mathematical Functions

The Korn shell provides access to the standard set of mathematical functions. They are
called using C function call syntax. Table 1.5 shows a list of shell functions.

We do not have any shell scripts in this book that use any of these built-in Korn shell
functions except for the int function to extract the integer portion of a floating-point
number.

File Permissions, suid and sgid Programs

After writing a shell script we must remember to set the file permissions to make it exe-
cutable. We use the chmod command to change the file’s mode of operation. In addition
to making the script executable, it is also possible to change the mode of the file to
always execute as a particular user (suid) or to always execute as a member of a par-
ticular system group (sgid). This is called setting the sticky bit. If you try to suid or
sgid a shell script, it is ignored for security reasons.

Table 1.5 Built-In Shell Functions

NAME FUNCTION

abs Absolute value

log Natural logarithm

acos Arc cosine

sin Sine

asin Arc sine

sinh Hyperbolic sine

cos Cosine

sqrt Square root

cosh Hyperbolic cosine

tan Tangent

exp Exponential function

tanh Hyperbolic tangent

int Integer part of floating-point number

18 Chapter 1

Setting a program to always execute as a particular user, or member of a certain
group, is often used to allow all users, or a set of users, to run a program in the proper
environment. As an example, most system check programs need to run as an adminis-
trative user, sometimes root. We do not want to pass out passwords so we can just
make the program always execute as root and it makes everyone’s life easier. We can
use the options shown in Table 1.6 in setting file permissions. Also, please review the
chmod man page.

By using combinations from the chmod command options, you can set the permis-
sions on a file or directory to anything that you want. Remember that setting a shell
script to suid or sgid is ignored by the system.

chmod Command Syntax for Each Purpose

To Make a Script Executable

chmod 754 my_script.sh

or

chmod u+rwx,g+rx,o+r my_script.ksh

Table 1.6 chmod Permission Options

4000 Sets user ID on execution.

2000 Sets group ID on execution.

1000 Sets the link permission to directories or sets the save-text
attribute for files.

0400 Permits read by owner.

0200 Permits write by owner.

0100 Permits execute or search by owner.

0040 Permits read by group.

0020 Permits write by group.

0010 Permits execute or search by group.

0004 Permits read by others.

0002 Permits write by others.

0001 Permits execute or search by others.

Scripting Quick Start and Review 19

Free & Share & Open

The owner can read, write, and execute. The group can read and execute. The world
can read.

To Set a Program to Always Execute as the Owner

chmod 4755 my_program

The program will always execute as the owner of the file, if it is not a shell script. The
owner can read, write, and execute. The group can read and execute. The world can
read and execute. So no matter who executes this file it will always execute as if the
owner actually executed the program.

To Set a Program to Always Execute as a Member of the File Owner’s Group

chmod 2755 my_program

The program will always execute as a member of the file’s group, as long as the file
is not a shell script. The owner of the file can read, write, and execute. The group can
read and execute. The world can read and execute. So no matter who executes this pro-
gram it will always execute as a member of the file’s group.

To Set a Program to Always Execute as Both
the File Owner and the File Owner’s Group

chmod 6755 my_program

The program will always execute as the file’s owner and as a member of the file
owner’s group, as long as the program is not a shell script. The owner of the file can
read, write, and execute. The group can read and execute. The world can read and exe-
cute. No matter who executes this program it will always execute as the file owner and
as a member of the file owner’s group.

Running Commands on a Remote Host

We sometimes want to execute a command on a remote host and have the result
displayed locally. An example would be getting filesystem statistics from a group
of machines. We can do this with the rsh command. The syntax is rsh hostname
command_to_execute. This is a handy little tool but two system files will need to be
set up on all of the hosts before the rsh command will work. The files are .rhosts,
which would be created in the user’s home directory and have the file permissions of
600, and the /etc/hosts.equiv file.

For security reasons the .rhosts and hosts.equiv files, by default, are not set up
to allow the execution of a remote shell. Be careful! The systems’ security could be
threatened. Refer to each operating system’s documentation for details on setting up
these files.

20 Chapter 1

Speaking of security, a better solution is to use Open Secure Shell (OpenSSH) instead
of rsh. OpenSSH is a freeware encrypted replacement for rsh, telnet, and ftp, for the
most part. To execute a command on another machine using OpenSSH use the follow-
ing syntax.

ssh user@hostname command_to_execute

This command prompts you for a password if the encryption key pairs have not
been set up on both machines. Setting up the key pair relationships usually takes less
than one hour. The details of the procedure are shown in the ssh man page (man ssh).
The OpenSSH code can be downloaded from the following URL: www.openssh.org.

Setting Traps

When a program is terminated before it would normally end, we can catch an exit sig-
nal. This is called a trap. Table 1.7 lists some of the exit signals.

To see the entire list of supported signals for your operating system, enter the fol-
lowing command:

kill -l [That’s kill -(ell)]

This is a really nice tool to use in our shell scripts. On catching a trapped signal we
can execute some cleanup commands before we actually exit the shell script. Com-
mands can be executed when a signal is trapped. If the following command statement
is added in a shell script, it will print to the screen “EXITING on a TRAPPED SIGNAL”
and then make a clean exit on the signals 1, 2, 3, and 15. We cannot trap a kill -9.

trap ‘echo “\nEXITING on a TRAPPED SIGNAL”;exit’ 1 2 3 15

We can add all sorts of commands that may be needed to clean up before exiting. As
an example we may need to delete a set of files that the shell script created before we exit.

Table 1.7 Exit Signals

0 — Normal termination, end of script

1 SIGHUP Hang up, line disconnected

2 SIGINT Terminal interrupt, usually CONTROL-C

3 SIGQUIT Quit key, child processes to die before terminating

9 SIGKILL kill -9 command, cannot trap this type of exit status

15 SIGTERM kill command’s default action

24 SIGSTOP Stop, usually CONTROL-z

Scripting Quick Start and Review 21

Free & Share & Open

User Information Commands

Sometimes we need to query the system for some information about users on the system.

who Command
The who command gives this output for each logged-in user: username, tty, login time,
and where the user logged in from:

rmichael pts/0 Mar 13 10:24 10.10.10.6

root pts/1 Mar 15 10:43 (yogi)

w Command
The w command is really an extended who. The output looks like the following:

12:29PM up 27 days, 21:53,2 users, load average 1.03, 1.17, 1.09

User tty login@ idle JCPU PCPU what

rmichael pts/0 Mon10AM 0 3:00 1 w

root pts/1 10:42AM 37 5:12 5:12 tar

Notice that the top line of the preceding output is the same as the output of the
uptime command. The w command gives a more detailed output than the who com-
mand by listing job process time, total user process time, but it does not reveal where
the users have logged in from. We often are interested in this for security purposes. One
nice thing about the w command’s output is that it also lists what the users are doing at
the instant the command is entered. This can be very useful.

last Command
The last command shows the history of who has logged into the system since the wtmp
file was created. This is a good tool when you need to do a little investigation of who
logged into the system and when. The following is example output:

root ftp booboo Aug 06 19:22 - 19:23 (00:01)

root pts/3 mrranger Aug 06 18:45 still logged in.

root pts/2 mrranger Aug 06 18:45 still logged in.

root pts/1 mrranger Aug 06 18:44 still logged in.

root pts/0 mrranger Aug 06 18:44 still logged in.

root pts/0 mrranger Aug 06 18:43 - 18:44 (00:01)

root ftp booboo Aug 06 18:19 - 18:20 (00:00)

root ftp booboo Aug 06 18:18 - 18:18 (00:00)

root tty0 Aug 06 18:06 still logged in.

22 Chapter 1

root tty0 Aug 02 12:24 - 17:59 (4+05:34)

reboot ~ Aug 02 12:00

shutdown tty0 Jul 31 23:23

root ftp booboo Jul 31 21:19 - 21:19 (00:00)

root ftp bambam Jul 31 21:19 - 21:19 (00:00)

root ftp booboo Jul 31 20:42 - 20:42 (00:00)

root ftp bambam Jul 31 20:41 - 20:42 (00:00)

The output of the last command shows the username, the login port, where the user
logged in from, the time of the login/logout, and the duration of the login session.

ps Command

The ps command will show information about current system processes. The ps com-
mand has many switches that will change what we look at. Some common command
options are listed in Table 1.8.

Communicating with Users

Communicate with the system’s users and let them know what is going on! All Sys-
tems Administrators have the maintenance window where we can finally get control and
handle some offline tasks. This is just one example of a need to communicate with the
systems’ users, if any are still logged in.

The most common way to get information to the system users is to use the
/etc/motd file. This file is displayed each time the user logs in. If users stay logged in
for days at a time they will not see any new messages of the day. This is one reason why
real-time communication is needed. The commands shown in Table 1.9 allow commu-
nication to, or between, users who are currently logged in the system.

Table 1.8 Some ps Command Options

ps The user’s currently running processes

ps -f Full listing of the user’s currently running processes

ps -ef Full listing of all processes, except kernel processes

ps -A All processes including kernel processes

ps -Kf Full listing of kernel processes

ps auxw Wide listing sorted by percentage of CPU usage, %CPU

Scripting Quick Start and Review 23

Free & Share & Open

Table 1.9 Commands for Real-Time User Communication

wall Writes a message on the screen of all logged-in users on the
local host.

rwall Writes a message on the screen of all logged-in users on a
remote host.

write Writes a message to an individual user. The user must currently
be logged-in.

talk Starts an interactive program that allows two users to have a
conversation. The screen is split in two, and both users can see
what each person is typing.

NOTE When using these commands be aware that if a user is using a
program—for example, an accounting software package—and has that
program’s screen on the terminal, then the user may not get the message
or the user’s screen may become scrambled.

In addition to the preceding commands, there is a script on the Web site that accom-
panies this book named broadcast.ksh that can be used to send pop-up messages
in a Windows (95, 98, and NT) environment. The script uses Samba, and it must be
installed, and enabled, for broadcast.ksh to work. The details are in Chapter 25.

Uppercase or Lowercase Text for Easy Testing

We often need to test text strings like filenames, variables, file text, and so on, for com-
parison. It can vary so widely that it is easier to uppercase or lowercase the text for ease
of comparison. The tr and typeset commands can be used to uppercase and lowercase
text. This makes testing for things like variable input a breeze. Here is an example
using the tr command:

VARIABLE VALUES

Expected input: TRUE

Real input: TRUE

Possible input: true TRUE True True, etc...

UPCASING

UPCASEVAR=$(echo $VARIABLE | tr ‘[a-z]’ ‘[A-Z]’)

DOWNCASING

DOWNCASEVAR=$(echo $VARIABLE | tr ‘[A-Z]’ ‘[a-z]’)

24 Chapter 1

In the preceding example of the tr command, we echo the string and use a pipe (|)
to send the output of the echo statement to the tr command. As the preceding exam-
ples show, uppercasing uses ‘[a-z]’ ‘[A-Z]’ .

NOTE The single quotes are required around the square brackets.

‘[a-z]’ ‘[A-Z]’ Used for lower to uppercase

‘[A-Z]’ ‘[a-z]’ Used for upper to lowercase

No matter what the user input is, we will always have the stable input of TRUE, if
uppercased, and true, if lowercased. This reduces our code testing and also helps the
readability of the script.

We can also use typeset to control the attributes of a variable in the Korn shell. In the
previous example we are using the variable, VARIABLE. We can set the attribute to
always translate all of the characters to uppercase or lowercase. To set the case attribute
of VARIABLE to always translate characters to uppercase we use:

typeset -u VARIABLE

The -u switch to the typeset command is used for uppercase. After we set the
attribute of the variable VARIABLE, using the typeset command, any time we assign
text characters to VARIABLE they are automatically translated to uppercase characters.

EXAMPLE:

typeset -u VARIABLE

VARIABLE=”True”

echo $VARIABLE

TRUE

To set the case attribute of the variable VARIABLE to always translate characters to
lowercase we use:

typeset -l VARIABLE

EXAMPLE:

typeset -l VARIABLE

VARIABLE=”True”

echo $VARIABLE

true

Check the Return Code

Whenever we run a command there is a response back from the system about the last
command that was executed, known as the return code. If the command was success-
ful the return code will be 0, zero. If it was not successful the return will be something

Scripting Quick Start and Review 25

Free & Share & Open

other than 0, zero. To check the return code we look at the value of the $? shell
variable.

As an example, we want to check if the /usr/local/bin directory exists. Each of
these blocks of code accomplishes the exact same thing:

test -d /usr/local/bin

if [“$?” -eq 0] # Check the return code

then # The return code is zero

echo ‘/usr/local/bin does exist’

else # The return code is NOT zero

echo ‘/usr/local/bin does NOT exist’

fi

or

if test -d /usr/local/bin

then # The return code is zero

echo ‘/usr/local/bin does exist’

else # The return code is NOT zero

echo ‘/usr/local/bin does NOT exist’

fi

or

If [-d /usr/local/bin]

then # The return code is zero

echo ‘/usr/local/bin does exist’

else # The return code is NOT zero

echo ‘/usr/local/bin does NOT exist’

fi

Notice that we checked the return code using $? once. The other examples use the
control structure’s built-in test. The built-in tests do the same thing of processing the
return code, but the built-in tests hide this step in the process. All three of the previous
examples give the exact same result. This is just a matter of personal choice and
readability.

26 Chapter 1

Time-Based Script Execution

We write a lot of shell scripts that we want to execute on a timed interval or run once
at a specific time. This section addresses these needs with several examples.

Cron Tables
A cron table is a system file that is read every minute by the system and will execute any
entry that is scheduled to execute in that minute. By default, any user can create a cron
table with the crontab -e command, but the Systems Administrator can control which
users are allowed to create and edit cron tables with the cron.allow and cron.deny
files. When a user creates his or her own cron table the commands, programs, or scripts
will execute in that user’s environment. It is the same thing as running the user’s
$HOME/.profile before executing the command.

The crontab -e command starts the default text editor, vi or emacs, on the user’s
cron table.

NOTE When using the crontab command, the current user ID is the cron table
that is acted on. To list the contents of the current user’s cron table, issue the
crontab -l command.

Cron Table Entry Syntax

It is important to know what each field in a cron table entry is used for. Figure 1.1
shows the usage for creating a cron table entry.

This cron table entry in Figure 1.1 executes the script, /usr/local/bin/
somescript.ksh, at 3:15AM, January 8, on any day of the week that January 8 falls
on. Notice that we used a wildcards for the weekday field. The following cron table
entry is another example:

1 0 1 1 * /usr/bin/banner “Happy New Year” > /dev/console

Figure 1.1 Cron table entry definitions and syntax.

Minute (0 through 29)

Hour (0 through 23)

Day of the Month (1 through 31)

Month (1 through 12)

Weekday (0 - 6 for Sunday to Saturday)

/dev/null

/usr/local/bin/somescript.sh 2>&1 >*18315

Scripting Quick Start and Review 27

Free & Share & Open

At 1 minute after midnight on January 1, on any weekday, this cron table entry
writes to the system’s console (/dev/console) Happy New Year in large banner
letters.

Wildcards

* Match any number of characters

? Match a single character

at Command
Like a cron table, the at command executes commands based on time. Using the at
command we can schedule a job to run once, at a specific time. When the job is executed
the at command will send an e-mail, of the standard output and standard error, to the
user who scheduled the job to run, unless the output is redirected. As a Systems
Administrator we can control which users are allowed to schedule jobs with the
at.allow and at.deny files. Refer to each operating system’s man pages before
modifying these files and the many ways to use the at command for timed controlled
command execution.

Output Control

How is the script going to run? Where will the output go? These questions come under
job control.

Silent Running
To execute a script in silent mode we can use the following syntax:

/PATH/script_name 2>&1 > /dev/null

In this command statement the script_name shell script will execute without any
output to the screen. The reason for this is that the command is terminated with the
following:

2>&1 > /dev/null

By terminating a command like this it redirects standard error (stderr), specified
by file descriptor 2, to standard output (stdout), specified by file descriptor 1. Then
we have another redirection to /dev/null, which sends all of the output to the bit
bucket.

We can call this silent running. This means that there is absolutely no output from the
script going to our screen. Inside the script there may be some output directed to files
or devices, a particular terminal, or even the system’s console, /dev/console, but

28 Chapter 1

none to the user screen. This is especially useful when executing a script from one of
the system’s cron tables.

In the following example cron table entry, we want to execute a script named
/usr/local/bin/systemcheck.ksh, which needs to run as the root user, every
15 minutes, 24 hours a day, 7 days a week and not have any output to the screen. There
will not be any screen output because we are going to end the cron table entry with:

2>&1 > /dev/null

Inside the script it may do some kind of notification such as paging staff or sending
output to the system’s console, writing to a file or a tape device, but output such as
echo “Hello world” would go to the bit bucket. But echo “Hello world” >
/dev/console would go to the system’s defined console if this command statement
was within the shell script.

This cron table entry would need to be placed in the root cron table (must be logged
in as the root user) with the following syntax.

5,20,35,50 * * * * /usr/local/bin/systemcheck.ksh 2>&1 >/dev/null

NOTE Most system check type scripts need to be in the root cron table.
Of course, a user must be logged in as root to edit root’s cron table.

The previous cron table entry would execute the /usr/local/bin/system
check.ksh every 15 minutes, at 5, 20, 35, and 50 minutes, each hour, 24 hours a day,
7 days a week. It would not produce any output to the screen due to the final 2>&1 >
/dev/null. Of course, the minutes selected to execute can be any. We sometimes
want to spread out execution times in the cron tables so that we don’t have a lot of
CPU-intensive scripts and programs starting execution at the same time.

Using getopts to Parse Command-Line Arguments
The getopts command is built in to the Korn shell. It retrieves valid command-line
options specified by a single character preceded by a - (minus sign) or + (plus sign). To
specify that a command switch requires an argument to the switch, it is followed by a
: (colon). If the switch does not require any argument then the : should be omitted. All
of the options put together are called the OptionString, and this is followed by some
variable name. The argument for each switch is stored in a variable called $OPTARG. If
the entire OptionString is preceded by a : (colon), then any unmatched switch
option causes a ? to be loaded into the VARIABLE. The form of the command follows:

getopts OptionString VARIABLE [Argument ...]

The easiest way to explain this is with an example. For our script we need seconds,
minutes, hours, days, and a process to monitor. For each one of these we want to supply
an argument—that is, -s 5 -m10 -p my_backup. In this we are specifying 5 seconds,

Scripting Quick Start and Review 29

Free & Share & Open

10 minutes, and the process is my_backup. Notice that there does not have to be a
space between the switch and the argument. This is what makes getopts so great! The
command line to set up our example looks like this:

SECS=0 # Initialize all to zero

MINUTES=0

HOURS=0

DAYS=0

PROCESS= # Initialize to null

while getopts :s:m:h:d:p: TIMED 2>/dev/null

do

case $TIMED in

s) SECS=$OPTARG

;;

m) ((MINUTES = $OPTARG * 60))

;;

h) ((HOURS = $OPTARG * 3600))

;;

d) ((DAYS = $OPTARG * 86400))

;;

p) PROCESS=$OPTARG

;;

\?) usage

exit 1

;;

esac

done

((TOTAL_SECONDS = SECONDS + MINUTES + HOURS + DAYS))

There are a few things to note in the getopts command. The getopts command needs
to be part of a while loop with a case statement within the loop for this example. On
each option we specified, s, m, h, d, and p, we added a : (colon) after each switch. This
tells getopts that an argument is required. The : (colon) before the OptionString list
tells getopts that if an unspecified option is given, to set the $TIMED variable to the
? character. This allows us to call the usage function and exit with a return code of
1. The first thing to be careful of is that getopts does not care what arguments it
receives so we have to take action if we want to exit. The last thing to note is that the
first line of the while loop has redirection of standard error (file descriptor 2) to the bit
bucket. Any time an unexpected argument is encountered, getopts sends a message to
standard error. Because we expect this to happen, we can just ignore the messages and
discard them to /dev/null. We will study getopts a lot in this book.

Making a Co-Process with Background Function
We also need to cover setting up a co-process. A co-process is a communications link
between a foreground and a background process. The most common question is why is
this needed? In one of the scripts we are going to call a function that will handle all of

30 Chapter 1

the process monitoring for us while we do the timing control in the main script. The
problem arises because we need to run this function in the background and it has an infinite
loop. Within this background process-monitoring function there is an infinite loop.
Without the ability to tell the loop to break out, it will continue to execute on its own
after the main script, and function, is interrupted. We know what this causes—one or
more defunct processes! From the main script we need a way to communicate with this
loop, thus background function, to tell it to break out of the loop and exit the function
cleanly when the countdown is complete and if the script is interrupted, CTRL-C. To
solve this little problem we kick off our proc_watch function as a co-process, in the
background. How do we do this, you ask? “Pipe it to the background” is the simplest way
to put it, and that is also what it looks like, too. Look at the next example code block:

############################

function trap_exit

{

Tell the co-process to break out of the loop

BREAK_OUT=’Y’

print -p $BREAK_OUT # Use “print -p” to talk to the co-process

}

############################

function proc_watch

{

This function is started as a co-process!!!

while : # Loop forever

do

Some Code Here

read $BREAK_OUT # Do NOT need a “-p” to read!

if [[$BREAK_OUT = ‘Y’]]

then

return 0

fi

done

}

############################

Start of Main

############################

Set a Trap

trap ‘trap_exit; exit 2’ 1 2 3 15

TOTAL_SECONDS=300

BREAK_OUT=’N’

proc_watch |& # Start proc_watch as a co-process!!!!

PW_PID=$1 # Process ID of the last background job

Scripting Quick Start and Review 31

Free & Share & Open

until ((TOTAL_SECONDS == 0))

do

((TOTAL_SECONDs = TOTAL_SECONDS - 1))

sleep 1

done

BREAK_OUT=’Y’

Use “print -p” to communicate with the co-process variable

print -p $BREAK_OUT

kill $PW_PID # Kill the background co-process

exit 0

In this code segment we defined two functions. The trap_exit function will exe-
cute on exit signals 1, 2, 3, and 15. The other function is the proc_watch function,
which is the function that we want to start as a background process. As you can see in
proc_watch, it has an infinite loop. If the main script is interrupted then without a
means to exit the loop, within the function, the loop alone will continue to execute! To
solve this we start the proc_watch as a co-process by “piping it to the background”
using pipe ampersand , |&, as a suffix. Then when we want to communicate to this
co-process background function we use print -p $VARIABLE_NAME. Inside the co-
process function we just use the standard read $VARIABLE_NAME. This is the mech-
anism that we are going to use to break out of the loop if the main script is interrupted
on a trapped signal; of course, we cannot catch a kill -9 with a trap.

Try setting up the scenario described previously with a background function that
has an infinite loop. Then press the CTRL-C key sequence to kill the main script, and
do a ps -ef | more. You will see that the background loop is still executing! Get the PID,
and do a kill -9 on that PID to kill it. Of course, if the loop’s exit criteria is ever met, the
loop will exit on its own.

Catching a Delayed Command Output

Have you ever had a hard time trying to catch the output of a command that has a
delayed output? This can cause a lot of frustration when you just miss it! There is a lit-
tle technique that allows you to catch these delayed responses. The trick is to use an
until loop. Look at the code shown here.

OUTFILE=”/tmp/outfile.out” # Define the output file

cat /dev/null > $OUTFILE # Create a zero size output file

Start an until loop to catch the delayed response

until [-s $OUTFILE]

do

32 Chapter 1

delayed_output_command >> $OUTFILE

done

Show the resulting output

more $OUTFILE

This code segment first defines an output file to store the delayed output data. We
start with a zero-sized file and then enter an until loop that will continue until the
$OUTFILE is no longer a zero-sized file, and the until loop exits. The last step is to
show the user the data that was captured from the delayed output.

Fastest Ways to Process a File Line by Line

Most shell scripts work with files, and some use a file for data input. The two fastest
techniques for processing a file line by line are shown in this section. The first tech-
nique feeds a while loop from the bottom. The second technique uses file descriptors.

function while_read_LINE_bottom

{

while read LINE

do

echo “$LINE”

:

done < $FILENAME

}

The function shown in the previous code feeds the while loop from the bottom, after
the done.

function while_read_LINE_FD

{

exec 3<&0

exec 0< $FILENAME

while read LINE

do

echo “$LINE”

:

done

exec 0<&3

}

The function shown in the previous code uses file descriptors to process the file line
by line.

Scripting Quick Start and Review 33

Free & Share & Open

Mail Notification Techniques

In a lot of the shell scripts in this book it is a good idea to send notifications to users
when errors occur, when a task is finished, and for many other reasons. Some of the
email techniques are shown in this section.

Using the mail and mailx Commands
The most common notification method uses the mail and mailx commands. The basic
syntax of both these commands is shown here.

mail -s “This is the subject” $MAILOUT_LIST < $MAIL_FILE

OR

cat $MAIL_FILE | mail -s “This is the subject” $MAILOUT_LIST

mailx -s “This is the subject” $MAILOUT_LIST < $MAIL_FILE

OR

cat $MAIL_FILE | mailx -s “This is the subject” $MAILOUT_LIST

Not all systems support the mailx command, but the systems that do have support
use the same syntax as the mail command. To be safe when dealing with multiple Unix
platforms always use the mail command.

Using the sendmail Command to Send Outbound Mail
In one shop I worked at I could not send outbound mail from the any user named root.
The from field had to be a valid email address that is recognized by the mail server, and
root is not valid. To get around this little problem I changed the command that I used
from mail to sendmail. The sendmail command allows us to add the -f switch to indi-
cate a valid internal email address for the from field. The sendmail command is in
/usr/sbin/sendmail on AIX, HP-UX, and Linux, but on SunOS the location
changed to /usr/lib/sendmail. Look at the function in Listing 3.3.

function send_notification

{

if [-s $MAIL_FILE -a “$MAILOUT” = “TRUE”];

then

case $(uname) in

AIX|HP-UX|Linux) SENDMAIL=”/usr/sbin/sendmail”

;;

SunOS) SENDMAIL=”/usr/lib/sendmail”

;;

esac

34 Chapter 1

echo “\nSending e-mail notification”

$SENDMAIL -f randy@$THISHOST $MAIL_LIST < $MAIL_FILE

fi

}

Both techniques should allow you to get the message out quickly.

Creating a Progress Indicator

Any time that a user is forced to wait as a long process runs, it is an excellent idea to
give the user some feedback. This section deals with progress indicators.

A Series of Dots
The echo command prints a single dot on the screen, and the backslash c, \c, specifies
a continuation on the same line without a new line or carriage return. To make a series
of dots we will put this single command in a loop with some sleep time between
each dot. We will use a while loop that loops forever with a 10-second sleep between
printing each dot on the screen.

while true

do

echo “.\c”

sleep 10

done

A Rotating Line
The function shown here shows what appears to be a rotating line as the process runs.

function rotate_line

{

INTERVAL=1 # Sleep time between “twirls”

TCOUNT=”0” # For each TCOUNT the line twirls one increment

while : # Loop forever...until this function is killed

do

TCOUNT=`expr $TCOUNT + 1` # Increment the TCOUNT

case $TCOUNT in

“1”) echo ‘-’”\b\c”

sleep $INTERVAL

Scripting Quick Start and Review 35

Free & Share & Open

;;

“2”) echo ‘\\’”\b\c”

sleep $INTERVAL

;;

“3”) echo “|\b\c”

sleep $INTERVAL

;;

“4”) echo “/\b\c”

sleep $INTERVAL

;;

*) TCOUNT=”0” ;; # Reset the TCOUNT to “0”, zero.

esac

done

}

To use this in a shell script, use this technique to start and stop the rotation.

######################################

########## Begin of Main #############

######################################

rotate_line & # Run the function in the background

ROTATE_PID=$! # Capture the PID of the last background process

/usr/local/bin/my_time_consuming_task.ksh

Stop the rotating line function

kill -9 $ROTATE_PID

Cleanup...this removes the left over line.

echo “\b\b “

Creating a Psuedo-Random Number

There is a built-in Korn shell variable that will create a pseudo-random number called
RANDOM. The following code segment creates a pseudo-random number between 1 and
a upper limit defined by the user.

RANDOM=$$ # Set the seed to the PID of the script

UPPER_LIMIT=$1

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

echo “$RANDOM_NUMBER”

If the user specified the UPPER_LIMIT to be 100 then the result would be a pseudo-
random number between 1 and 100.

36 Chapter 1

Checking for Stale Disk Partitions in AIX

Ideally we want the stale disk partition value to be zero, 0. If the value is greater than
zero we have a problem. Specifically, the mirrored disks in this Logical Volume are not
in sync, which translates to a worthless mirror. Take a look at the following command
statement.

LV=hd6

NUM_STALE_PP=$(lslv -L $LV | grep “STALE PP” | awk ‘{print $3}’

The previous statement saves the number of stale PPs into the NUM_STALE_PP
variable. We accomplish this feat by command substitution, specified by the
VARIABLE=$(commands) notation.

Automated Host Pinging

Depending on the operating system that you are running, the ping command varies if
you want to send three pings to each host to see if the machines are up. The function
shown here can ping from AIX, HP-UX, Linux, and SunOS machines.

function ping_host

{

HOST=$1 # Grab the host to ping from ARG1.

PING_COUNT=3

PACKET_SIZE=54

This next case statement executes the correct ping

command based on the Unix flavor

case $(uname) in

AIX|Linux)

ping -c${PING_COUNT} $HOST 2>/dev/null

;;

HP-UX)

ping $HOST $PACKET_SIZE $PING_COUNT 2>/dev/null

;;

SunOS)

ping -s $HOST $PACKET_SIZE $PING_COUNT 2>/dev/null

;;

*)

echo “\nERROR: Unsupported Operating System - $(uname)”

echo “\n\t...EXITING...\n”

exit 1

esac

}

Scripting Quick Start and Review 37

Free & Share & Open

The main body of the shell script must supply the hostname to ping. This is usually
done with a while loop.

Highlighting Specific Text in a File

The technique shown here highlights specific text in a file with reverse video while dis-
playing the entire file. To add in the reverse video piece, we have to do some command
substitution within the sed statement using the tput commands. Where we specify the
new_string, we will add in the control for reverse video using command substitu-
tion, one to turn highlighting on and one to turn it back off. When the command sub-
stitution is added, our sed statement will look like the following:

sed s/current_string/$(tput smso)new_string$(tput rmso)/g

In our case the current_string and new_string will be the same because we
only want to highlight existing text without changing it. We also want the string to be
assigned to a variable as in the next command:

sed s/”$STRING”/$(tput smso)”$STRING”$(tput rmso)/g

Notice the double quotes around the string variable, “$STRING”. Do not forget to
add the double quotes around variables!

As an experiment using command substitution, try this next command statement to
highlight the machine’s host name in the /etc/hosts file on any Unix machine:

cat /etc/hosts | sed s/`hostname`/$(tput smso)`hostname`$(tput rmso)/g

Keeping the Printers Printing

Keeping the printers enabled in a large shop can sometimes be overwhelming. There
are two techniques to keep the printers printing. One technique is for the AIX “classic”
printer subsystem, and the other is for System V printing.

AIX “Classic” Printer Subsystem
To keep AIX “classic” printer subsystem print queues running use either of the follow-
ing commands.

enable $(enq -AW | tail +3 | grep DOWN | awk ‘{print $1}’) 2>/dev/null

or

enable $(lpstat -W | tail +3 | grep DOWN | awk ‘{print $1}’) 2>/dev/null

38 Chapter 1

System V Printing
To keep System V printers printing use either of the following commands.

lpc enable $(lpstat -a | grep ‘not accepting’ | awk ‘{print $1}’)

lpc start $(lpstat -p | grep disabled | awk ‘{print $2}’)

lpc up all # Enable all printing and queuing

It is a good idea to use the root cron table to execute the appropriate command every
15 minutes or so.

Automated FTP File Transfer

You can use a here document to script an FTP file transfer. The basic idea is shown here.

ftp -i -v -n wilma <<END_FTP

user randy mypassword

binary

lcd /scripts/download

cd /scripts

get auto_ftp_xfer.ksh

bye

END_FTP

Capturing a List of Files Larger than $MEG

Who filled up that filesystem? If you want to look quickly for large files use the fol-
lowing syntax.

Search for files > $MEG_BYTES starting at the $SEARCH_PATH

#

HOLD_FILE=/tmp/largefiles.list

MEG_BYTES=$1

SEARCH_PATH=$(pwd) # Use the current directory

find $SEARCH_PATH -type f -size +${MEG_BYTES}000000c -print > $HOLDFILE

Note that in the find command after the -size parameter there is a plus sign (+) pre-
ceding the file size, and there is a c added as a suffix. This combination specifies files
larger than $MEG_BYTES measured in bytes, as opposed to blocks.

Scripting Quick Start and Review 39

Free & Share & Open

Capturing a User’s Keystrokes

In most large shops there is a need, at least occasionally, to monitor a user’s actions.
You may even want to audit the keystrokes of anyone with root access to the system
or other administration type accounts such as oracle. Contractors on site can pose a
particular security risk. Typically when a new application comes into the environment,
one or two contractors are on site for a period of time for installation, troubleshooting,
and training personnel on the product.

The code shown next uses the script command to capture all of the keystrokes.

TS=$(date +%m%d%y%H%M%S) # File time stamp

THISHOST=$(hostname|cut -f1-2 -d.) # Host name of this machine

LOGDIR=/usr/local/logs/script # Directory to hold the logs

LOGFILE=${THISHOST}.${LOGNAME}.$TS # Creates the name of the log file

touch $LOGDIR/$LOGFILE # Creates the actual file

Set the command prompt

export PS1=”[$LOGNAME:$THISHOST]@”’$PWD> ‘

#################### RUN IT HERE ##########################

chown $LOGNAME ${LOGDIR}/${LOGFILE} # Let the user own the file during

the script

chmod 600 ${LOGDIR}/${LOGFILE} # Change permission to RW for the

owner

script ${LOGDIR}/${LOGFILE} # Start the script monitoring session

chown root ${LOGDIR}/${LOGFILE} # Change the ownership to root

chmod 400 ${LOGDIR}/${LOGFILE} # Set permission to read-only by root

Using the bc Utility for Floating-Point Math

On Unix machines there is a utility called bc that is an interpreter for arbitrary-
precision arithmetic language. The bc command is an interactive program that pro-
vides arbitrary-precision arithmetic. You can start an interactive bc session by typing
bc on the command line. Once in the session you can enter most complex arithmetic
expressions as you would in a calculator.

The code segment shown next creates the mathematical expression for the bc utility
and then uses a here document to load the expression into bc.

Loop through each number and build a math statement that

will add all of the numbers together.

for X in $NUM_LIST

do

ADD=”$ADD $PLUS $X”

40 Chapter 1

PLUS=”+”

done

##

Do the math here by using a here document to supply

input to the bc command. The sum of the numbers is

assigned to the SUM variable.

SUM=$(bc <<EOF

scale=$SCALE

(${ADD})

EOF)

This is about as simple as bc gets. This is just a taste. Look for more later in the book.

Number Base Conversions

There are a lot of occasions when we need to convert numbers between bases. The code
that follows shows some examples of how to change the base.

Using the typeset Command

Convert a base 10 number to base 16

typeset -i16 BASE_16_NUM

BASE_16_NUM=47295

echo $BASE_16_NUM

16#b8bf

Convert a base 8 number to base 16

[root@yogi:/scripts]> typeset -i16 BASE_16_NUM

[root@yogi:/scripts]> BASE_16_NUM=8#472521

[root@yogi:/scripts]> echo $BASE_16_NUM

16#735c9

Using the printf Command

Convert a base 10 number to base 8

printf %o 20398

47656

Scripting Quick Start and Review 41

Free & Share & Open

Convert a base 10 number to base 16

printf %x 20398

4fae

Create a Menu with the select Command

There are many times when you just need to provide a menu for the end user to select
from, and this is where a select statement comes in. The menu prompt is assigned to
the PS3 system variable, and the select statement is used a lot like a for loop. A case
statement is used to specify the action to take on each selection.

PS3=”Is today your birthday? “

echo “\n”

select menu_selections in Yes No Quit

do

case $menu_selections in

Yes) echo “\nHappy Birthday!\n”

;;

No) print “\nIt is someone’s birthday today...\

Sorry it is not yours\n”

;;

Quit) print “\nLater tater!\n”

break

;;

*) print “\nInvalid Answer...Please try again\n”

;;

esac

done

Notice in this code segment the use of the select statement. This looks just like a for
loop with a list of possible values. Next is an embedded case statement that allows us
to specify the action to take when each selection is made. The output of this simple
menu is shown here with a selection of each possible answer.

./select_menu.ksh

1) Yes

2) No

3) Quit

Is today your birthday? 4

Invalid Answer...Please try again

42 Chapter 1

Is today your birthday? 1

Happy Birthday!

Is today your birthday? 2

It is someone’s birthday today...Sorry it is not yours

Is today your birthday? 3

Later tater!

Sending Pop-Up Messages to Windows

When we need to get the word out quickly to the clients using Windows desktops, we
can use Samba on the Unix machine to send a pop-up message. A list of the Windows
machines is used in a while loop, and one by one the message is sent to each desktop
that is reachable and powered on. If a message is not sent to the target Windows
machine, no error is produced. We cannot guarantee that all of the messages were
received. The code segment to send the message is shown here.

Loop through each host in the $WINLIST and send the pop-up message

for NODE in $WINLIST

do

echo “Sending to ==> $NODE”

echo $MESSAGE | $SMBCLIENT -M $NODE # 1>/dev/null

if (($? == 0))

then

echo “Sent OK ==> $NODE”

else

echo “FAILED to ==> $NODE Failed”

fi

done

The WINLIST variable contains a list of Windows machines. The MESSAGE contains
the message to send, and the SMBCLIENT variable contains the fully qualified path-
name to the smbclient command.

Removing Repeated Lines in a File

The uniq command is used to report and remove repeated lines in a file. This is a valu-
able tool for a lot of scripting and testing. The syntax is shown here.

Scripting Quick Start and Review 43

Free & Share & Open

If you have a file that has repeated lines named my_list and you want to save the
list without the repeated lines in a file called my_list_no_repeats, use the follow-
ing command:

uniq my_list my_list_no_repeats

If you want to see a file’s output without repeated lines use the following command:

cat repeat_file | uniq

Removing Blank Lines from a File

The easiest way to remove blank lines from a file is to use a sed statement. The follow-
ing syntax removes the blank lines.

cat my_file | sed /^$/d

Testing for a Null Variable

Variables that have nothing assigned to them are sometimes hard to deal with. The
following test will ensure that a variable is either Null or has a value assigned to it.
The double quotes are very important and must be used!

VAL= # Creates a NULL variable

if [[-z “$VAL” && “$VAL” = ‘’]]

then

echo “The VAL variable is NULL”

fi

or

VAL=25

if [[! -z “$VAL” && “$VAL” != ‘’]]

then

echo “The VAL variable is NOT NULL”

fi

44 Chapter 1

Directly Access the Value of the Last
Positional Parameter, $#

To access the value of the $# positional parameter directly, use the following command:

eval ‘$’$#

or

eval \$$#

There are a lot of uses for this technique, as you will see later in this book.

Remove the Columns Heading
in a Command Output

There are many instances when we want to get rid of the columns heading in a com-
mand’s output. A lot of people try to use grep -v to pattern match on something unique
in the heading. A much easier and more reliable method is to use the tail command. An
example is shown with the df command output.

[root:yogi]@/scripts# df -k

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 32768 15796 52% 1927 12% /

/dev/hd2 1466368 62568 96% 44801 13% /usr

/dev/hd9var 53248 8112 85% 1027 8% /var

/dev/hd3 106496 68996 36% 245 1% /tmp

/dev/hd1 4096 3892 5% 55 6% /home

/proc - - - - - /proc

/dev/hd10opt 655360 16420 98% 16261 10% /opt

/dev/scripts_lv 102400 24012 77% 1137 5% /scripts

/dev/lv_temp 409600 147452 65% 29 1% /tmpfs

Now look at the same output with the column headings removed.

[root:yogi]@/scripts# df -k | tail +2

/dev/hd4 32768 15796 52% 1927 12% /

/dev/hd2 1466368 62568 96% 44801 13% /usr

/dev/hd9var 53248 8112 85% 1027 8% /var

/dev/hd3 106496 68996 36% 245 1% /tmp

Scripting Quick Start and Review 45

Free & Share & Open

/dev/hd1 4096 3892 5% 55 6% /home

/proc - - - - - /proc

/dev/hd10opt 655360 16420 98% 16261 10% /opt

/dev/scripts_lv 102400 24012 77% 1137 5% /scripts

/dev/lv_temp 409600 147452 65% 29 1% /tmpfs

Just remember to add one to the total number of lines that you want to remove.

Arrays

The Korn shell supports one-dimensional arrays. The maximum number of array ele-
ments is 1024. When an array is defined, it is automatically dimensioned to 1024 ele-
ments. A one-dimensional array contains a sequence of array elements, which are like
the boxcars connected together on a train track. An array element can be just about
anything, except for another array. I know, you’re thinking that you can use an array to
access an array to create two- and three-dimensional arrays. If this can be done, it is
beyond the scope of this book.

Loading an Array
An array can be loaded in two ways. You can define and load the array in one step with
the set -A command, or you can load the array one element at a time. Both techniques
are shown here.

set -A MY_ARRAY alpha beta gamma

or

X=0 # Initialize counter to zero.

Load the array with the strings alpha, beta, and gamma

for ELEMENT in alpha gamma beta

do

MY_ARRAY[$X]=$ELEMENT

((X = X + 1))

done

The first array element is referenced by 0, not 1. To access array elements use the fol-
lowing syntax:

echo ${MY_ARRAY[2] # Show the third array element

gamma

echo ${MY_ARRAY[*] # Show all array elements

alpha beta gamma

echo ${MY_ARRAY[@] # Show all array elements

alpha beta gamma

46 Chapter 1

echo ${#MY_ARRAY[*]} # Show the total number of array elements

3

echo ${#MY_ARRAY[@]} # Show the total number of array elements

3

echo ${MY_ARRAY} # Show array element 0 (the first element)

alpha

We will use arrays in shell scripts in two chapters in this book.

Testing a String

One of the hardest things to do in a shell script is to test the user’s input from the
command-line. This shell script will do the trick by using regular expressions to define
the string composition.

#!/bin/ksh

#

SCRIPT: test_string.ksh

AUTHOR: Randy Michael

REV: 1.0.D - Used for developement

DATE: 10/15/2002

PLATFORM: Not Platform Dependent

#

PURPOSE: This script is used to test a character

string, or variable, for its composition.

Examples include numeric, lowercase or uppercase

characters, alpha-numeric characters and IP address.

#

REV LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to verify syntax without any execution.

REMEMBER: Put the comment back or the script will

NOT EXECUTE!

#

##

############## DEFINE FUNCTIONS HERE ###############

##

test_string ()

{

This function tests a character string

Must have one argument ($1)

if (($# != 1))

Scripting Quick Start and Review 47

Free & Share & Open

then

This error would be a programming error

print “ERROR: $(basename $0) requires one argument”

return 1

fi

Assign arg1 to the variable --> STRING

STRING=$1

This is where the string test begins

case $STRING in

+([0-9]).+([0-9]).+([0-9]).+([0-9]))

Testing for an IP address - valid and invalid

INVALID=FALSE

Separate the integer portions of the “IP” address

and test to ensure that nothing is greater than 255

or it is an invalid IP address.

for i in $(echo $STRING | awk -F . ‘{print $1, $2, $3, $4}’)

do

if ((i > 255))

then

INVALID=TRUE

fi

done

case $INVALID in

TRUE) print ‘INVALID_IP_ADDRESS’

;;

FALSE) print ‘VALID_IP_ADDRESS’

;;

esac

;;

+([0-1])) # Testing for 0-1 only

print ‘BINARY_OR_POSITIVE_INTEGER’

;;

+([0-7])) # Testing for 0-7 only

print ‘OCTAL_OR_POSITIVE_INTEGER’

;;

+([0-9])) # Check for an integer

print ‘INTEGER’

;;

+([-0-9])) # Check for a negative whole number

print ‘NEGATIVE_WHOLE_NUMBER’

;;

+([0-9]|[.][0-9]))

48 Chapter 1

Check for a positive floating point number

print ‘POSITIVE_FLOATING_POINT’

;;

+(+[0-9][.][0-9]))

Check for a positive floating point number

with a + prefix

print ‘POSITIVE_FLOATING_POINT’

;;

+(-[0-9][.][0-9]))

Check for a negative floating point number

print ‘NEGATIVE_FLOATING_POINT’

;;

+([-.0-9]))

Check for a negative floating point number

print ‘NEGATIVE_FLOATING_POINT’

;;

+([+.0-9]))

Check for a positive floating point number

print ‘POSITIVE_FLOATING_POINT’

;;

+([a-f])) # Test for hexidecimal or all lowercase characters

print ‘HEXIDECIMAL_OR_ALL_LOWERCASE’

;;

+([a-f]|[0-9])) # Test for hexidecimal or all lowercase characters

print ‘HEXIDECIMAL_OR_ALL_LOWERCASE_ALPHANUMERIC’

;;

+([A-F])) # Test for hexidecimal or all uppercase characters

print ‘HEXIDECIMAL_OR_ALL_UPPERCASE’

;;

+([A-F]|[0-9])) # Test for hexidecimal or all uppercase characters

print ‘HEXIDECIMAL_OR_ALL_UPPERCASE_ALPHANUMERIC’

;;

+([a-f]|[A-F]))

Testing for hexidecimal or mixed-case characters

print ‘HEXIDECIMAL_OR_MIXED_CASE’

;;

+([a-f]|[A-F]|[0-9]))

Testing for hexidecimal/alpha-numeric strings only

print ‘HEXIDECIMAL_OR_MIXED_CASE_ALPHANUMERIC’

;;

+([a-z]|[A-Z]|[0-9]))

Testing for any alpha-numeric string only

print ‘ALPHA-NUMERIC’

;;

+([a-z])) # Testing for all lowercase characters only

print ‘ALL_LOWERCASE’

;;

+([A-Z])) # Testing for all uppercase numbers only

print ‘ALL_UPPERCASE’

;;

Scripting Quick Start and Review 49

Free & Share & Open

+([a-z]|[A-Z]))

Testing for mixed case alpha strings only

print ‘MIXED_CASE’

;;

*) # None of the tests matched the string coposition

print ‘INVALID_STRING_COMPOSITION’

;;

esac

}

##

usage ()

{

echo “\nERROR: Please supply one character string or variable\n”

echo “USAGE: $THIS_SCRIPT {character string or variable}\n”

}

##

############# BEGINNING OF MAIN ####################

##

Query the system for the name of this shell script.

This is used for the “usage” function.

THIS_SCRIPT=$(basename $0)

Check for exactly one command-line argument

if (($# != 1))

then

usage

exit 1

fi

Everything looks okay if we got here. Assign the

single command-line argument to the variable “STRING”

STRING=$1

Call the “test_string” function to test the composition

of the character string stored in the $STRING variable.

test_string $STRING

End of script

This is a good start but this shell script does not cover everything. Play around with
it and see if you can make some improvements.

50 Chapter 1

Summary

This chapter is just a primer to get you started with a quick review and some little
tricks and tips. In the next 24 chapters we are going to write a lot of shell scripts to solve
some real-world problems. Sit back and get ready to take on the Unix world!

The first thing that we are going to study is the 12 ways to process a file line by line.
I have seen a lot of good and bad techniques for processing a file line by line over the
last 10 years, and some have been rather inventive. The next chapter presents the
12 techniques that I have seen the most; at the end of the chapter there is a shell script
that times each technique to find the fastest. Read on, and find out which one wins the
race. See you in the next chapter!

Scripting Quick Start and Review 51

Free & Share & Open

53

Have you ever created a really slick shell script to process file data and found that you
have to wait until after lunch to get the results? The script may be running so slowly
because of how you are processing the file. I have come up with 12 ways to process a
file line by line. Some techniques are very fast, and some make you wait for half a day.
The techniques used in this chapter are measurable, and I created a shell script that will
time each method so that you can see which technique suits your needs.

When processing an ASCII text/data file, we are normally inside a loop of some
kind. Then, as we go through the file from the top to the bottom, we process each line
of text. A Korn shell script is really not meant to work on text character by character,
but you can do it using various techniques. The task for this chapter is to show the line-
by-line parsing techniques. We are also going to look at using file descriptors as a pro-
cessing technique.

Command Syntax

First, as always, we need to go over the command syntax that we are going to use. The
commands that we want to concentrate on in this chapter have to deal with while
loops. When parsing a file in a while loop, we need a method to read in the entire line
to a variable. The most prevalent command is read. The read command is flexible in
that you can extract individual strings as well as the entire line. Speaking of line, the

Twelve Ways to Process
a File Line by Line

C H A P T E R

2

Free & Share & Open

line command is another alternative to grab a full line of text. Some operating systems
do not support the line command. I did not find the line command on Linux or Solaris;
however, the line may have been added in subsequent OS releases.

In addition to the read and line, we need to look at the different ways you can use
the while loop, which is the major cause of fast or slow execution times. A while loop
can be used as a standalone loop in a predefined configuration; it can be used in a com-
mand pipe or with file descriptors. Each method has its own set of rules. The use of the
while loop is critical to get the quickest execution times. I have seen many renditions
of the proper use of a while loop, and some techniques I have seen are unique.

Using File Descriptors
Under the covers of the Unix operating system, files are referenced, copied, and moved
by unique numbers known as file descriptors. You already know about three of these
file descriptors:

0 - stdin

1 - stdout

2 - stderr

We have redirected output using the stdout (standard output) and stderr (stan-
dard error) in other scripts in this book. This is the first time we are going to use the
stdin (standard input) file descriptor. For a short definition of each of these we can
talk about the devices on the computer. Standard input usually comes into the com-
puter from the keyboard or mouse. Standard output usually has output to the screen
or to a file. Standard error is where error messages are routed by commands, programs,
and scripts. We have used stderr before to send the error messages to the bit bucket,
or /dev/null, and also more commonly to combine the stdout and stderr outputs
together. You should remember a command like the following one:

some_command 2>&1

The previous command sends all of the error messages to the same output device
that standard output goes to, which is normally the terminal. We can also use other file
descriptors. Valid descriptor values range from 0 to 19 on most operating systems. You
have to do a lot of testing when you use the upper values to ensure that they are not
reserved by the system for some reason. We will see more on using file descriptors in
some of the following code listings.

Creating a Large File to Use in the Timing Test
Before I get into each method of parsing the file, I want to show you a little script you
can use to create a file that has the exact number of lines that you want to process. The
number of characters to create on each line can be changed by modifying the
LINE_LENGTH variable in the shell script, but the default value is 80. This script also
uses a while loop but this time to build a file. To create a file that has 7,500 lines, you

54 Chapter 2

add the number of lines as a parameter to the shell script name. Using the shell script
in Listing 2.1, you create a 7,500-line file with the following syntax:

mk_large_file.ksh 7500

The full shell script is shown in Listing 2.1.

#!/bin/ksh

#

SCRIPT: mk_large_file.ksh

AUTHOR: Randy Michael

DATE: 03/15/2002

REV: 1.2.P

#

PURPOSE: This script is used to create a text file that

has a specified number of lines that is specified

on the command line.

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this shell script

#

##

Define functions here

##

function usage {

echo “\n...USAGE ERROR...\n”

echo “\nUSAGE: $SCRIPT_NAME <number_of_lines_to_create>\n”

}

##

Check for the correct number of parameters

##

if (($# != 1)) # Looking for exactly one parameter

then

usage # Usage error was made

exit 1 # Exit on a usage error

fi

##

Define files and variables here

##

LINE_LENGTH=80 # Number of characters per line

OUT_FILE=/scripts/bigfile # New file to create

Listing 2.1 mk_large_file.ksh shell script listing. (continues)

Twelve Ways to Process a File Line by Line 55

Free & Share & Open

>$OUT_FILE # Initialize to a zero-sized file

SCRIPT_NAME=$(basename $0) # Extract the name of the script

TOTAL_LINES=$1 # Total number of lines to create

LINE_COUNT=0 # Character counter

CHAR=X # Character to write to the file

##

BEGINNING of MAIN

##

while ((LINE_COUNT < TOTAL_LINES)) # Specified by $1

do

CHAR_COUNT=0 # Initialize the CHAR_COUNT to zero on every new line

while ((CHAR_COUNT < LINE_LENGTH)) # Each line is fixed length

do

echo “${CHAR}\c” >> $OUT_FILE # Echo a single character

((CHAR_COUNT = CHAR_COUNT + 1)) # Increment the character

counter

done

((LINE_COUNT = LINE_COUNT + 1)) # Increment the line counter

echo>>$OUT_FILE # Give a newline character

done

Listing 2.1 mk_large_file.ksh shell script listing. (continued)

Each line produced by the mk_large_file.ksh script is the same length. The user
specifies the total number of lines to create as a parameter to the shell script.

Twelve Methods to Parse a File Line by Line

The following paragraphs describe 12 of the parsing techniques I have commonly seen
over the years. I have put them all together in one shell script separated as functions.
After the functions are defined, I execute each method, or function, while timing the
execution using the time command. To get accurate timing results I use a file that
has 7,500 lines, where each line is the same length (we built this file using the
mk_large_file.ksh shell script). A 7,500-line file is an extremely large file to be
parsing line by line in a shell script, about 600 MB, but my Linux machine is so fast that
I needed a large file to get the timing data greater than zero!

Now it is time to look at the 12 methods to parse a file line by line. Each method uses
a while statement to create a loop. The only two commands within the loop are cat
$LINE, to output each line as it is read, and a no-op, specified by the : (colon) charac-
ter. The thing that makes each method different is how the while loop is used.

56 Chapter 2

Method 1: cat $FILENAME | while read LINE
Let’s start with the most common method that I see, which is catting a file and piping
the file output to a while read loop. On each loop iteration a single line of text is read
into a variable named LINE. This continuous loop will run until all of the lines in the
file have been processed one at a time.

The pipe is the key to the popularity of this method. It is intuitively obvious that the
output from the previous command in the pipe is used as input to the next command
in the pipe. As an example, if I execute the df command to list filesystem statistics and
it scrolls across the screen out of view, I can use a pipe to send the output to the more
command, as in the following command:

df | more

When the df command is executed, the pipe stores the output in a temporary system
file. Then this temporary system file is used as input to the more command, allowing
me to view the df command output one page/line at a time. Our use of piping output
to a while loop works the same way; the output of the cat command is used as input to
the while loop and is read into the LINE variable on each loop iteration. Look at the
complete function in Listing 2.2.

function while_read_LINE

{

cat $FILENAME | while read LINE

do

echo “$LINE”

:

done

}

Listing 2.2 while_read_LINE function listing.

Each of these test loops is created as a function so that we can time each method
using the shell script. You could also use () C-type function definition if you wanted,
as shown in Listing 2.3.

while_read_LINE ()

{

cat $FILENAME | while read LINE

do

echo “$LINE”

:

done

}

Listing 2.3 Using the () declaration method function listing.

Twelve Ways to Process a File Line by Line 57

Free & Share & Open

Whether you use the function or () technique, you get the same result. I tend to
use the function method more often so that when someone edits the script they will
know the block of code is a function. For beginners, the word “function” helps under-
standing the whole shell script a lot. The $FILENAME variable is set in the main body
of the shell script. Within the while loop notice that I added the no-op (:) after the echo
statement. A no-op (:) does nothing, but it always has a 0, zero, return code. I use the
no-op only as a placeholder so that you can cut the function code out and paste it in one
of your scripts. If you should remove the echo statement and leave the no-op, the
while loop will not fail; however, the loop will not do anything either.

Method 2: while read $FILENAME from Bottom
You are now entering one of my favorite methods of parsing through a file. We still use
the while read LINE syntax, but this time we feed the loop from the bottom instead of
using a pipe. You will find that this is one of the fastest ways to process each line of a
file. The first time you see this it looks a little unusual, but it works very well.

Look at the code in Listing 2.4, and we will go over the function at the end.

function while_read_LINE_bottom

{

while read LINE

do

echo “$LINE”

:

done < $FILENAME

}

Listing 2.4 while_read_LINE_bottom function listing.

We made a few modifications to the function from Listing 2.3. The cat $FILENAME
to the pipe was removed. Then we use input redirection to let us read the file from the
bottom of the loop. By using the < $FILENAME notation after the done loop termina-
tor we feed the while loop from the bottom, which greatly increases the input through-
put to the loop. When we time each technique, this method will stand out at the top of
the list.

Method 3: while_line_LINE_Bottom
As with the read command you can use the line command directly in a while loop
using the same loop technique. In this function we use the following syntax:

while line LINE

58 Chapter 2

Whether you use this syntax in a pipe or, as in this function, feed the loop from the
bottom, you can see that the line command can be used in the same manner as a read
statement. Study the function in Listing 2.5 and we will go over the method at the end.

function while_line_LINE_bottom

{

while line LINE

do

echo $LINE

:

done < $FILENAME

}

Listing 2.5 while_line_LINE_bottom function listing.

This method is like Method 2 except that we replace read with line. You will see in
our timing tests that both of these techniques may look the same, but you will be sur-
prised at the timing difference. You will have to wait for the timing script to see the
results.

The function in Listing 2.5 uses the line command to assign a new line of text to the
LINE variable on each loop iteration. The while loop is fed from the bottom using
input redirection after the done loop terminator, done < $FILENAME. Using this input
redirection technique keeps the file open for reading and is one of the fastest methods
of supplying input to the loop.

Method 4: cat $FILENAME | while LINE=`line`
Now we are getting into some of the “creative” methods that I have seen in some shell
scripts. Not all Unix operating systems support the line command, though. I have not
found the line command in my Red Hat Linux releases, but that does not mean that it
is not out there somewhere in the open-source world.

Using this loop strategy replaces the read command from Listings 2.2 and 2.4 with
the line command in a slightly different command structure. Look at the function in
Listing 2.6, and we will see how it works at the end.

function cat_while_LINE_line

{

cat $FILENAME | while LINE=`line`

do

echo “$LINE”

:

done

}

Listing 2.6 while_read_LINE_line function listing.

Twelve Ways to Process a File Line by Line 59

Free & Share & Open

The function in Listing 2.6 is interesting. Because we are not using the read com-
mand to assign the line of text to a variable, we need some other technique. If your
machine supports the line command, then this is an option. To see if your Unix box has
the line command enter the following command:

which line

The response should be something like /usr/bin/line. Otherwise, you will see
the $PATH list that was searched, followed by “line” not found.

The line command is used to grab one whole line of text at a time. The read com-
mand does the same thing if you use only one variable with the read statement; other-
wise the line of text will be broken up between the different variables used in the read
statement.

On each loop iteration the LINE variable is assigned a whole line of text using
command substitution. This is done using the LINE=`line` command syntax. The line
command is executed, and the result is assigned to the LINE variable. Of course, I
could have used any variable name, for example:

MY_LINE=`line`

TEXT=`line`

Please notice that the single tic marks are really back tics (`command `), which are
located in the top left corner of most keyboards below the ESC-key. Executing a com-
mand and assigning the output to a variable is called command substitution. Look for
the timing data for this technique when you run the timing script. This extra variable
assignment may have quite an effect on the timing result.

Method 5: cat $FILENAME | while line LINE
Why do the extra variable assignments when using the line command? You really do
not have to. Just as the read command directly assigns a line of text to the LINE vari-
able, the line command can do the same thing. This technique is like Method 1, but we
replace the read command with the line command. Check out Listing 2.7, and we will
describe the method at the end.

function while_line_LINE

{

cat $FILENAME | while line LINE

do

echo “$LINE”

:

done

}

Listing 2.7 while_line_LINE function listing.

60 Chapter 2

In Listing 2.7 we cat the $FILENAME file and use a pipe (|) to use the cat $FILE-
NAME output as input to the while loop. On each loop iteration the line command
grabs one line from the $FILENAME file and assigns it to the LINE variable. Using a pipe
in this manner does not produce very fast file processing, but it is one of the most pop-
ular methods because of its ease of use. When I see a pipe used like this, the while loop
is normally used with the read command instead of the line command.

Method 6: while LINE=`line` from the Bottom
Again, this is one of the more obscure techniques that I have seen in any shell script.
This time we are going to feed our while loop from the bottom, but this time use the
line command instead of the read statement to assign the text to the LINE variable.
This method is similar to the last technique, but we removed the cat $FILENAME to
the pipe and instead redirect input into the loop from the bottom, after the done loop
terminator.

Look at the function in Listing 2.8, and we will see how it works at the end.

function while_LINE_line_bottom

{

while LINE=`line`

do

echo “$LINE”

:

done < $FILENAME

}

Listing 2.8 while_LINE_line_bottom function listing.

We use command substitution to assign the line of file text to the LINE variable as
we did in the previous method. The only difference is that we are feeding the while
loop from the bottom using input redirection of the $FILENAME file. You should be
getting the hang of what we are doing by now. As you can see there are many ways to
parse through a file, but you are going to see that not all of these techniques are very
good choices. This method is one of the poorer choices.

Next we are going to look at the other method of command substitution. The last
two methods used the line command using the syntax LINE=`line`. We can also use
the LINE=$(line) technique. Is there a speed difference?

Method 7: cat $FILENAME | while LINE=$(line)
Looks familiar? This is the same method as Method 3 except for the way we use com-
mand substitution. As I stated in the beginning, we need a rather large file to parse

Twelve Ways to Process a File Line by Line 61

Free & Share & Open

through to get accurate timing results. When we do our timing tests we may see a dif-
ference between the two command substitution techniques.

Study the function in Listing 2.9, and we will cover the function at the end.

function while_LINE_line_cmdsub2

{

cat $FILENAME | while LINE=$(line)

do

echo “$LINE”

:

done

}

Listing 2.9 while_LINE_line_cmdsub2 function listing.

The only thing we are looking for in the function in Listing 2.9 is a timing difference
between the two command substitution techniques. As each line of file text enters the
loop, the line command assigns the text to the LINE variable. Let’s see how Methods 4
and 7 show up in the loop timing tests because the only difference is the assignment
method.

Method 8: while LINE=$(line) from the Bottom
This method is the same technique used in Listing 2.8 except for the command substi-
tution. In this function we are going to use the LINE=$(line) technique. We are again
feeding the while loop input from the bottom, after the done loop terminator. Please
review the function in Listing 2.10.

function while_LINE_line_bottom_cmdsub2

{

while LINE=$(line)

do

echo “$LINE”

:

done < $FILENAME

}

Listing 2.10 while_LINE_line_bottom_cmdsub2 function listing.

By the look of the loop structure you might assume that this while loop is very fast
executing, but you will be surprised at how slow it is. The main reason is the variable
assignment, but the line command has a large effect, too.

62 Chapter 2

Method 9: while read LINE Using File Descriptors
So far we have been doing some very straightforward kind of loops. Have you ever
used file descriptors to parse through a file? I saved the next four functions for last. The
use of file descriptors is sometimes a little hard to understand. I’m going to do my best
to make this easy! Under the covers of the Unix operating system, files are referenced
by file descriptors. You should already know three file descriptors right off the bat. The
three that I am talking about are stdin, stdout, and stderr. Standard input, or
stdin, is specified as file descriptor 0. This is usually the keyboard or mouse. Stan-
dard output, or stdout, is specified as file descriptor 1. Standard output can be your
terminal screen or some kind of a file. Standard error, or stderr, is specified as file
descriptor 2. Standard error is how the system and programs and scripts are able to
send out or suppress error messages.

You can use these file descriptors in combination with one another. I’m sure that you
have seen a shell script send all output to the bit bucket, or /dev/null. Look at the
following command.

my_shell_script.ksh >/dev/null 2>&1

The result of the previous command is to run completely silent. In other words,
there is not any external output produced. Internally the script may be reading and
writing to and from files and may be sending output to a specific terminal, such as
/dev/console. You may want to use this technique when you run a shell script as a
cron table entry or when you just are not interested in seeing any output.

In the previous example we used two file descriptors. We can also use other file
descriptors to handle file input and storage. In our next four timing functions we are
going to use file descriptor 0 (zero), which is standard input, and file descriptor 3. On
most Unix systems valid file descriptors range from 0 to 19. In our case we are going to
use file descriptor 3, but we could have just as easily used file descriptor 5.

There are two steps in the method we are going to use. The first step is to close file
descriptor 0 by redirecting everything to our new file descriptor 3. We use the follow-
ing syntax for this step:

exec 3<&0

Now all of the keyboard and mouse input is going to our new file descriptor 3. The
second step is to send our input file, specified by the variable $FILENAME, into file
descriptor 0 (zero), which is standard input. This second step is done using the follow-
ing syntax:

exec 0<$FILENAME

At this point any command requiring input will receive the input from the $FILENAME
file. Now is a good time for an example. Look at the function in Listing 2.11.

Twelve Ways to Process a File Line by Line 63

Free & Share & Open

function while_read_LINE_FD

{

exec 3<&0

exec 0< $FILENAME

while read LINE

do

echo “$LINE”

:

done

exec 0<&3

}

Listing 2.11 while_read_LINE_FD function listing.

Within the function in Listing 2.11 we have our familiar while loop to read one line
of text at a time. But the beginning of this function does a little file descriptor redirec-
tion. The first exec command redirects stdin to file descriptor 3. The second exec com-
mand redirects the $FILENAME file into stdin, which is file descriptor 0. Now the
while loop can just execute without our having to worry about how we assign a line of
text to the LINE variable. When the while loop exits we redirect the previously reas-
signed stdin, which was sent to file descriptor 3, back to its original file descriptor 0.

exec 0<&3

In other words we set it back to the system’s default value.
Pay close attention to this method in the timing tests later in this chapter. We have

three more examples using file descriptors that utilize some of our previous while
loops. The next two functions are absolutely the most unusual techniques of parsing a
file that I have run across. When you first look at Methods 10 and 11 it seems that the
author had some tricks up his or her sleeve. Please make sure you compare all of the
timing results at the end of the chapter to see how these methods fare.

Method 10: while LINE=’line’ Using File Descriptors
Here we go again with the line command. In this function the line command replaces
the read command; however, we are still going to use file descriptors to gain access to
the $FILENAME file as input to our while loop. We use the same technique described
in Method 9. Study the function in Listing 2.12.

function while_LINE_line_FD

{

exec 3<&0

Listing 2.12 while_LINE_line_FD function listing.

64 Chapter 2

exec 0< $FILENAME

while LINE=`line`

do

echo “$LINE”

:

done

exec 0<&3

}

Listing 2.12 while_LINE_line_FD function listing. (continued)

The nice thing about using file descriptors is that standard input is implied. Standard
input is there; we do not have to cat the file or use a pipe for data input. We just send
the file’s data directly into file descriptor 0, stdin. Just don’t forget to reset the file
descriptor when you are finished using it.

The first exec command redirects input of file descriptor 0 into file descriptor 3. The
second exec command redirects our $FILENAME file into stdin, file descriptor 0. We
process the file using a while loop and then reset the file descriptor 0 back to its
default. File descriptors are really not too hard to use after scripting with them a few
times. Even though we are using file descriptors to try to speed up the processing, the
line command variable assignment will produce slower results than anticipated.

Method 11: while LINE=$(line) Using File Descriptors
This method is just like Method 10 except for the command substitution technique. We
are going to use a large file for our timing tests and hope that we can detect a difference
between the `command` and $(command) command substitution techniques in over-
all run time. Please study the function in Listing 2.13.

function while_LINE_line_cmdsub2_FD

{

exec 3<&0

exec 0< $FILENAME

while LINE=$(line)

do

print “$LINE”

:

done

exec 0<&3

}

Listing 2.13 while_LINE_line_cmdsub2_FD function listing.

Twelve Ways to Process a File Line by Line 65

Free & Share & Open

The function in Listing 2.13 first redirects stdin to file descriptor 3; however,
I could have used any valid file descriptor, such as file descriptor 5. The second step is
redirecting the $FILENAME file into stdin, which is file descriptor 0. After the file
descriptor redirection we execute the while loop, and on completion file descriptor
3 is redirected back to stdin. The end result is file descriptor 0, which again references
stdin. The variable assignment produced by the command substitution has a nega-
tive impact on the timing results.

Method 12: while line LINE Using File Descriptors
Just as in Method 9 when we used a simple while read LINE syntax with file descrip-
tors, we can use the line command in place of read. In our timing tests you will find
that these two methods may look the same, but in the speed list you may be surprised
with the results. Let’s look at the function in Listing 2.14, and we will cover the tech-
nique at the end.

function while_line_LINE_FD

{

exec 3<&0

exec 0< $FILENAME

while line LINE

do

echo “$LINE”

:

done

exec 0<&3

}

Listing 2.14 while_line_LINE_FD function listing.

As with all of our functions using file descriptors we first set up our redirection so
that the $FILENAME file remains open for reading. The difference in this function is
the use of the while line LINE loop syntax. When using file descriptors do not
forget to reset stdin, file descriptor 0 by default, to use file descriptor 0. The last state-
ment in Listing 2.13 we reset the file descriptor 3 back to 0, zero, using the syntax: exec
0<&3.

Timing Each Method

We have created each of the functions for the 12 different methods to parse a file line by
line. Now we can set up a shell script to time the execution of each function to see
which one is the fastest to process a file. Earlier we wrote the mk_large_file.ksh

66 Chapter 2

script that creates a file that has the specified number of 80 character lines of text. This
file is called bigfile, which is defined by the OUT_FILE variable. The default path
for this new file is /scripts/bigfile. If you do not have a /scripts directory or
filesystem, then you need to edit the mk_large_file.ksh shell script to define your
preferred path and filename.

The file used for our timing test is a 7,500-line file. We needed this large a file to get
accurate timing results for each of the 12 methods. Before we start the timing let’s look
at the timing shell script.

Timing Script
The shell script to time each file is not too difficult to understand when you realize
where the output will go by default. The timing mechanism is the time command. The
time command is followed by the name of the shell script or program that you want
the execution to time. The timing data is broken down to the following fields:

real 1m30.34s

user 0m35.50s

sys 0m52.13s

In the previous output we have three measurements: real, user, and sys. The
real time is the total time of execution. The user time is the time spent processing at
the user/application process level. The sys time is the time spent by the system at the
system/kernel level. Different Unix flavors produce slightly different output fields,
but the concepts are identical.

The one thing that users get confused about using the time command is where the
timing data output goes. All of the timing data goes to stderr, or standard error,
which is file descriptor 2. So the shell script or program will execute with the normal
stdin and stdout, and the timing data will go the stderr. Study the shell script in
Listing 2.15, and we will go through the script at the end. Then we are going show
some timing data for each method.

#!/usr/bin/ksh

#

SCRIPT: 12_ways_to_parse.ksh.ksh

#

AUTHOR: Randy Michael

#

DATE: 03/15/2001

#

REV: 1.2.A

#

PURPOSE: This script shows the different ways of reading

a file line by line. Again there is not just one way

to read a file line by line and some are faster than

others and some are more intuitive than others.

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continues)

Twelve Ways to Process a File Line by Line 67

Free & Share & Open

#

REV LIST:

#

02/19/2002 - Randy Michael

Set each of the while loops up as functions and the timing

of each function to see which one is the fastest.

#

###

#

NOTE: To output the timing to a file use the following syntax:

#

12_ways_to_parse.ksh file_to_process > output_file_name 2>&1

#

The actaul timing data is sent to standard error, file

descriptor (2), and the function name header is sent

to standard output, file descriptor (1).

#

###

#

set -n # Uncomment to check command syntax without any execution

set -x # Uncomment to debug this script

#

FILENAME=”$1”

TIMEFILE=”/tmp/loopfile.out”

>$TIMEFILE

THIS_SCRIPT=$(basename $0)

######################################

function usage

{

echo “\nUSAGE: $THIS_SCRIPT file_to_process\n”

echo “OR - To send the output to a file use: “

echo “\n$THIS_SCRIPT file_to_process > output_file_name 2>&1 \n”

exit 1

}

######################################

function while_read_LINE

{

cat $FILENAME | while read LINE

do

echo “$LINE”

:

done

}

######################################

function while_read_LINE_bottom

{

while read LINE

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continued)

68 Chapter 2

do

echo “$LINE”

:

done < $FILENAME

}

######################################

function while_line_LINE_bottom

{

while line LINE

do

echo $LINE

:

done < $FILENAME

}

######################################

function cat_while_LINE_line

{

cat $FILENAME | while LINE=`line`

do

echo “$LINE”

:

done

}

######################################

function while_line_LINE

{

cat $FILENAME | while line LINE

do

echo “$LINE”

:

done

}

######################################

function while_LINE_line_bottom

{

while LINE=`line`

do

echo “$LINE”

:

done < $FILENAME

}

######################################

function while_LINE_line_cmdsub2

{

cat $FILENAME | while LINE=$(line)

do

echo “$LINE”

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continues)

Twelve Ways to Process a File Line by Line 69

Free & Share & Open

:

done

}

######################################

function while_LINE_line_bottom_cmdsub2

{

while LINE=$(line)

do

echo “$LINE”

:

done < $FILENAME

}

######################################

function while_read_LINE_FD

{

exec 3<&0

exec 0< $FILENAME

while read LINE

do

echo “$LINE”

:

done

exec 0<&3

}

######################################

function while_LINE_line_FD

{

exec 3<&0

exec 0< $FILENAME

while LINE=`line`

do

echo “$LINE”

:

done

exec 0<&3

}

######################################

function while_LINE_line_cmdsub2_FD

{

exec 3<&0

exec 0< $FILENAME

while LINE=$(line)

do

print “$LINE”

:

done

exec 0<&3

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continued)

70 Chapter 2

}

######################################

function while_line_LINE_FD

{

exec 3<&0

exec 0< $FILENAME

while line LINE

do

echo “$LINE”

:

done

exec 0<&3

}

######################################

########### START OF MAIN ############

######################################

Test the Input

Looking for exactly one parameter

(($# == 1)) || usage

Does the file exist as a regular file?

[[-f $1]] || usage

echo “\nStarting File Processing of each Method\n”

echo “Method 1:”

echo “\nfunction while_read_LINE\n” >> $TIMEFILE

echo “function while_read_LINE”

time while_read_LINE >> $TIMEFILE

echo “\nMethod 2:”

echo “\nfunction while_read_LINE_bottom\n” >> $TIMEFILE

echo “function while_read_LINE_bottom”

time while_read_LINE_bottom >> $TIMEFILE

echo “\nMethod 3:”

echo “\nfunction while_line_LINE_bottom\n” >> $TIMEFILE

echo “function while_line_LINE_bottom”

time while_line_LINE_bottom >> $TIMEFILE

echo “\nMethod 4:”

echo “\nfunction while_read_LINE_line\n” >> $TIMEFILE

echo “function while_read_LINE_line”

time while_read_LINE_line >> $TIMEFILE

echo “\nMethod 5:”

echo “\nfunction while_line_LINE\n” >> $TIMEFILE

echo “function while_line_LINE”

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continues)

Twelve Ways to Process a File Line by Line 71

Free & Share & Open

time while_line_LINE >> $TIMEFILE

echo “\nMethod 6:”

echo “\nfunction while_LINE_line_bottom\n” >> $TIMEFILE

echo “function while_LINE_line_bottom”

time while_LINE_line_bottom >> $TIMEFILE

echo “\nMethod 7:”

echo “\nfunction while_LINE_line_cmdsub2\n” >> $TIMEFILE

echo “function while_LINE_line_cmdsub2”

time while_LINE_line_cmdsub2 >> $TIMEFILE

echo “\nMethod 8:”

echo “\nfunction while_LINE_line_bottom_cmdsub2\n” >> $TIMEFILE

echo “function while_LINE_line_bottom_cmdsub2”

time while_LINE_line_bottom_cmdsub2 >> $TIMEFILE

echo “\nMethod 9:”

echo “\nfunction while_read_LINE_FD\n” >> $TIMEFILE

echo “function while_read_LINE_FD”

time while_read_LINE_FD >> $TIMEFILE

echo “\nMethod 10:”

echo “\nfunction while_LINE_line_FD\n” >> $TIMEFILE

echo “function while_LINE_line_FD”

time while_LINE_line_FD >> $TIMEFILE

echo “\nMethod 11:”

echo “\nfunction while_LINE_line_cmdsub2_FD\n” >> $TIMEFILE

echo “function while_LINE_line_cmdsub2_FD”

time while_LINE_line_cmdsub2_FD >> $TIMEFILE

echo “\nMethod 12:”

echo “\nfunction while_line_LINE_FD\n” >> $TIMEFILE

echo “function while_line_LINE_FD”

time while_line_LINE_FD >> $TIMEFILE

Listing 2.15 12_ways_to_parse.ksh shell script listing. (continued)

The shell script in Listing 2.15 first defines all of the functions that we previously
covered in the Methods sections. After the functions are defined, we do a little testing
of the input. We are expecting exactly one command parameter, and it should be a
regular file. Look at the following code block in Listing 2.16 to see the file testing.

Test the Input

Looking for exactly one parameter

(($# == 1)) || usage

Does the file exist as a regular file?

[[-f $1]] || usage

Listing 2.16 Code to test command input.

72 Chapter 2

The first test checks to ensure that the number of command parameters, specified by
the $# operator, is exactly one. Notice that we used the double parentheses mathematical
test, specified as ((math test)). Additionally, we used a logical OR, specified by
||, to execute the usage function if the number of parameters is not equal to one.

We use the same type of test for the file to ensure that the file exists and the file is a
regular file, as opposed to a character or block special file. When we do the test, notice
that we used the double bracket test for character data, specified by [[character
test]]. This is an important distinction to note. We again use the logical OR to exe-
cute the usage function if the return code from the test is nonzero.

Now we start the actual timing tests. In doing these tests we execute the Method
functions one at a time. The function’s internal while loop does the file processing, but
we redirect each function’s output to a file so that we have some measurable system
activity. As I stated before, the timing measurements produced by the time commands
go to stderr, or file descriptor 2, which will just go to the screen by default. When this
shell script executes, there are three things that go to the screen, as you will see in List-
ing 2.17. You can also send all of this output to a file by using the following command
syntax:

12_ways_to_parse.ksh /scripts/bigfile > /tmp/timing_data.out 2>&1

The previous command starts with the script name, followed by the file to parse
through. The output is redirected to the file /tmp/timing_data.out with stderr
(file descriptor 2) redirected to stdout (file descriptor 1), specified by 2>&1. Do not
forget the ampersand, &, before the 1. If the & is omitted, a file with the name 1 will be
created. This is a common mistake when working with file descriptors. The placement
of the stderr to stdout is important in this case. If the 2>&1 is at the end of the com-
mand, you will not get the desired result, which is all of the timing data going to a data
file. In some cases the placement of the 2>&1 redirection does not matter, but it does
matter here.

Timing Data for Each Method

Now all of the hard stuff has been done. We have a 7,500-line file, /scripts/
bigfile, and we have our shell script written, so let’s look at which function is the
fastest in Listing 2.17.

Starting File Processing of each Method

Method 1:

function while_read_LINE

real 1m30.34s

user 0m35.50s

sys 0m52.13s

Listing 2.17 Timing data for each loop method. (continues)

Twelve Ways to Process a File Line by Line 73

Free & Share & Open

Method 2:

function while_read_LINE_bottom

real 0m5.89s

user 0m5.62s

sys 0m0.16s

Method 3:

function while_line_LINE_bottom

real 6m53.71s

user 0m36.62s

sys 6m2.03s

Method 4:

function cat_while_LINE_line

real 7m16.87s

user 0m51.87s

sys 6m8.54s

Method 5:

function while_line_LINE

real 6m50.79s

user 0m36.65s

sys 5m59.66s

Method 6:

function while_LINE_line_bottom

real 7m20.48s

user 0m51.01s

sys 6m14.57s

Method 7:

function while_LINE_line_cmdsub2

real 7m18.04s

user 0m52.01s

sys 6m10.94s

Method 8:

function while_LINE_line_bottom_cmdsub2

real 7m20.34s

Listing 2.17 Timing data for each loop method. (continued)

74 Chapter 2

user 0m50.82s

sys 6m14.26s

Method 9:

function while_read_LINE_FD

real 0m5.89s

user 0m5.53s

sys 0m0.28s

Method 10:

function while_LINE_line_FD

real 8m25.35s

user 0m50.68s

sys 7m15.33s

Method 11:

function while_LINE_line_cmdsub2_FD

real 8m24.58s

user 0m50.04s

sys 7m16.07s

Method 12:

function while_line_LINE_FD

real 7m54.57s

user 0m35.88s

sys 7m2.26s

Listing 2.17 Timing data for each loop method. (continued)

As you can see, all file processing loops are not created equal. Two of the methods
are tied for first place. Methods 2 and 9 produce the exact same real execution time at
5.89 seconds to process a 7,500-line file. Method 1 came in second at 1 minute and 30.34
seconds. The remaining methods fall far behind, ranging from almost 7 minutes to
over 8 minutes and 25.35 seconds. The sorted timing output for the real time is shown
in Listing 2.18.

real 0m5.89s Method 2

real 0m5.89s Method 9

real 1m30.34s Method 1

Listing 2.18 Sorted timing data by method. (continues)

Twelve Ways to Process a File Line by Line 75

Free & Share & Open

real 6m50.79s Method 5

real 6m53.71s Method 3

real 7m16.87s Method 4

real 7m18.04s Method 7

real 7m20.34s Method 8

real 7m20.48s Method 6

real 7m54.57s Method 12

real 8m24.58s Method 11

real 8m25.35s Method 10

Listing 2.18 Sorted timing data by method. (continued)

Let’s take a look at the code for the top three techniques. The order of appearance is
Method 2, 9, and 1.

function while_read_LINE_bottom

{

while read LINE

do

echo “$LINE”

:

done < $FILENAME

}

Listing 2.19 Method 2: Tied for first place.

The method in Listing 2.19 is my favorite because it is quick and intuitive to write
and understand once the input redirection is explained to the beginner.

function while_read_LINE_FD

{

exec 3<&0

exec 0< $FILENAME

while read LINE

do

echo “$LINE”

:

done

exec 0<&3

}

Listing 2.20 Method 9: Tied for first place.

76 Chapter 2

I tend not to use this method when I write shell scripts because it can be difficult to
maintain through the code life cycle. If a user is not familiar with using file descriptors,
then a script using this method is extremely hard to understand. The method in Listing
2.19 produces the same timing results, and it is much easier to understand. Listing 2.21
shows the second-place loop method.

function while_read_LINE

{

cat $FILENAME | while read LINE

do

echo “$LINE”

:

done

}

Listing 2.21 Method 1: Made second place in timing tests.

The method in Listing 2.21 is the most popular way to process a file line by line. I see
this technique in almost every shell script that does file parsing. Method 1 is 1,433 per-
cent slower than either Method 2 or 9 in execution time. The delta percentage between
first and last place is 8,479 percent. These timing tests also point out another factor: Do
not use the line command when parsing a file in a loop.

Timing Command Substitution Methods
We also want to take a look at the difference in timing when we used the two different
methods of command substitution using `command` versus $(command).

Method 4:

function cat_while_LINE_line

real 7m16.87s

user 0m51.87s

sys 6m8.54s

Method 7:

function while_LINE_line_cmdsub2

real 7m18.04s

user 0m52.01s

sys 6m10.94s

Listing 2.22 Command substitution timing difference.

In Method 4 the command substitution technique uses backtic, `command`, which
are located in the top left corner of a standard keyboard. The command substitution

Twelve Ways to Process a File Line by Line 77

Free & Share & Open

technique used in Method 7 is the dollar parentheses technique, $(command). Both
command substitution methods give the same end result, but one method is slightly
faster than the other. From the timing of each method in Listing 2.22, the backtic
method won the race by only 1.17 seconds when parsing a 7,500-line file. This differ-
ence is so small that it is really not an issue.

Summary

Through this chapter we have covered the various techniques for parsing a file line by
line that I have seen over the years. You may have seen even more oddball ways to
process a file. The two points that I wanted to make in this chapter are these: First, there
are many ways to handle any task on a Unix platform, and second, some techniques
that are used to process a file waste a lot of CPU time. Most of the wasted time is spent
in unnecessary variable assignments and continuously opening and closing the same
file over and over. Using a pipe also has a negative impact on the loop timing.

I hope you noticed the second place method in Listing 2.21 is 1,433 percent slower
than the tie for first place. On a small file this is not a big deal, but for large parsing jobs
this delta in timing can have a huge impact both on the machine resources and on the
time involved.

78 Chapter 2

79

To solve problems proactively, an early warning is essential. In this chapter we are
going to look at some techniques of getting the word out by automating the notifica-
tion when a system event occurs. When we write monitoring shell scripts and there is a
failure, success, or request, we need a method of getting a message to the right people.
There are really three main strategies of notification in shell scripts. The first is to send
an email directly to the user. We can also send an alphanumeric page by email to the
user for immediate notification to a pager. The third is to send a text page by dialing a
modem to the service provider. We are mainly going to look at the first two methods,
but we will also list some good software products that will send text pages by dialing
the modem and transferring the message to the pager provider.

In some shops email is so restricted that you have to use a little trick or two to get
around some of the restrictions. We will cover some of these situations, too.

Basics of Automating Event Notification

In a shell script there are times when you want to send an automated notification. As
an example, if you are monitoring filesystems and your script finds that one of the
filesystems has exceeded the maximum threshold, then most likely you want to be
informed of this situation. I always like an email notification when the backups

Automated Event Notification

C H A P T E R

3

Free & Share & Open

complete every night—not just when there is a backup error, but when the backup is
successful, too. This way I always know the status of last night’s backup every morn-
ing just by checking my email. I also know that a major backup problem occurred if no
email was sent at all. There are a few ways to do the notification, but the most common
is through email to either a text pager or through an email account. In the next few sec-
tions we are going to look at the techniques to get the message out, even if only one
server has mail access.

Using the mail and mailx Commands
The most common notification method uses the mail and mailx commands. The basic
syntax of both of these commands is shown in the following code:

mail -s “This is the subject” $MAILOUT_LIST < $MAIL_FILE

OR

cat $MAIL_FILE | mail -s “This is the subject” $MAILOUT_LIST

mailx -s “This is the subject” $MAILOUT_LIST < $MAIL_FILE

OR

cat $MAIL_FILE | mailx -s “This is the subject” $MAILOUT_LIST

Not all systems support the mailx command, but the systems that do have support
use the same syntax as the mail command. To be safe when dealing with multiple Unix
platforms, always use the mail command.

Notice in the mail, and mailx, commands the use of the MAILOUT_LIST and
MAIL_FILE variables. The MAILOUT_LIST variable contains a list of email addresses,
or email aliases, to send the message to. The MAIL_FILE variable points to a filename
that holds the message to be sent. Let’s look at both of these individually.

Suppose we are monitoring the filesystems on a machine and the /var filesystem
has reached 98 percent utilization, which is over the 85-percent threshold, for a filesys-
tem to be considered full. The Systems Administrator needs to get a page about this sit-
uation quickly, or we may have a machine crash when /var fills up. In the monitoring
shell script there is a MAIL_FILE variable defined to point to the filename
/tmp/mailfile.out, MAIL_FILE=/tmp/mailfile. Then we create a zero-sized
mail-out file using cat /dev/null > $MAIL_FILE. When an error is found, which
in our case is when /var has reached 98 percent, a message is appended to the
$MAIL_FILE for later mailing. If more errors are found, they are also appended to the
file as the shell script processes each task. At the end of the shell script we can test the
size of the $MAIL_FILE. If the $MAIL_FILE has any data in it, then the file will have
a size greater than 0 bytes. If the file has data, then we mail the file. If the file is empty
with a 0 byte file size, then we do nothing.

To illustrate this idea, let’s study the code segment in Listing 3.1.

80 Chapter 3

MAIL_FILE=/tmp/mailfile.out

cat /dev/null > $MAIL_FILE

MAIL_LIST=”randy@my.domain.com 1234567890@mypage_somebody.net”

check_filesystems # This function checks the filesystems percentage

if [-s $MAIL_FILE]

then

mail -s “Filesystem Full” $MAIL_LIST < $MAIL_FILE

fi

Listing 3.1 Typical mail code segment listing.

In Listing 3.1 we see a code segment that defines the MAIL_FILE and MAIL_LIST
variables that we use in the mail command. After the definitions this code segment
executes the function that looks for filesystems that are over the threshold. If the
threshold is exceeded, then a message is appended to the $MAIL_FILE file as shown
in the following code segment:

FS=/var

PERCENT=98

THISHOST=$(uname -n)

echo “$THISHOST: $FS is $PERCENT” | tee -a $MAIL_FILE

This code segment is from the check_filesystems function. For my machine,
this echo command statement would both display the following message to the screen
and append it to the $MAIL_FILE file:

yogi: /var is 98%

The hostname is yogi, the filesystem is /var, and the percentage of used space is 98
percent. Notice the tee command after the pipe (|) from the echo statement. In this case
we want to display the results on the screen and send an email with the same data. The
tee -a command does this double duty when you pipe the output to | tee -a $FILENAME.

After the check_filesystems function finishes, we test the size of the
$MAIL_FILE. If it is greater than 0 bytes in size, then we send a mail message using the
mail command. The following message is sent to the randy@my.domain.com and
1234567890@mypage_somebody.net email addresses:

yogi: /var is 98%

Automated Event Notification 81

Free & Share & Open

Problems with Outbound Mail

Before we hard-code the mail command into your shell script we need to do a little test
to see if we can get the email to the destination without error. To test the functionality,
add the -v switch to the mail or mailx command, as shown in Listing 3.2.

echo “Testing: /var is 98%” > /tmp/mailfile.out

mail -v -s “Filesystem Full” randy@my.domain.com < /tmp/mailfile.out

AND

mail -v -s “Filesystem Full” 1234567890@mypage_somebody.net \

< /tmp/mailfile.out

Listing 3.2 Testing the mail service using mail -v.

With the -v switch added to the mail command, all of the details of the delivery are
displayed on the user’s terminal. From the delivery details we can see any errors that
happen until the file is considered “sent” by the local host. If the message is not deliv-
ered to the target email address, then further investigation is needed. The next two sec-
tions look at some alternative techniques.

Create a “Bounce” Account with a .forward File
I worked at one shop where only one Unix machine in the network, other than the mail
server, was allowed to send email outside of the LAN. This presented a problem for all
of the other machines to get the message out when a script detected an error. The solu-
tion we used was to create a user account on the Unix machine that could send email
outbound. Then we locked down this user account so no one could log in remotely.
Let’s say we create a user account called bounce. In the /home/bounce directory we
create a file called /home/bounce/.forward. Then in the .forward file we add the
email address to which we want to forward all mail. You can add as many email
addresses to this file as you want, but be aware that every single email will be for-
warded to each address listed in the .forward file.

On this single machine that has outside LAN mailing capability we added the user
bounce to the system. Then in the /home/bounce directory we created a file called
.forward that has the following entries:

randy@my.domain.com

1234567890@mypage_somebody.net

82 Chapter 3

This .forward file will forward all mail received by the bounce user to the randy@
my.domain.com and 1234567890@mypage_somebody.net email addresses. This
way I have an email to my desktop, and I am also notified by my text pager. On all of
the other machines we have two options. The first option is to edit all of the shell
scripts that send email notification and change the $MAIL_LIST variable to:

MAIL_LIST=”bounce@dino.”

This entry assumes that the dino host is in the same domain, specified by the period
that follows the hostname dino. (dino.).

An easier way is to create some entries in the aliases file for sendmail. The
aliases file is usually located in /etc/aliases, but you may find it in /etc/
mail/aliases on some operating systems. The format of defining an alias is a name,
username, or tag, followed by one or more email addresses. The following is an exam-
ple of an aliases file:

admin: bounce@dino.,randy,brad,cindy,jon,pepe

This aliases file entry creates a new alias called admin that automatically sends
email to the bounce account on dino and also to randy, brad, cindy, jon, and pepe.

Before these changes will take effect, we need to run the newaliases command. The
sendmail -bi command works, too.

Using the sendmail Command to Send Outbound Mail
In another shop where I worked, I could not send outbound mail from any user named
root. The from field had to be a valid email address that is recognized by the mail
server, and root is not valid. To get around this little problem I changed the command
that I used from mail to sendmail. The sendmail command allows us to add the -f
switch to indicate a valid internal email address for the from field. The sendmail com-
mand is in /usr/sbin/sendmail on AIX, HP-UX, and Linux, but on SunOS the loca-
tion changed to /usr/lib/sendmail. Look at the function in Listing 3.3, and we will
cover the details at the end.

function send_notification

{

if [-s $MAIL_FILE -a “$MAILOUT” = “TRUE”];

then

case $(uname) in

AIX|HP-UX|Linux) SENDMAIL=”/usr/sbin/sendmail”

;;

SunOS) SENDMAIL=”/usr/lib/sendmail”

;;

Listing 3.3 send_notification function listing. (continues)

Automated Event Notification 83

Free & Share & Open

esac

echo “\nSending email notification”

$SENDMAIL -f randy@$THISHOST $MAIL_LIST < $MAIL_FILE

fi

}

Listing 3.3 send_notification function listing. (continued)

Notice in Listing 3.3 that we added another variable, MAILOUT. This variable is used
to turn on/off the email notifications. If the $MAILOUT variable points to TRUE, and the
$MAIL_FILE file is nonempty, then the email is sent. If the $MAILOUT variable does
not equal the string TRUE, then the email is disabled. This is just another way to con-
trol the email notifications.

In the case statement we use the output of the uname command to set the correct
command path for sendmail command on the Unix platform. For AIX, HP-UX, and
Linux the sendmail command path is /usr/sbin. On SunOS the sendmail path is
/usr/lib. We assign the correct path to the SENDMAIL variable, and we use this
variable as the command to send the mail. Once the command is defined we issue the
command, as shown here:

$SENDMAIL -f randy@$THISHOST $MAIL_LIST < $MAIL_FILE

We issue the sendmail command using the -f switch and follow the switch by a
valid email account name, which is randy@$THISHOST. Remember that we defined
the THISHOST variable to the local machine’s hostname. The from address is followed
by the list of email addresses, and the message file is used by redirecting input into the
sendmail command. We can also use the following syntax:

cat $MAIL_FILE | $SENDMAIL -f randy@$THISHOST $MAIL_LIST

Either sendmail statement will send the mail, if the mail server and firewall allow
outgoing mail.

Dial-Out Modem Software

Many good products are on the market, both freeware and commercial, that handle
large amounts of paging better than any shell script could ever do. They also have the
ability to dial the modem and send the message to the provider. A list of such products
is shown in Table 3.1.

84 Chapter 3

Table 3.1 Products That Handle High-Volume Paging and Modem Dialing

PRODUCT DESCRIPTION

FREEWARE AND SHAREWARE PRODUCTS

QuickPage Client/server software used to send messages to
alphanumeric pagers.

SMS Client Command-line utility for Unix that allows you to
send SMS messages to cell phones and pagers.

HylaFAX Faxing product for Unix that allows dial-in, dial-
out, fax-in, fax-out, and pager notifications.

COMMERCIAL PRODUCTS

EtherPage Enterprise-wide alphanumeric pager software
product made by MobileSys.

TelAlert Pager notification and interactive voice response
software made by Telamon.

FirstPAGE Supports all national paging networks using
IXO/TAP, made by Netcon Technologies.

Table 3.1 shows only a sample of the products available for paging. The nice thing
about these products is the ability to dial-out on a modem. At some level in every shop
there is a need to use a phone line for communications instead of the network. This
gives you the ability to get the message out even if the network is having a problem.

SNMP Traps

Most large shops use an enterprise monitoring tool to monitor all of the systems from
a central management console. The server software is installed on a single machine
called the management station. All of the managed/monitored machines have the
client software installed. This client software is an SNMP agent and uses a local MIB to
define the managed objects, or management variables. These managed objects define
things such as the filesystems to monitor and the trigger threshold for detecting a full
filesystem. When the managed object, which in this case is a full filesystem, exceeds
the set threshold, a local SNMP trap is generated and the management station captures
the trap and performs the predefined action, which may be to send a text page to the
System Administrator. To understand what an SNMP trap is, let’s review a short expla-
nation of each of the pieces:

Automated Event Notification 85

Free & Share & Open

SNMP (Simple Network Management Protocol). SNMP is a protocol used
for agent communications. The most common use for the SNMP protocol is
client/server system management software.

MIB (Management Information Base). Each managed machine, or agent, in
an SNMP-managed network maintains a local database of information (MIB)
defined to the network managed machine. An SNMP-compliant MIB contains
information about the property definitions of each of the managed resources.

SNMP trap. Event notification to the management server from an agent-generated
event, called a trap. The server management station receives and sets objects in
the MIB, and the local machine, or agent, notifies the management station of
client-generated events, or traps. All of the communication between the network
management server and its agents, or management clients, takes place using the
Simple Network Management Protocol (SNMP).

The nice thing about using an enterprise management tool is that it utilizes SNMP.
With most products you can write your own shell scripts using SNMP traps. The details
vary for the specific syntax for each product, but with the software installed you can
have your shell scripts perform that same notifications that the enterprise management
software produces. Using Tivoli Netview, EcoTools, or BMC Patrol (just to name a few)
you have the ability to incorporate SNMP traps into your own shell scripts for event
notifications. Please refer to the product documentation for details on creating and
using SNMP traps.

Summary

This chapter is intended to give a brief overview of some techniques of getting critical
information out to the system management community. This chapter mainly focused
on email and some different techniques for using the mail commands.

The topics discussed here form the basics for notification of system problems. You
should be able to extend the list of notification techniques without much effort. If you
have an enterprise management solution installed at your shop, then study the vendor
documentation on using and creating SNMP traps. There are books based entirely on
SNMP, and the information is just too long to cover in this book, but it is an important
notification method that you need to be familiar with. If you have trouble getting the
email solution to work, talk with the Network Manager to find a solution.

In the next chapter we move on to look at creating progress indicators to give our
users feedback on long running processes. The topics include a series of dots as the
processing continues, a line that appears to rotate as processing continues, and a
counter that counts down to zero.

86 Chapter 3

87

Giving your end users feedback that a script or program is not hung is vital on long
processing jobs. We sometimes write shell scripts that take a long time to completely
execute—for example, system backup scripts. A good way to keep everyone content is
to have some kind of progress indicator. Just about anything can be a progress indica-
tor as long as the end user gets the idea that job processing is continuing. In this chap-
ter we are going to examine the following three progress indicators, which are fairly
common:

■■ A series of dots

■■ A rotating line

■■ A counter counting down to zero

The dots and rotating line are more common, but the countdown method does have
its place where we want to specify a timeout period. Each of these methods can be
started as a separate script, as a function, or we can put the code loop directly in the
background. We will cover using each of these methods.

Indicating Progress with a Series of Dots

The simplest form of progress indicator is to print a period to the screen every 5 to 20
seconds. It is simple, clean, and very easy to do. As with every script we start out with

Progress Indicator Using
a Series of Dots, a Rotating

Line, or a Countdown to Zero

C H A P T E R

4

Free & Share & Open

the command syntax. All we want to do is echo a dot to the screen while continuing on
the same line.

echo “.\c”

The echo command prints a single dot on the screen, and the backslash c, \c, spec-
ifies a continuation on the same line without a new line or carriage return. To make a
series of dots we will put this single command in a loop with some sleep time between
each dot. We will use a while loop that loops forever with a 10-second sleep between
printing each dot on the screen.

while true

do

echo “.\c”

sleep 10

done

If, for instance, we are running a backup script and we want to use this method to
indicate progress, we would put this while loop in the background and save the
process ID, PID, so that we could kill the background process when the backup script
is complete. First, we will just put this while loop in the background, or we can create
a function with this loop and run the function in the background. Both methods are
shown in Listings 4.1 and 4.2.

while true

do

echo “.\c”

done &

BG_PID=$!

/usr/local/bin/my_backup.ksh

kill $BG_PID

Listing 4.1 Looping in the background.

To accomplish the background loop, notice that we just put an ampersand, &, after
the end of the while loop, after done. The next line uses the $! operator, which saves
the PID of the last background process, BG_PID=$!. The background loop starts the
dots ticking, and then we kick off the backup script, /usr/local/bin/
my_backup.ksh in the foreground. When the backup script is complete, we use the
kill command to stop the dots by killing the background job, specified by kill
$BG_PID. We can accomplish the same task with a function, as shown in Listing 4.2.

88 Chapter 4

function dots

{

while true

do

echo “.\c”

done

}

##################################

######## Begin of Main ###########

##################################

dots &

BG_PID=$!

/usr/local/bin/my_backup.ksh

kill $BG_PID

Listing 4.2 Using a background function.

The script and function in Listing 4.2 accomplish the same task but use a back-
ground function instead of just putting the while loop in the background. We still cap-
ture the PID of the dots function, specified by $!, so we can kill the function when the
backup script has completed, as we did in the previous example. We could also put the
loop in a separate shell script and run the external script in the background, but this
would be overkill for three lines of code.

Indicating Progress with a Rotating Line

If a series of dots is too boring, then we could use a rotating line as a progress indica-
tor. To rotate the line we will again use the echo command, but this time we need a lit-
tle more cursor control. This method requires that we display, in a series, the forward
slash, /, then a hyphen, -, followed by a backslash, \, and then a pipe, |, and then
repeat the process. For this character series to appear seamless we need to backspace
over the last character and erase it, or overwrite it with the new character that makes
the line appear to rotate. We will use a case statement inside a while loop, as shown
in Listing 4.3.

Progress Indicators 89

Free & Share & Open

function rotate

{

PURPOSE: This function is used to give the end user some feedback that

“something” is running. It gives a line twirling in a circle.

This function is started as a background process. Assign its PID

to a variable using:

#

rotate & # To start

ROTATE_PID=$! # Get the PID of the last background job

#

At the end of execution just break out by killing the $ROTATE_PID

process. We also need to do a quick “cleanup” of the leftover

line of rotate output.

#

FROM THE SCRIPT:

kill -9 $ROTATE_PID

echo “\b\b “

INTERVAL=1 # Sleep time between “twirls”

TCOUNT=”0” # For each TCOUNT the line twirls one increment

while : # Loop forever...until this function is killed

do

TCOUNT=`expr $TCOUNT + 1` # Increment the TCOUNT

case $TCOUNT in

“1”) echo ‘-’”\b\c”

sleep $INTERVAL

;;

“2”) echo ‘\\’”\b\c”

sleep $INTERVAL

;;

“3”) echo “|\b\c”

sleep $INTERVAL

;;

“4”) echo “/\b\c”

sleep $INTERVAL

;;

*) TCOUNT=”0” ;; # Reset the TCOUNT to “0”, zero.

esac

done

} # End of Function - rotate

Listing 4.3 Rotate function.

In the function in Listing 4.3 we first define an interval to sleep between updates. If
we do not have some sleep time, then the load on the system will be noticeable. We just
want to give the end user some feedback, not load the system down. At least one second

90 Chapter 4

is needed between screen updates. Next we start an infinite while loop and use the
TCOUNT variable to control which part of the rotating line is displayed during the inter-
val. Notice that each time that we echo a piece of the rotating line, we also back up the
cursor with \b and continue on the same line with \c; both are needed. This way the
next loop iteration will overwrite the previous character with a new character, and
then we again back up the cursor and continue on the same line. This series of charac-
ters gives the appearance of a rotating line.

We use this function just like the previous example using the dots function in List-
ing 4.2. We start the function in the background, save the PID of the background func-
tion using the $! operator, start our time-consuming task, and kill the background
rotate function when the task is complete. We could also just put the while loop in
the background without using a function. In either case, when the rotating line is
killed, we need to clean up the last characters on the screen. To do the cleanup we just
back up the cursor and overwrite the last character with a blank space. (See Listing 4.4.)

######################################

########## Begin of Main #############

######################################

rotate &

ROTATE_PID=$!

/usr/local/bin/my_time_consuming_task.ksh

kill -9 $ROTATE_PID

Cleanup...

echo “\b\b “

End of Example

Listing 4.4 Example of rotate function in a shell script.

These scripts work well and execute cleanly, but do not forget to give some sleep
time on each loop iteration. Now we have shown the series of dots and the rotating line
methods. Another method that may sometimes be beneficial is a countdown indicator.

Creating a Countdown Indicator

There may be times when you want something to time out. If we know an approximate
amount of time that we want to allow for a task to finish, we can display a countdown
indicator; then, when the time is up, we can take some action. Use your imagination
with this one. The process we are going to use will depend on how many digits are in

Progress Indicators 91

Free & Share & Open

the current countdown, for example 0 to 9, 10 to 99, 100 to 999, and 1000 to 9999. The
number of digits must be taken into account because we want a smooth transition
between 1000 to 999 and 100 to 99 in the countdown, as well as other digit count
changes. We also want to update the screen with a new value each second as we count
down to zero. This method will again require us to control the cursor as we back up
over the previous output and overwrite the characters with a new countdown number.
Other than the cursor control this script is not very difficult. Let’s look at the script and
explain the process afterward (see Listing 4.5).

#!/bin/ksh

#

SCRIPT: countdown.ksh

#

AUTHOR: Randy Michael - Systems Administrator

DATE: 02-29-2000

PLATFORM: Not Platform Dependent

#

PURPOSE: This script will do the same thing as a sleep command

while giving the user feedback as to the number of seconds

remaining. It takes input between 1 and 9999 seconds only.

#

SCRIPT_NAME=$(basename $0)

##

######## DEFINE FUNCTIONS HERE ###########

##

usage ()

{

echo “\nUSAGE: $SCRIPT_NAME seconds\n”

}

##

trap_exit ()

{

echo “\n\n...EXITING on a trapped signal...\n”

}

##

test_string ()

{

This function tests for a positive integer!

if (($# != 1))

then

Listing 4.5 countdown.ksh shell script.

92 Chapter 4

print ‘ERROR’

break

fi

STRING=$1

case $STRING in

+([0-9])) print ‘POS_INT’

;;

*) print ‘NOT’

;;

esac

}

##

########## START OF MAIN #################

##

trap ‘trap_exit;exit 2’ 1 2 3 15

if (($# != 1))

then

usage

exit 1

fi

Test for a positive integer

INT_STRING=$(test_string $1)

if [[$INT_STRING != ‘POS_INT’]]

then

echo “\nINVALID INPUT ==> $1 ...EXITING...\n”

usage

exit 1

fi

Check for a valid range 1 - 9999

if (($1 > 0 && $1 < 10000))

then

S=$1 # Total second to start the countdown from

echo “Seconds Remaining: $S\c”

while ((S > 0)) # Start the loop

do

In this loop we back over the previous countdown value

Listing 4.5 countdown.ksh shell script. (continues)

Progress Indicators 93

Free & Share & Open

and update the screen with a new countdown value. It

depends on how many digits the number has to determine

how many spaces to back up.

sleep 1

if ((S < 10)) # For numbers 0-9

then

echo “\b\b \b\c”

elif ((S >= 10 && S < 100)) # For numbers 10-99

then

echo “\b\b\b \b\b\c”

elif ((S >= 100 && S < 1000)) # For numbers 100-999

then

echo “\b\b\b\b \b\b\b\c”

elif ((S >= 1000 && S < 10000)) # For numbers 1000-9999

then

echo “\b\b\b\b\b \b\b\b\b\c”

fi

((S = S - 1)) # Decrement the counter by 1

echo “$S\c” # Update the screen with the new value

done

echo “\n” # Done - give a new line...

else

echo “Invalid input ==> $1”

echo “Range 1 - 9999 seconds”

usage

exit 1

fi

Listing 4.5 countdown.ksh shell script. (continued)

Let’s review the countdown.ksh shell script in Listing 4.5 from the top. We start
the script by defining the shell script’s filename. We use the basename $0 command,
which will remove the leading directory path and leave only the filename. We need the
script’s filename for the usage function, and we never want to hard-code a filename
because we may rename the script at some point. Next, we define all of our functions.
As always, we have our usage function for incorrect command-line usage. The usage
function is where we need the shell script filename that we captured with the preced-
ing basename $0 command. If the basename command were executed in the usage

94 Chapter 4

function the result would be usage instead of countdown.ksh. This subtle difference
in using the basename command is a common mistake.

Next we have the trap_exit function that will execute on trapped exit signals 1, 2,
3, and 15 (of course, we cannot trap kill -9). This trap_exit function will display
...EXITING on a trapped signal... as an informational message to the user.

The test_string function is used to test for an integer value greater than or equal
to 0, zero. To test for an integer we just use the regular expression +([0-9]) in a case
statement. This regular expression will be true if the value is an integer value greater
than or equal to 0, zero. In Chapter 1 there is a very extensive test_string.ksh
shellscript that includes lowercase and uppercase characters, mixed-case strings, and
numeric and alphanumeric characters. Regular expressions are great for string tests
and are flexible to use.

We start the main part of the script by setting a trap to catch exit signals 1, 2, 3, and
15. On these exit signals we execute our trap_exit function that we previously cov-
ered. After setting the trap we check to confirm that we have exactly one command-
line argument. If we have more or less than one argument, then we run our usage
function and exit with a return code of 1.

The integer test for the command-line argument is next. To make this test we use our
test_string function and assign the output to the variable INT_STRING. The
test_string should return POS_INT, or we inform the user of the invalid value,
run the usage function, and exit the script with a return code of 1. If we have got this
far we know that we have a positive integer, so we need to make sure that the integer
is within the valid range for this shell script. The valid range is 1 to 9999 seconds, which
is 2.78 hours. If the value is out of range, then we inform the user that the value is out
of range, run the usage function, and exit the script with a return code of 1. All usage
errors exit with a return code of 1 in this shell script. Now we are ready to start the
countdown. The countdown takes place in a while loop. Within this while loop notice
the if..then..elif..elif.. control structure and the cursor control. This cursor control is
dependent on the number of digits in the current countdown value. We need to control
the cursor using this method so that we get a smooth transition between 1000 and 999,
100 to 99, and 10 to 9. If you do not handle the transition by cursor control the digit set
will move across the screen during the transitions. For the cursor control we use the
echo command with a backslash b, \b, to back the cursor one space. For three spaces
we use \b\b\b\c with the final \c keeping the cursor on the same line without a new
line and carriage return. So, in each loop iteration the cursor is controlled depending
on the current number of digits in the current countdown value.

When the countdown reaches 0, the script will output one new line and carriage
return and exit with a return code of 0.

Other Options to Consider

As with any script, we may be able to improve on the techniques. The series-of-dots
method is so simple that I cannot think of any real improvements. The rotating line is
a fun little script to play with, and I have accomplished the same result in several dif-
ferent ways. Each method I used produced a noticeable load on the system if the sleep

Progress Indicators 95

Free & Share & Open

statement was removed, so that the line twirled as fast as possible. Try to see if you can
find a technique that will not produce a noticeable load and does not require a sleep of
at least one second, using a shell script!

In the countdown indicator the actual countdown time may not be exactly accurate.
The inaccuracy is due to the variation in response time due to the load on the system.
If your system is not under any load, the countdown time will be fairly stable and accu-
rate. If you have a normally very active system, your countdown time can vary widely
depending on the load and the duration of the countdown—the longer the countdown
time, the less accurate the timing. A more accurate way to handle an exact timing is to
use an at command to kick off the job at a specific time in the future. The following at
command example will execute a script called time_out.ksh in 500 seconds:

echo time_out.ksh | at now + 500 seconds

The at command is very flexible and very accurate for timing purposes.
Another option is to use the shell variable SECONDS. This variable is extremely accu-

rate and easy to use. The first step is to initialize the SECONDS variable to 0, zero. Once
the variable is initialized you need only test the variable, which keeps track of the num-
ber of seconds since the SECONDS variable was initialized. Type the following lines in
on the command line.

SECONDS=0

(Wait 5 seconds...)

echo $SECONDS

5

Play around with each of these techniques, and always strive to keep your end users
informed. A blank or “frozen” screen makes people uncomfortable.

Summary

In this chapter we presented three techniques to help keep our script users content.
Each technique has its place, and they are all easy to implement within any shell script
or function. We covered how to save the PID of the last background job and how to put
an entire loop in the background. The background looping can make a script a little
easier to follow if you are not yet proficient at creating and using functions.

Remember, informed users are happy users!
In the next chapter we will cover monitoring a system for full filesystems. Methods

covered include a typical percentage method to the number of megabytes free, for very
large filesystems. Chapter 5 ends with a shell script that does auto detection using the
filesystem size to set the monitoring method.

96 Chapter 4

97

The most common monitoring task is monitoring for full filesystems. On different
flavors of Unix the monitoring techniques are the same, but the commands and fields
in the output vary slightly. This difference is due to the fact that command syntax and
the output columns vary depending on the Unix system.

We are going to step through the entire process of building a script to monitor
filesystem usage and show the philosophy behind the techniques used. In scripting
this solution we will cover five monitoring techniques, starting with the most basic
monitoring—percentage of space used in each filesystem.

The next part will build on this original base code and add exceptions capability
allowing an override of the script’s set threshold for a filesystem to be considered full.
The third part will deal with large filesystems, which is typically considered to be a
filesystem larger than 2 gigabytes, 2GB. This script modification will use the megabytes,
MB, of free space technique.

The fourth part will add exception capability to the MB of free space method. The
fifth part in this series combines both the percentage of used space and MB of free
space techniques with an added auto-detect feature to decide how to monitor each
filesystem. Regular filesystems will be monitored with percent used and large filesys-
tems as MB of free space, and, of course, with the exception capability. The sixth and
final script will allow the filesystem monitor script to run on AIX, Linux, HP-UX, or
Solaris without any further modification.

File System Monitoring

C H A P T E R

5

Free & Share & Open

In This Chapter
In this chapter, we will cover the following six shell scripts related to filesystem
monitoring:

■■ Percentage of used space method

■■ Percentage of used space with exceptions capability

■■ Megabytes of free space method

■■ Megabytes of free space with exceptions capability

■■ Combining percentage used and megabytes of free space with exceptions
capability

■■ Enabling the combined script to execute on AIX, HP-UX, Linux, and Solaris

Syntax

Our first task, as usual, is to get the required command syntax. For this initial example
we are going to monitor an AIX system (HP-UX, Linux, and Solaris will be covered
later). The command syntax to look at the filesystems in kilobytes, KB, or 1024-byte
blocks, is df -k in AIX.

Let’s take a look at the output of the df -k command on an AIX 5L machine:

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 32768 16376 51% 1663 11% /

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30824 43% 540 5% /var

/dev/hd3 106496 99932 7% 135 1% /tmp

/dev/hd1 4096 3916 5% 25 3% /home

/proc - - - - - /proc

/dev/hd10opt 638976 24456 97% 15457 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

/dev/cd0 656756 0 100% 328378 100% /cdrom

The fields in the command output that we are concerned about are column 1, the
Filesystem device, column 4, the %Used, and Mounted on in column 7. There are
at least two reasons that we want both the filesystem device and the mount point. The
first reason is to know if it is an NFS mounted filesystem. This first column will show
the NFS server name as part of the device definition if it is NFS mounted. The second
reason is that we will not want to monitor a mounted CD-ROM. A CD-ROM will
always show that it is 100 percent used because it is mounted as read-only and you
cannot write to it (I know, CD-RW drives, but these are still not the norm in business
environments).

As you can see in the bottom row of the preceding output, the /cdrom mount point
does indeed show that it is 100 percent utilized. We want to omit this from the output

98 Chapter 5

along with the column heading at the top line. The first step is to show everything
except for the column headings. We can use the following syntax:

df -k | tail +2

This delivers the following output without the column headings:

/dev/hd4 32768 16376 51% 1663 11% /

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30824 43% 540 5% /var

/dev/hd3 106496 99932 7% 135 1% /tmp

/dev/hd1 4096 3916 5% 25 3% /home

/proc - - - - - /proc

/dev/hd10opt 638976 24456 97% 15457 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

/dev/cd0 656756 0 100% 328378 100% /cdrom

This output looks a bit better, but we still have a couple of things we are not inter-
ested in. The /cdrom is at 100 percent all of the time, and the /proc mount point has
no values, just hyphens. The /proc filesystem is new to AIX 5L, and because it has no
values, we want to eliminate it from our output. Notice the device, in column 1, for the
CD-ROM is /dev/cd0. This is what we want to use as a tag to pattern match on
instead of the mount point because it may at some point be mounted somewhere else,
for example /mnt. We may also have devices /dev/cd1 and /dev/cd2, too, if not
now perhaps in the future. This, too, is easy to take care of, though. We can expand on
our command statement to exclude both lines from the output with one egrep state-
ment, as in the following:

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’

In this statement we used the egrep command with a -v switch. The -v switch means
to show everything except what it patterned matched on. The egrep is used for
extended regular expressions; in this case, we want to exclude two rows of output. To
save an extra grep statement we use egrep and enclose what we are pattern matching
on within single tic marks, ‘ ‘, and separate each item in the list with a pipe symbol,
|. The following two commands are equivalent:

df -k | tail +2 | grep -v ‘/dev/cd[0-9]’ | grep -v ‘/proc’

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’

Also notice in both statements the pattern match on the CD-ROM devices. The grep
and egrep statements will match devices /dev/cd0 up through the last device, for
example /dev/cd24, using /dev/cd[0-9] as the pattern match. Do not forget the tic
marks around ‘/dev/cd[0-9]’ or the grep/egrep statement may fail.

File System Monitoring 99

Free & Share & Open

Using egrep saves a little bit of code, but both commands produce the same output,
shown here:

/dev/hd4 32768 16376 51% 1663 11% /

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30864 43% 539 5% /var

/dev/hd3 106496 99932 7% 134 1% /tmp

/dev/hd1 4096 3916 5% 25 3% /home

/dev/hd10opt 638976 24456 97% 15457 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

In this output we have all of the rows of data we are looking for; however, we have
some extra columns that we are not interested in. Now let’s extract out the columns of
interest, 1, 4, and 7. Extracting the columns is easy to do with an awk statement. Using
an awk statement is the cleanest method, and the columns are selected using the posi-
tional parameters, or columns, $1, $2, $3,...,$n. As we keep building this com-
mand statement we add in the awk part of the command.

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’ \

| awk ‘{print $1, $4, $7}’

First, notice that we extended our command onto the next line with the backslash
character, \. This convention helps with the readability of the script. In the awk part of
the statement we placed a comma and a space after each field, or positional parameter.
The comma and space are needed to ensure that the fields remain separated by at least
one space. This command statement leaves the following output:

/dev/hd4 51% /

/dev/hd2 96% /usr

/dev/hd9var 43% /var

/dev/hd3 7% /tmp

/dev/hd1 5% /home

/dev/hd10opt 97% /opt

/dev/scripts_lv 7% /scripts

For ease of working with our command output we can write it to a file and work
with the file. In our script we can define a file and point to the file with a variable. The
following code will work:

WORKFILE=”/tmp/df.work” # df output work file

>$WORKFILE # Initialize the file to zero size

Before we go any further we also need to decide on a trigger threshold for when a
filesystem is considered full, and we want to define a variable for this, too. For our
example we will say that anything over 85 percent is considered a full filesystem, and
we will assign this value to the variable FSMAX:

FSMAX=”85”

100 Chapter 5

From these definitions we are saying that any monitored filesystem that has used
more than 85 percent of its capacity is considered full. Our next step is to loop through
each row of data in our output file. Our working data file is /tmp/df.work, which is
pointed to by the $WORKFILE variable, and we want to compare the second column,
the percentage used for each filesystem, to the $FSMAX variable, which we initialized
to 85. But we still have a problem; the $WORKFILE entry still has a %, percent sign, and
we need an integer value to compare to the $FSMAX value. We will take care of this con-
version with a sed statement. We use sed for character substitution and, in this case,
character removal. The sed statement is just before the numerical comparison in a loop
that follows. Please study Listing 5.1, and pay close attention to the bold text.

#!/usr/bin/ksh

#

SCRIPT: fs_mon_AIX.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 1.1.P

PURPOSE: This script is used to monitor for full filesystems,

which is defined as “exceeding” the FSMAX value.

A message is displayed for all “full” filesystems.

#

REV LIST:

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

#

DEFINE FILES AND VARIABLES HERE ####

FSMAX=”85” # Max. FS percentage value

WORKFILE=”/tmp/df.work” # Holds filesystem data

>$WORKFILE # Initialize to empty

OUTFILE=”/tmp/df.outfile” # Output display file

>$OUTFILE # Initialize to empty

THISHOST=`hostname` # Hostname of this machine

######## START OF MAIN #############

Get the data of interest by stripping out /dev/cd#,

/proc rows and keeping columns 1, 4 and 7

df -k | tail +2 | egrep -v ‘/dev/cd[0-9] | /proc’ \

| awk ‘{print $1, $4, $7}’ > $WORKFILE

Loop through each line of the file and compare column 2

while read FSDEVICE FSVALUE FSMOUNT

Listing 5.1 fs_mon_AIX.ksh shell script. (continues)

File System Monitoring 101

Free & Share & Open

do

FSVALUE=$(echo $FSVALUE | sed s/\%//g) # Remove the % sign

typeset -i FSVALUE

if [$FSVALUE -gt $FSMAX]

then

echo “$FSDEVICE mounted on $FSMOUNT is ${FSVALUE}%” \

>> $OUTFILE

fi

done < $WORKFILE # Feed the while loop from the bottom!!

if [[-s $OUTFILE]]

then

echo “\nFull Filesystem(s) on $THISHOST\n”

cat $OUTFILE

print

fi

Listing 5.1 fs_mon_AIX.ksh shell script. (continued)

The items highlighted in the script are all important to note. We start with getting
the hostname of the machine. We want to know which machine the report is relating to.
Next we load the $WORKFILE with the filesystem data. Just before the numerical test is
made we remove the % sign and then typeset the variable, FSVALUE, to be an integer.
Then we make the over-limit test, and if the filesystem in the current loop iteration has
exceeded the threshold of 85 percent, we append a message to the $OUTFILE. Notice
that the while loop is getting its data from the bottom of the loop, after done. This is
the fastest technique to process a file line by line. After processing the entire file we test
to see if the $OUTFILE exists and is greater than zero bytes in size. If it has data, then
we print an output header, with a newline before and after, and display the
$OUTFILE file followed by another blank line. In Listing 5.1 we used an assortment
of commands to accomplish the same task in a different way—for example, using
VARIABLE=$(command) and VARIABLE=`command`, to execute a command and
assign the command’s output to a variable, and the use of the echo and print com-
mands. In both instances the result is the same. We again see there is not just one way
to accomplish the same task.

We also want to explain how we use sed for character substitution. The basic syntax
of the sed statement that we are going to use is as follows:

command | sed s/current_string/new_string/g

When we extend our command and pipe the last pipe’s output to the sed statement
we get the following:

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’ \

| awk ‘{print $1, $4, $7}’ | sed s/\%//g

102 Chapter 5

The point to notice about the preceding sed part of the command statement is that
we had to escape the %, percent sign, with a \, backslash. This is because % is a special
character in Unix. To remove the special meaning from, or to escape, the function we
use a backslash before the % sign, \%. This lets us literally use % as a text character as
opposed to its system-defined value or function. See Listing 5.2.

Full Filesystem(s) on yogi

/dev/hd2 mounted on /usr is 96%

/dev/hd10opt mounted on /opt is 97%

Listing 5.2 Full filesystem script in action.

This script is okay, but we really are not very concerned about these filesystems
being at these current values. The reason is that /usr and /opt, on AIX, should
remain static in size. The reason is that /usr is where the OS and application code for
the system resides, and /opt, new to AIX 5L as a mount point, is where Linux code
resides. So how can we give an exception to these two filesystems?

Adding Exceptions Capability to Monitoring

The fs_mon.ksh script is great for what it is written for, but in the real world we
always have to make exceptions and we always strive to cover all of the gotchas when
writing shell scripts. Now we are going to add the capability to override the default
FSMAX threshold. Because we are going to be able to override the default, it would be
really nice to be able to either raise or lower the threshold for individual filesystems.

To accomplish this script tailoring, we need a data file to hold our exceptions. We
want to use a data file so that people are not editing the shell script every time a filesys-
tem threshold is to be changed. To make it simple, let’s use the file /usr/local/
bin/exceptions and point to the file with the EXCEPTIONS variable. Now that we
know the name of the file, we need a format for the data in the $EXCEPTIONS file. A
good format for this data file is the /mount_point and a NEW_MAX%. We will also
want to ignore any entry that is commented out with a pound sign, #. This may sound
like a lot, but it is really not too difficult to modify the script code and add a function
to read the exceptions file. Now we can set it up.

The Exceptions File
To set up our exceptions file we can always use /usr/local/bin, or your favorite
place, as a bin directory. To keep things nice we can define a bin directory for the script
to use. This is a good thing to do in case the files need to be moved for some reason. The
declarations are shown here:

File System Monitoring 103

Free & Share & Open

BINDIR=”/usr/local/bin”

EXCEPTIONS=”${BINDIR}/exceptions”

Notice the curly braces around the BINDIR variable when it is used to define the
EXCEPTIONS file. This is always a good thing to do if the variable name will have a
character, which is not associated with the variable’s name, next to the variable name
without a space. Otherwise, an error may occur that could be very hard to find!

EXCEPTIONS=”$BINDIR/exceptions”

versus

EXCEPTIONS=”${BINDIR}/exceptions”

In all of the ways there are to set up exceptions capability, grep seems to come up the
most. Please avoid the grep mistake! The two fields in the $EXCEPTIONS file are the
/mount_point and the NEW_MAX% value. The first instinct is to grep on the
/mount_point, but what if /mount_point is root, /? If you grep on /, and the /
entry is not the first entry in the exceptions file, then you will get a pattern match on
the wrong entry, and thus use the wrong $NEW_MAX% in deciding if the / mount point
is full. In fact, if you grep on / in the exceptions file, you will get a match on the first
entry in the file every time. Listing 5.3 shows some wrong code that made this very
grep mistake:

while read FSDEVICE FSVALUE FSMOUNT

do

Strip out the % sign if it exists

FSVALUE=$(echo $FSVALUE | sed s/\%//g) # Remove the % sign

if [[-s $EXCEPTIONS]] # Do we have a non-empty file?

then # Found it!

Look for the current $FSMOUNT value in the file

#WRONG CODE, DON’T MAKE THIS MISTAKE USING grep!!

cat $EXCEPTIONS | grep -v “^#” | grep $FSMOUNT \

| read FSNAME NEW_MAX

if [$? -eq 0] # Found it!

then

if [[$FSNAME = $FSMOUNT]] # Sanity check

then

NEW_MAX=$(echo $NEW_MAX | sed s/\%//g)

if [$FSVALUE -gt $NEW_MAX] # Use the new $NEW_MAX

then

echo “$FSDEVICE mount on $FSMOUNT is ${FSVALUE}%” \

>> $OUTFILE

fi

elif [$FSVALUE -gt $FSMAX] # Not in $EXCEPTIONS file

then

Listing 5.3 The wrong way to use grep.

104 Chapter 5

echo “$FSDEVICE mount on $FSMOUNT is ${FSVALUE}%” \

>> $OUTFILE

fi

fi

else # No exceptions file...use script default

if [$FSVALUE -gt $FSMAX]

then

echo “$FSDEVICE mount on $FSMOUNT is ${FSVALUE}%” \

>> $OUTFILE

fi

fi

done < $WORKFILE

Listing 5.3 The wrong way to use grep. (continued)

The code in Listing 5.3 really looks as if it should work, and it does some of the time!
To get around the error that grep introduces, we need to just set up a function that will
look for an exact match for each entry in the exceptions file.

Now let’s look at this new technique. We want to write two functions, one to load
the $EXCEPTIONS file data without the comment lines, the lines beginning with a #,
while omitting all blank lines into a data file, and one to search through the exceptions
file data and perform the tests.

This is a simple one-line function to load the $EXCEPTIONS file data into the
$DATA_EXCEPTIONS file:

function load_EXCEPTIONS_file

{

Ignore any line that begins with a pound sign,

and also remove all blank lines

cat $EXCEPTIONS | grep -v “^#” | sed /^$/d > $DATA_EXCEPTIONS

}

In the preceding function we use the ^, caret character, along with the grep -v to
ignore any line beginning with a #, pound sign. We also use the ^$ with the sed state-
ment to remove any blank lines and then redirect output to a data file, which is pointed
to by the $DATA_EXCEPTIONS variable. After we have the exceptions file data loaded,
we have the following check_exceptions function that will look in the
$DATA_EXCEPTIONS file for the current mount point and, if found, will check the
$NEW_MAX value to the system’s reported percent used value. The function will
present back to the script a return code relating to the result of the test.

function check_exceptions

{

set -x # Uncomment to debug this function

File System Monitoring 105

Free & Share & Open

while read FSNAME NEW_MAX # Feeding data from Bottom of Loop!!!

do

if [[$FSNAME = $FSMOUNT]] # Correct /mount_point?

then # Get rid of the % sign, if it exists!

NEW_MAX=$(echo $NEW_MAX | sed s/\%//g)

if [$FSVALUE -gt $NEW_MAX]

then # Over Limit...Return a “0”, zero

return 0 # FOUND OVER LIMIT - Return 0

else # Found in the file but is within limits

return 2 # Found OK

fi

fi

done < $DATA_EXCEPTIONS # Feed from the bottom of the loop!!

return 1 # Not found in File

}

This check_exceptions function is called during each loop iteration in the main
script and returns a 0, zero, if the /mount_point is found to exceed the NEW_MAX%. It
will return a 2 if the mount point was found to be OK in the exceptions data file and
return a 1, one, if the mount point was not found in the $DATA_EXCEPTIONS file.
There are plenty of comments throughout this new script, so feel free to follow through
and pick up a few pointers—pay particular attention to the bold text in Listing 5.4.

#!/usr/bin/ksh

#

SCRIPT: fs_mon_AIX_excep.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 2.1.P

PURPOSE: This script is used to monitor for full filesystems,

which is defined as “exceeding” the FSMAX value.

A message is displayed for all “full” filesystems.

#

PLATFORM: AIX

#

REV LIST:

08-23-2001 - Randy Michael

Added code to override the default FSMAX script threshold

using an “exceptions” file, defined by the $EXCEPTIONS

variable, that list /mount_point and NEW_MAX%

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

Listing 5.4 fs_mon_AIX_except.ksh shell script.

106 Chapter 5

#

DEFINE FILES AND VARIABLES HERE ####

FSMAX=”85” # Max. FS percentage value

WORKFILE=”/tmp/df.work” # Holds filesystem data

>$WORKFILE # Initialize to empty

OUTFILE=”/tmp/df.outfile” # Output display file

>$OUTFILE # Initialize to empty

BINDIR=”/usr/local/bin” # Local bin directory

THISHOST=`hostname` # Hostname of this machine

EXCEPTIONS=”${BINDIR}/exceptions” # Overrides $FSMAX

DATA_EXCEPTIONS=”/tmp/dfdata.out” # Exceptions file w/o #, comments

####### DEFINE FUNCTIONS HERE #####

function load_EXCEPTIONS_file

{

Ignore any line that begins with a pound sign,

and omit all blank lines

cat $EXCEPTIONS | grep -v “^#” | sed /^$/d > $DATA_EXCEPTIONS

}

###################################

function check_exceptions

{

set -x # Uncomment to debug this function

while read FSNAME NEW_MAX # Feeding data from Bottom of Loop!!!

do

if [[$FSNAME = $FSMOUNT]] # Correct /mount_point?

then # Get rid of the % sign, if it exists!

NEW_MAX=$(echo $NEW_MAX | sed s/\%//g)

if [$FSVALUE -gt $NEW_MAX]

then # Over Limit...Return a “0”, zero

return 0 # FOUND OUT OF LIMITS - Return 0

fi

fi

done < $DATA_EXCEPTIONS # Feed from the bottom of the loop!!

return 1 # Not found in File

}

Listing 5.4 fs_mon_AIX_except.ksh shell script. (continues)

File System Monitoring 107

Free & Share & Open

###

######## START OF MAIN #############

####################################

If there is an exceptions file...load it...

[[-s $EXCEPTIONS]] && load_EXCEPTIONS_file

Get the data of interest by stripping out /dev/cd#,

/proc rows and keeping columns 1, 4, and 7

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’ \

| awk ‘{print $1, $4, $7}’ > $WORKFILE

Loop through each line of the file and compare column 2

while read FSDEVICE FSVALUE FSMOUNT

do # Feeding the while loop from the BOTTOM!!

Strip out the % sign if it exists

FSVALUE=$(echo $FSVALUE | sed s/\%//g) # Remove the % sign

if [[-s $EXCEPTIONS]] # Do we have a non-empty file?

then # Found it!

Look for the current $FSMOUNT value in the file

using the check_exceptions function defined above.

check_exceptions

RC=$? # Get the return code from the function

if [$RC -eq 0] # Found Exceeded in Exceptions File!!

then

echo “$FSDEVICE mount on $FSMOUNT is ${FSVALUE}%” \

>> $OUTFILE

elif [$RC -eq 1] # Not found in exceptions, use defaults

then

if [$FSVALUE -gt $FSMAX] # Use Script Default

then

echo “$FSDEVICE mount on $FSMOUNT is ${FSVALUE}%” \

>> $OUTFILE

fi

fi

else # No exceptions file use the script default

if [$FSVALUE -gt $FSMAX] # Use Script Default

then

echo “$FSDEVICE mount on $FSMOUNT is ${FSVALUE}%” \

>> $OUTFILE

Listing 5.4 fs_mon_AIX_except.ksh shell script. (continued)

108 Chapter 5

fi

fi

done < $WORKFILE # Feed the while loop from the bottom...

Display output if anything is exceeded...

if [[-s $OUTFILE]]

then

echo “\nFull Filesystem(s) on ${THISHOST}\n”

cat $OUTFILE

print

fi

Listing 5.4 fs_mon_AIX_except.ksh shell script. (continued)

Notice in the script that we never acted on the return code 2. Because the mount
point is found to be OK, there is nothing to do except to check the next mount point.
The /usr/local/bin/exceptions file will look something like the script shown in
Listing 5.5.

FILE: “exceptions”

This file is used to override the $FSMAX

value in the filesystem monitoring script

fs_mon_excep.ksh. The syntax to override

is a /mount-point and a NEW_MAX%:

EXAMPLE:

/opt 97

OR

/usr 96%

All lines beginning with a # are ignored as well as

the % sign, if you want to use one...

/opt 96%

/usr 97

/ 50%

Listing 5.5 Example exceptions file.

When we execute the fs_mon_AIX_excep.ksh script, with the exception file
entries from Listing 5.5, the output looks like the following on yogi (see Listing 5.6).

File System Monitoring 109

Free & Share & Open

Full Filesystem(s) on yogi

/dev/hd4 mount on / is 51%

/dev/hd10opt mount on /opt is 97%

Listing 5.6 Full filesystem on yogi script in action.

Notice that we added a limit for the root filesystem, /, and set it to 50 percent, and
also that this root entry is not at the top of the list in the exceptions file so we have
solved the grep problem. You should be able to follow the logic through the preceding
code to see that we met all of the goals we set out to accomplish in this section. There
are plenty of comments to help you understand each step.

Are we finished? Not by a long shot! What about monitoring large filesystems?
Using the percentage of filesystem space used is excellent for regular filesystems, but
if you have a 10GB filesystem and it is at 90 percent you still have 1GB of free space.
Even at 99 percent you have 100MB of space left. For large filesystems we need another
monitoring method.

Using the MB of Free Space Method

Sometimes a percentage is just not accurate enough to get the detailed notification that
is desired. For these instances, and in the case of large filesystems, we can use awk on
the df -k command output to extract the KB of free space field and compare this to a
threshold trigger value, specified in either KB or MB. We are going to modify both of
the scripts we have already written to use the KB of free space field.

Remember our previous df -k command output:

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 32768 16376 51% 1663 11% /

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30824 43% 540 5% /var

/dev/hd3 106496 99932 7% 135 1% /tmp

/dev/hd1 4096 3916 5% 25 3% /home

/proc - - - - - /proc

/dev/hd10opt 638976 24456 97% 15457 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

/dev/cd0 656756 0 100% 328378 100% /cdrom

Instead of the fourth field of the percentage used, we now want to extract the third
field with the 1024-blocks, or KB of free space. When someone is working with the
script it is best that an easy and familiar measurement is used; the most common is MB

110 Chapter 5

of free space. To accomplish this we will need to do a little math, but this is just to have
a more familiar measurement to work with. As before, we are going to load the com-
mand output into the $WORKFILE, but this time we extract columns $1, $3, and $7.

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’ \

| awk ‘{print $1, $3, $7}’ > $WORKFILE

We also need a new threshold variable to use for this method. The MIN_MB_FREE
variable sounds good. But what is an appropriate value to set the threshold? In this
example we are going to use 50MB. It could be any value, though.

MIN_MB_FREE=”50MB”

Notice that we added MB to the value. We will remove this later, but it is a good idea
to add the measurement type just so that the ones who follow will know that the
threshold is in MB. Remember that the system is reporting in KB, so we have to multi-
ply our 50MB times 1024 to get the actual value that is equivalent to the system-
reported measurement. We also want to strip out the MB letters and typeset the
MIN_MB_FREE variable to be an integer. In the compound statement that follows, we
take care of everything except typesetting the variable:

((MIN_MB_FREE = $(echo $MIN_MB_FREE | sed s/MB//g) * 1024))

The order of execution for this compound command is as follows: First, the inner-
most $()command substitution is executed, which replaces the letters MB, if they exist,
with null characters. Next is the evaluation of the math equation and assignment of the
result to the MIN_MB_FREE variable. Equating MIN_MB_FREE may seem a little con-
fusing, but remember that the system is reporting in KB so we need to get to the same
power of 2 to also report in 1024-byte blocks. Other than these small changes, the script
is the same as the original, as shown in Listing 5.7.

#!/usr/bin/ksh

#

SCRIPT: fs_mon_AIX_MBFREE.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 1.5.P

PURPOSE: This script is used to monitor for full filesystems,

which is defined as “exceeding” the FSMAX value.

A message is displayed for all “full” filesystems.

#

REV LIST:

Randy Michael - 08-27-2001

Listing 5.7 fs_mon_AIX_MBFREE.ksh shell script. (continues)

File System Monitoring 111

Free & Share & Open

Changed the code to use MB of free space instead of

the %Used method.

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

#

DEFINE FILES AND VARIABLES HERE ####

MIN_MB_FREE=”50MB” # Min. MB of Free FS Space

WORKFILE=”/tmp/df.work” # Holds filesystem data

>$WORKFILE # Initialize to empty

OUTFILE=”/tmp/df.outfile” # Output display file

>$OUTFILE # Initialize to empty

THISHOST=`hostname` # Hostname of this machine

######## START OF MAIN #############

Get the data of interest by stripping out /dev/cd#,

/proc rows and keeping columns 1, 4 and 7

df -k | tail +2 | egrep -v ‘/dev/cd[0-9] | /proc’ \

| awk ‘{print $1, $3, $7}’ > $WORKFILE

Format Variables

((MIN_MB_FREE = $(echo $MIN_MB_FREE | sed s/MB//g) * 1024))

Loop through each line of the file and compare column 2

while read FSDEVICE FSMB_FREE FSMOUNT

do

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g) # Remove the “MB”

if ((FSMB_FREE < MIN_MB_FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT only has

${FS_FREE_OUT}MB Free” >> $OUTFILE

fi

done < $WORKFILE # Feed the while loop from the bottom!!

if [[-s $OUTFILE]]

then

echo “\nFull Filesystem(s) on $THISHOST\n”

cat $OUTFILE

print

fi

Listing 5.7 fs_mon_AIX_MBFREE.ksh shell script. (continued)

112 Chapter 5

Full Filesystem(s) on yogi

/dev/hd4 mounted on / only has 16MB Free

/dev/hd9var mounted on /var only has 30MB Free

/dev/hd1 mounted on /home only has 3MB Free

/dev/hd10opt mounted on /opt only has 24MB Free

Listing 5.8 Shell script in action.

This output in Listing 5.8 is padded by less than 1 MB due to the fact that we divided
the KB free column by 1000 for the output, measured in MB. If the exact KB is needed,
then the division by 1000 can be omitted. What about giving this script exception capa-
bility to raise or lower the threshold, as we did for the percentage technique? We
already have the percentage script with the check_exception function so that we
can modify this script and function to use the same technique of parsing through the
$EXCEPTIONS file.

Using MB of Free Space with Exceptions

To add exception capability to the fs_mon_MBFREE.ksh shell script, we will again
need a function to perform the search of the $EXCEPTIONS file, if it exists. This time
we will add some extras. We may have the characters MB in our data, so we need to
allow for this. We also need to test for null characters, or no data, and remove all blank
lines in the exception file. The easiest way to use the function is to supply an appropri-
ate return code back to the calling script. We will set the function up to return 1, one, if
the mount point is found to be out of limits in the $DATA_EXCEPTIONS file. It will
return 2 if the /mount_point is in the exceptions data file but is not out of limits. The
function will return 3 if the mount point is not found in the exceptions data file. This
will allow us to call the function to check the exception file, and based on the return
code, we make a decision in the main body of the script.

We already have experience modifying the script to add exception capability, so
this should be a breeze, right? When we finish, the exception modification will be
intuitively obvious.

Because we are going to parse through the exceptions file, we need to run a sanity
check to see if someone made an incorrect entry and placed a colon, :, in the file
intending to override the limit on an NFS mounted filesystem. This error should never
occur, but because a tester I know did so, I now check and correct the error, if possible.
We just cut out the second field using the colon, :, as a delimiter. Listing 5.9 shows
the modified check_exceptions function. Check out the highlighted parts in
particular.

File System Monitoring 113

Free & Share & Open

function check_exceptions

{

set -x # Uncomment to debug this function

while read FSNAME FSLIMIT

do

Do an NFS sanity check

echo $FSNAME | grep “:” >/dev/null \

&& FSNAME=$(echo $FSNAME | cut -d “:” -f2)

Make sure we do not have a null value

if [[! -z “$FSLIMIT” && “$FSLIMIT” != ‘’]]

then

((FSLIMIT = $(echo $FSLIMIT | sed s/MB//g) * 1024))

if [[$FSNAME = $FSMOUNT]]

then

Get rid of the “MB” if it exists

FSLIMIT=$(echo $FSLIMIT | sed s/MB//g)

if ((FSMB_FREE < FSLIMIT))

then

return 1 # Found out of limit

else

return 2 # Found OK

fi

fi

fi

done < $DATA_EXCEPTIONS # Feed the loop from the bottom!!!

return 3 # Not found in $EXCEPTIONS file

}

Listing 5.9 New check_exceptions function.

A few things to notice in this function are the NFS and null value sanity checks as
well as the way that we feed the while loop from the bottom, after the done statement.
First, the sanity checks are very important to guard against incorrect NFS entries and
blank lines, or null data, in the exceptions file. For the NFS colon check we use the dou-
ble ampersands, &&, as opposed to if...then... statement. It works the same but is
cleaner in this type of test. The other point is the null value check. We check for both a
zero-length variable and null data. The double ampersands, &&, are called a logical
AND function, and the double pipes, ||, are a logical OR function. In a logical AND,
&&, all of the command statements must be true for the return code of the entire state-
ment to be 0, zero. In a logical OR, ||, at least one statement must be true for the return
code to be 0, zero. When a logical OR receives the first true statement in the test list it
will immediately exit the test, or command statement, with a return code of 0, zero.

114 Chapter 5

Both are good to use, but some people find it hard to follow. Next we test for an
empty/null variable.

if [[! -z “$FSLIMIT” && “$FSLIMIT” != ‘’]]

Note that in the null sanity check there are double quotes around both of the
$FSLIMIT variables, “$FSLIMIT”. These are required! If you omit the double quotes
and the variable is actually null, then the test will fail and a system error message is
generated and displayed on the terminal. It never hurts to add double quotes around
a variable, and sometimes it is required.

For the while loop we go back to our favorite loop structure. Feeding the while loop
from the bottom, after done, is the fastest way to loop through a file line by line. With
the sanity checks complete, we just compare some numbers and give back a return
code to the calling shell script. Please pay attention to the boldface code in Listing 5.10.

#!/usr/bin/ksh

#

SCRIPT: fs_mon_AIX_MB_FREE_excep.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 2.1.P

PURPOSE: This script is used to monitor for full filesystems,

which is defined as “exceeding” the FSMAX value.

A message is displayed for all “full” filesystems.

#

PLATFORM: AIX

#

REV LIST:

Randy Michael - 08-27-2001

Changed the code to use MB of free space instead of

the %Used method.

#

Randy Michael - 08-27-2001

Added code to allow you to override the set script default

for MIN_MB_FREE of FS Space

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

#

DEFINE FILES AND VARIABLES HERE ####

MIN_MB_FREE=”50MB” # Min. MB of Free FS Space

WORKFILE=”/tmp/df.work” # Holds filesystem data

>$WORKFILE # Initialize to empty

OUTFILE=”/tmp/df.outfile” # Output display file

Listing 5.10 fs_mon_AIX_MB_FREE_excep.ksh shell script. (continues)

File System Monitoring 115

Free & Share & Open

>$OUTFILE # Initialize to empty

EXCEPTIONS=”/usr/local/bin/exceptions” # Override data file

DATA_EXCEPTIONS=”/tmp/dfdata.out” # Exceptions file w/o # rows

THISHOST=`hostname` # Hostname of this machine

####### DEFINE FUNCTIONS HERE ########

function check_exceptions

{

set -x # Uncomment to debug this function

while read FSNAME FSLIMIT

do

Do an NFS sanity check

echo $FSNAME | grep “:” >/dev/null \

&& FSNAME=$(echo $FSNAME | cut -d “:” -f2)

if [[! -z “$FSLIMIT” && “$FSLIMIT” != ‘’]] # Check for empty/null

then

((FSLIMIT = $(echo $FSLIMIT | sed s/MB//g) * 1024))

if [[$FSNAME = $FSMOUNT]]

then

Get rid of the “MB” if it exists

FSLIMIT=$(echo $FSLIMIT | sed s/MB//g)

if ((FSMB_FREE < FSLIMIT)) # Numerical Test

then

return 1 # Found out of limit

else

return 2 # Found OK

fi

fi

fi

done < $DATA_EXCEPTIONS # Feed the loop from the bottom!!!

return 3 # Not found in $EXCEPTIONS file

}

######## START OF MAIN #############

Load the $EXCEPTIONS file if it exists

if [[-s $EXCEPTIONS]]

then

Ignore all lines beginning with a pound sign,

and omit all blank lines

cat $EXCEPTIONS | grep -v “^#” | sed /^$/d > $DATA_EXCEPTIONS

fi

Get the data of interest by stripping out /dev/cd#,

Listing 5.10 fs_mon_AIX_MB_FREE_excep.ksh shell script. (continued)

116 Chapter 5

/proc rows and keeping columns 1, 4 and 7

df -k | tail +2 | egrep -v ‘/dev/cd[0-9] | /proc’ \

| awk ‘{print $1, $3, $7}’ > $WORKFILE

Format Variables for the proper MB value

((MIN_MB_FREE = $(echo $MIN_MB_FREE | sed s/MB//g) * 1024))

Loop through each line of the file and compare column 2

while read FSDEVICE FSMB_FREE FSMOUNT

do

if [[-s $EXCEPTIONS]]

then

check_exceptions

RC=”$?” # Check the Return Code!

if ((RC == 1)) # Found out of exceptions limit

then

((FS_FREE_OUT = $FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT only has\

${FS_FREE_OUT}MB Free” \

>> $OUTFILE

elif ((RC == 2)) # Found in exceptions to be OK

then # Just a sanity check - We really do nothing here...

The colon, :, is a NO-OP operator in KSH

: # No-Op - Do Nothing!

elif ((RC == 3)) # Not found in the exceptions file

then

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g) # Remove the “MB”

if ((FSMB_FREE < MIN_MB_FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT only has\

${FS_FREE_OUT}MB Free” >> $OUTFILE

fi

fi

else # No Exceptions file use the script default

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g) # Remove the “MB”

if ((FSMB_FREE < MIN_MB_FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT only has\

${FS_FREE_OUT}MB Free” >> $OUTFILE

fi

fi

done < $WORKFILE

Listing 5.10 fs_mon_AIX_MB_FREE_excep.ksh shell script. (continues)

File System Monitoring 117

Free & Share & Open

if [[-s $OUTFILE]]

then

echo “\nFull Filesystem(s) on $THISHOST\n”

cat $OUTFILE

print

fi

Listing 5.10 fs_mon_AIX_MB_FREE_excep.ksh shell script. (continued)

The script in Listing 5.10 is good, and we have covered all of the bases, right? If you
want to stop here, you will be left with an incomplete picture of what we can accom-
plish. There are several more things to consider, and, of course, there are many more
ways to do any of these tasks, and no one is correct. Let’s consider mixing the filesys-
tem percentage used and the MB of free filesystem space techniques. With a mecha-
nism to auto-detect the way we select the usage, the filesystem monitoring script could
be a much more robust tool—and a must-have tool where you have a mix of regular and
large filesystems to monitor.

Percentage Used—MB Free and Large Filesystems

Now we’re talking! Even if most of your filesystems are large file enabled or are just
huge in size, the small ones will still kill you in the end. For a combination of small and
large filesystems, we need a mix of both the percent used and MB of free space tech-
niques. For this combination to work, we need a way to auto-detect the correct usage,
which we still need to define. There are different combinations of these auto-detect
techniques that can make the monitoring work differently. For the large filesystems we
want to use the MB of free space, and for regular filesystems we use the percentage
method.

We need to define a trigger that allows for this free space versus percentage moni-
toring transformation. The trigger value will vary by environment, but this example
uses 1GB as the transition point from percentage used to MB of free space. Of course,
the value should be more like 4–6GB, but we need an example. We also need to con-
sider how the $EXCEPTIONS file is going to look. Options for the exceptions file are a
combined file or two separate files, one for percentage used and one for MB free. The
obvious choice is one combined file. What are combined entries to look like? How are
we going to handle the wrong entry type? The entries need to conform to the specific
test type the script is looking for. The best way to handle this is to require that either a
% or MB be added as a suffix to each new entry in the exceptions file. With the MB or

118 Chapter 5

% suffix we could override not only the triggering level, but also the testing method! If
an entry has only a number without the suffix, then this exceptions file entry will be
ignored and the shell script’s default values will be used. This suffix method is the
most flexible, but it, too, is prone to mistakes in the exceptions file. For the mistakes, we
need to test the entries in the exceptions to see that they conform to the standard that
we have decided on.

The easiest way to create this new, more robust script is to take large portions of the
previous scripts and convert them into functions. We can simply insert the word function
followed by a function name and enclose the code within curly braces—for example,
function test_function { function_code }. Or if you prefer the C-type func-
tion method, we can use this example, test_function () { function_code }.
The only difference between the two function methods is one uses the word function to
define the function while the other just adds a set of parentheses after the function’s
name. When we use functions, it is easy to set up a logical framework from which to call
the functions. It is always easiest to set up the framework first and then fill in the middle.
The logic code for this script will look like Listing 5.11.

load_File_System_data > $WORKFILE

if EXCEPTIONS_FILE exists and is > 0 size

then

load_EXCEPTIONS_FILE_data

fi

while read $WORKFILE, which has the filesystem data

do

if EXCEPTIONS data was loaded

then

check_exceptions_file

RC=Get Return code back from function

case $RC in

1) Found exceeded by % method

2) Found out-of-limit by MB Free method

3) Found OK in exceptions file by a testing method

4) Not found in exceptions file

esac

else # No exceptions file

Use script defaults to compare

fi

done

if we have anything out of limits

then

display_output

fi

Listing 5.11 Logic code for a large and small filesystem freespace script.

File System Monitoring 119

Free & Share & Open

This is very straightforward and easy to do with functions. From this logical
description we already have the main body of the script written. Now we just need to
modify the check_exceptions function to handle both types of data and create the
load_FS_data, load_EXCEPTIONS_data, and display_output functions. For
this script we are also going to do things a little differently because this is a learning
process. As we all know, there are many ways to accomplish the same task in Unix;
shell scripting is a prime example. To make our scripts a little easier to read at a glance,
we are going to change how we do numeric test comparisons. We currently use the
standard bracketed test functions with the numeric operators, -lt, -le, -eq, -ne,
-ge, and -gt:

if [$VAR1 -gt $VAR2]

We are now going to use the bracketed tests for character strings only and do all of
our numerical comparisons with the double parentheses method:

if ((VAR1 > VAR2))

The operators for this method are <, <=, ==, !=, >=, >. When we make this small
change, it makes the script much easier to follow because we know immediately that we
are dealing with either numeric data or a character string without knowing much at all
about the data being tested. Notice that we did not reference the variables with a $ (dol-
lar sign) for the numeric tests. The $ omission is not the only difference, but it is the most
obvious. The $ is omitted because it is implied that anything that is not numeric is a
variable. Other things to look for in this script are compound tests, math and math
within tests, the use of curly braces with variables, ${VAR1}MB, a no-op using a :
(colon), data validation, error checking, and error notification. These variables are a lot
to look for, but you can learn much from studying the script shown in Listing 5.12.

Just remember that all functions must be defined before they can be used! Failure to
define functions is the most common mistake when working with them. The second
most common mistake has to do with scope. Scope deals with where a variable and its
value are known to other scripts and functions. Top level down is the best way to
describe where scope lies. The basic rules say that all of a shell script’s variables are
known to the internal, lower-level, functions, but none of the function’s variables are
known to any higher-calling script or function, thus the top level down definition. We
will cover a method called a co-process of dealing with scope in a later chapter.

So, in this script the check_exceptions function will use the global script’s vari-
ables, which are known to all of the functions, and the function will, in turn, reply with
a return code, as we defined in the logic flow of Listing 5.11. Scope is a very important
concept, as is the placement of the function in the script. The comments in this script
are extensive, so please study the code and pay particular attention to the boldface text.

NOTE Remember: You have to define a function before you can use it.

120 Chapter 5

#!/usr/bin/ksh

#

SCRIPT: fs_mon_AIX_PC_MBFREE_excep.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 4.3.P

PURPOSE: This script is used to monitor for full filesystems,

which is defined as “exceeding” the MAX_PERCENT value.

A message is displayed for all “full” filesystems.

#

PLATFORM: AIX

REV LIST:

Randy Michael - 08-27-2001

Changed the code to use MB of free space instead of

the %Used method.

#

Randy Michael - 08-27-2001

Added code to allow you to override the set script default

for MIN_MB_FREE of FS Space

Randy Michael - 08-28-2001

Changed the code to handle both %Used and MB of Free Space.

It does an “auto-detection” but has override capability

of both the trigger level and the monitoring method using

the exceptions file pointed to by the $EXCEPTIONS variable

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

#

DEFINE FILES AND VARIABLES HERE ####

MIN_MB_FREE=”100MB” # Min. MB of Free FS Space

MAX_PERCENT=”85%” # Max. FS percentage value

FSTRIGGER=”1000MB” # Trigger to switch from % Used to MB Free

WORKFILE=”/tmp/df.work” # Holds filesystem data

>$WORKFILE # Initialize to empty

OUTFILE=”/tmp/df.outfile” # Output display file

>$OUTFILE # Initialize to empty

EXCEPTIONS=”/usr/local/bin/exceptions” # Override data file

DATA_EXCEPTIONS=”/tmp/dfdata.out” # Exceptions file w/o # rows

EXCEPT_FILE=”N” # Assume no $EXCEPTIONS FILE

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continues)

File System Monitoring 121

Free & Share & Open

THISHOST=`hostname` # Hostname of this machine

FORMAT VARIABLES HERE

Both of these variables need to be multiplied by 1024 blocks

((MIN_MB_FREE = $(echo $MIN_MB_FREE | sed s/MB//g) * 1024))

((FSTRIGGER = $(echo $FSTRIGGER | sed s/MB//g) * 1024))

####### DEFINE FUNCTIONS HERE ########

function check_exceptions

{

set -x # Uncomment to debug this function

while read FSNAME FSLIMIT

do

IN_FILE=”N” # If found in file, which test type to use?

Do an NFS sanity check and get rid of any “:”.

If this is found it is actually an error entry

but we will try to resolve it. It will

work only if it is an NFS cross mount to the same

mount point on both machines.

echo $FSNAME | grep ‘:’ >/dev/null \

&& FSNAME=$(echo $FSNAME | cut -d ‘:’ -f2)

Check for empty and null variable

if [[! -z “$FSLIMIT” && “$FSLIMIT” != ‘’]]

then

if [[$FSNAME = $FSMOUNT]] # Found it!

then

Check for “MB” Characters...Set IN_FILE=MB

echo $FSLIMIT | grep MB >/dev/null && IN_FILE=”MB” \

&& ((FSLIMIT = $(echo $FSLIMIT \

| sed s/MB//g) * 1024))

check for “%” Character...Set IN_FILE=PC, for %

echo $FSLIMIT | grep “%” >/dev/null && IN_FILE=”PC” \

&& FSLIMIT=$(echo $FSLIMIT | sed s/\%//g)

case $IN_FILE in

MB) # Use Megabytes of free space to test

Up-case the characters, if they exist

FSLIMIT=$(echo $FSLIMIT | tr ‘[a-z]’ ‘[A-Z]’)

Get rid of the “MB” if it exists

FSLIMIT=$(echo $FSLIMIT | sed s/MB//g)

Test for blank and null values

if [[! -z $FSLIMIT && $FSLIMIT != ‘’]]

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continued)

122 Chapter 5

then

Test for a valid filesystem “MB” limit

if ((FSLIMIT >= 0 && FSLIMIT < FSSIZE))

then # Check the limit

if ((FSMB_FREE < FSLIMIT))

then

return 1 # Found out of limit

using MB Free method

else

return 3 # Found OK

fi

else

echo “\nERROR: Invalid filesystem MAX for\

$FSMOUNT - $FSLIMIT”

echo “ Exceptions file value must be\

less than or”

echo “ equal to the size of the filesystem\

measured”

echo “ in 1024 bytes\n”

fi

else

echo “\nERROR: Null value specified in exceptions\

file”

echo “ for the $FSMOUNT mount point.\n”

fi

;;

PC) # Use the Percent used method to test

Strip out the % sign if it exists

PC_USED=$(echo $PC_USED | sed s/\%//g)

Test for blank and null values

if [[! -z $FSLIMIT && $FSLIMIT != ‘’]]

then

Test for a valid percentage, i.e. 0-100

if ((FSLIMIT >= 0 && FSLIMIT <= 100))

then

if ((PC_USED > FSLIMIT))

then

return 2 # Found exceeded by % Used method

else

return 3 # Found OK

fi

else

echo “\nERROR: Invalid percentage for\

$FSMOUNT - $FSLIMIT”

echo “ Exceptions file values must be”

echo “ between 0 and 100%\n”

fi

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continues)

File System Monitoring 123

Free & Share & Open

else

echo “\nERROR: Null value specified in exceptions”

echo “ file for the $FSMOUNT mount point.\n”

fi

;;

N) # Test type not specified in exception file, use default

Inform the user of the exceptions file error...

echo “\nERROR: Missing testing type in exceptions file”

echo “ for the $FSMOUNT mount point. A \”%\” or”

echo “ \”MB\” must be a suffix to the numerical”

echo “ entry. Using script default values...\n”

Method Not Specified - Use Script Defaults

if ((FSSIZE >= FSTRIGGER))

then # This is a “large” filesystem

if ((FSMB_FREE < MIN_MB_FREE))

then

return 1 # Found out of limit using MB Free

else

return 3 # Found OK

fi

else # This is a standard filesystem

PC_USED=$(echo $PC_USED | sed s/\%//g) #Remove the %

FSLIMIT=$(echo $FSLIMIT | sed s/\%//g) #Remove the %

if ((PC_USED > FSLIMIT))

then

return 2 # Found exceeded by % Used method

else

return 3 # Found OK

fi

fi

;;

esac

fi

fi

done < $DATA_EXCEPTIONS # Feed the loop from the bottom!!!

return 4 # Not found in $EXCEPTIONS file

}

####################################

function display_output

{

if [[-s $OUTFILE]]

then

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continued)

124 Chapter 5

echo “\nFull Filesystem(s) on $THISHOST\n”

cat $OUTFILE

print

fi

}

####################################

function load_EXCEPTIONS_data

{

Ignore any line that begins with a pound sign,

and omit all blank lines

cat $EXCEPTIONS | grep -v “^#” | sed /^$/d > $DATA_EXCEPTIONS

}

####################################

function load_FS_data

{

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’ \

| awk ‘{print $1, $2, $3, $4, $7}’ > $WORKFILE

}

####################################

######### START OF MAIN ############

####################################

load_FS_data

Do we have a nonzero size $EXCEPTIONS file?

if [[-s $EXCEPTIONS]]

then # Found a nonempty $EXCEPTIONS file

load_EXCEPTIONS_data

EXCEP_FILE=”Y”

fi

while read FSDEVICE FSSIZE FSMB_FREE PC_USED FSMOUNT

do

if [[$EXCEP_FILE = “Y”]]

then

check_exceptions

CE_RC=”$?” # Check Exceptions Return Code (CE_RC)

case $CE_RC in

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continues)

File System Monitoring 125

Free & Share & Open

1) # Found exceeded in exceptions file by MB Method

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT has ${FS_FREE_OUT}MB\

Free” \

>> $OUTFILE

;;

2) # Found exceeded in exceptions file by %Used method

echo “$FSDEVICE mount on $FSMOUNT is ${PC_USED}%” \

>> $OUTFILE

;;

3) # Found OK in exceptions file

: # NO-OP Do Nothing

;;

4) # Not found in exceptions file - Use Script Default Triggers

if ((FSSIZE >= FSTRIGGER))

then # This is a “large” filesystem

Remove the “MB”, if it exists

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g)

typeset -i FSMB_FREE

if ((FSMB_FREE < MIN_MB_FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT has\

${FS_FREE_OUT}MB Free” >> $OUTFILE

fi

else # This is a standard filesystem

PC_USED=$(echo $PC_USED | sed s/\%//g)

MAX_PERCENT=$(echo $MAX_PERCENT | sed s/\%//g)

if ((PC_USED > MAX_PERCENT))

then

echo “$FSDEVICE mount on $FSMOUNT is ${PC_USED}%” \

>> $OUTFILE

fi

fi

;;

esac

else # NO $EXECPTIONS FILE USE DEFAULT TRIGGER VALUES

if ((FSSIZE >= FSTRIGGER))

then # This is a “large” filesystem - Use MB Free Method

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g) # Remove the “MB”

if ((FSMB_FREE < MIN_MB_FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT has\

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continued)

126 Chapter 5

${FS_FREE_OUT}MB Free” >> $OUTFILE

fi

else # This is a standard filesystem - Use % Used Method

PC_USED=$(echo $PC_USED | sed s/\%//g)

MAX_PERCENT=$(echo $MAX_PERCENT | sed s/\%//g)

if ((PC_USED > MAX_PERCENT))

then

echo “$FSDEVICE mount on $FSMOUNT is ${PC_USED}%” \

>> $OUTFILE

fi

fi

fi

done < $WORKFILE # Feed the while loop from the bottom!!!

display_output

End of Script

Listing 5.12 fs_mon_AIX_PC_MBFREE_excep.ksh shell script. (continued)

In the script shown in Listing 5.12, we made tests to confirm the data’s integrity and
for mistakes in the exceptions file (of course, we can go only so far with mistakes!). The
reason is that we made the exceptions file more complicated to use. Two of my testers
consistently had reverse logic on the MB free override option of the script by thinking
greater than instead of less than. From this confusion, a new exceptions file was created
that explained what the script is looking for and gave example entries. Of course, all of
these lines begin with a pound sign, #, so they are ignored when data is loaded into the
$DATA_EXCEPTIONS file. Listing 5.13 shows the exceptions file that worked best with
the testers.

FILE: “exceptions”

#

This file is used to override both the default

trigger value in the filesystem monitoring script

fs_mon_excep.ksh, but also allows overriding the

monitoring technique used, i.e. Max %Used and

minimum MB of filesystem space. The syntax to

override is a /mount-point and a trigger value.

#

EXAMPLES:

#

/usr 96% # Flag anything ABOVE 96%

OR

Listing 5.13 Example exceptions file. (continues)

File System Monitoring 127

Free & Share & Open

/usr 50MB # Flag anything BELOW 50 Megabytes

#

All lines beginning with a # are ignored.

#

NOTE: All Entries MUST have either “MB” or

“%” as a suffix!!! Or else the script

defaults are used. NO SPACES PLEASE!

#

/opt 95%

/ 50%

/usr 70MB

Listing 5.13 Example exceptions file. (continued)

The requirement for either % or MB does help keep the entry mistakes down. In case
mistakes are made, the error notifications seemed to get these cleared up very
quickly—usually after an initial run. You can find customized shell scripts for each of
the operating systems (AIX, HP-UX, Linux, and SunOS) on this book’s Web site.

Are we finished with filesystem monitoring? No way! What about the other three
operating systems that we want to monitor? We need to be able to execute this script on
AIX, Linux, HP-UX, and Solaris without the need to change the script on each platform.

Running on AIX, Linux, HP-UX, and Solaris

Can we run the filesystem scripts on various Unix flavors? You bet! Running our
filesystem monitoring script is very easy because we used functions for most of the
script. We are going to use the same script, but instead of hard-coding the loading of
the filesystem data, we need to use variables to point to the correct OS syntax and
columns of interest. Now we need a new function that will determine which flavor of
Unix we are running. Based on the OS, we set up the command syntax and command
output columns of interest that we want to extract and load the filesystem data for this
particular OS. For OS determination we just use the uname command. uname, and the
get_OS_info function, will return the resident operating system, as shown in Table 5.1.

Table 5.1 uname Command and Function Results

OPERATING SYSTEM COMMAND RESULT FUNCTION RESULT

Linux Linux LINUX

AIX AIX AIX

HP-UX HP-UX HP-UX

Solaris SunOS SUNOS

128 Chapter 5

For the function’s output we want to use all UPPERCASE characters, which makes
testing much easier. In the following function please notice we use the typeset function
to ensure that the result is in all uppercase characters.

function get_OS_info

{

For a few commands it is necessary to know the OS to

execute the proper command syntax. This will always

return the Operating System in UPPERCASE characters

typeset -u OS # Use the UPPERCASE values for the OS variable

OS=`uname` # Grab the Operating system, i.e. AIX, HP-UX

print $OS # Send back the UPPERCASE value

}

To use the get_OS_info function we can assign it to a variable using command
substitution, use the function directly in a command statement, or redirect the output
to a file. For this script modification we are going to use the get_OS_info function
directly in a case statement. Now we need four different load_FS_data functions,
one for each of the four operating systems, and that is all of the modification that is
needed. Each of the load_FS_data functions will be unique in command syntax and
the column fields to extract from the df statement output, as well as the devices to
exclude from testing. Because we wrote this script using functions, we will replace the
original load_FS_data script, at the Beginning of Main, with a case statement
that utilizes the get_OS_info function. The case statement will execute the appropri-
ate load_FS_data function.

case $(get_OS_info) in

AIX) # Load filesystem data for AIX

load_AIX_FS_data

;;

HP-UX) # Load filesystem data for HP-UX

load_HP_UX_FS_data

;;

LINUX) # Load filesystem data for Linux

load_LINUX_FS_data

;;

SUNOS) # Load filesystem data for Solaris

load_Solaris_FS_data

;;

*) # Unsupported in script

echo “\nUnsupported Operating System...EXITING\n”

exit 1

esac

Listing 5.14 Operating system test.

File System Monitoring 129

Free & Share & Open

Listing 5.14 shows simple enough replacement code. In this case statement we
either execute one of the functions or exit if the OS is not in the list with a return code
of 1, one. In these functions we will want to pay attention to the command syntax for
each operating system, the columns to extract for the desired data, and the filesystems
that we want to ignore, if any. There is an egrep, or extended grep, in each statement
that will allow for exclusions to the filesystems that are monitored. A typical example
of this is a CD-ROM. Remember that a CD-ROM will always show that it is 100% uti-
lized because it is mounted as read-only and you cannot write to it. Also, some operat-
ing systems list mount points that are really not meant to be monitored, such as /proc
in AIX 5L.

Command Syntax and Output Varies between Operating Systems

The command syntax and command output varies between Unix operating systems.
To get a similar output of the AIX df -k command on other operating systems we some-
times have to change the command syntax. We also extract data from different
columns in the output. The command syntax and resulting output for AIX, Linux, HP-
UX, and SUN/Solaris are listed in the text that follows as well as the columns of inter-
est for each operating system output. Please review Tables 5.2 through 5.9.

Table 5.2 AIX df -k Command Output

1024- MOUNTED
FILESYSTEM BLOCKS FREE %USED IUSED %IUSED ON

/dev/hd4 32768 16376 51% 1663 11% /

/dev/hd2 1212416 57592 96% 36386 13% /usr

/dev/hd9var 53248 30824 43% 540 5% /var

/dev/hd3 106496 99932 7% 135 1% /tmp

/dev/hd1 4096 3916 5% 25 % /home

/proc /proc

/dev/hd10opt 638976 24456 97% 15457 10% /opt

/dev/scripts_lv 102400 95264 7% 435 2% /scripts

/dev/cd0 656756 0 100% 328378 100% /cdrom

130 Chapter 5

Table 5.3 AIX df Output Columns of Interest

DF OUTPUT COLUMNS COLUMN CONTENTS

Column 1 The filesystem device name, Filesystem

Column 2 The size of the filesystem in 1024 blocks, 1024-blocks

Column 3 The kilobytes of free filesystem space, Free

Column 4 The percentage of used capacity, %Used

Column 7 The mount point of the filesystem, Mounted on

Table 5.4 Linux df -k Command Output

MOUNTED
FILESYSTEM 1K-BLOCKS USED AVAILABLE USE% ON

/dev/hda16 101089 32949 62921 34% /

/dev/hda5 1011928 104 960420 0% /backup

/dev/hda1 54416 2647 48960 5% /boot

/dev/hda8 202220 13 191767 0% /download

/dev/hda9 202220 1619 190161 1% /home

/dev/hda12 124427 19 117984 0% /tmp

/dev/hda6 1011928 907580 52944 94% /usr —

/dev/hda10 155545 36 147479 0% /usr/local

/dev/hda11 124427 29670 88333 25%/var

Table 5.5 Linux df Output Columns of Interest

DF OUTPUT COLUMNS COLUMN CONTENTS

Column 1 The filesystem device name, Filesystem

Column 2 The size of the filesystem in 1k-blocks, 1k-blocks

Column 4 The kilobytes of free filesystem space, Available

Column 5 The percentage of used capacity, Use%

Column 6 The mount point of the filesystem, Mounted on

File System Monitoring 131

Free & Share & Open

Table 5.6 SUN/Solaris df -k Command Output

MOUNTED
FILESYSTEM KBYTES USED AVAIL CAPACITY ON

/dev/dsk/c0d0s0 192423 18206 154975 11%

/dev/dsk/c0d0s6 1015542 488678 465932 52% /usr

/proc 0 0 0 0% /proc

fd 0 0 0 0% /dev/fd

mnttab 0 0 0 0% /etc/mnttab

/dev/dsk/c0d0s3 96455 5931 80879 7% /var

swap 554132 0 55413 0% /var/run

/dev/dsk/c0d0s5 47975 1221 41957 3% /opt

swap 554428 296 554132 1% /tmp

/dev/dsk/c0d0s7 1015542 1 954598 1% /export/home

/dev/dsk/c0d0s1 375255 214843 122887 64% /usr/openwin

Table 5.7 SUN/Solaris df Òk Output Columns of Interest

DF OUTPUT COLUMNS COLUMN CONTENTS

Column 1 The filesystem device name, Filesystem

Column 2 The size of the filesystem in 1k-blocks, kbytes

Column 4 The kilobytes of free filesystem space, avail

Column 5 The percentage of used capacity, capacity

Column 6 The mount point of the filesystem, Mounted on

Table 5.8 HP-UX bdf Command Output

FILESYSTEM KBYTES USED AVAIL %USED MOUNTED ON

/dev/vg00/lvol3 151552 89500 58669 60% /

/dev/vg00/lvol1 47829 24109 18937 56% /stand

/dev/vg00/lvol9 1310720 860829 422636 67% /var

/dev/vg00/lvol8 972800 554392 392358 59% /usr

132 Chapter 5

Table 5.8 (Continued)

FILESYSTEM KBYTES USED AVAIL %USED MOUNTED ON

/dev/vg13/lvol1 4190208 1155095 2850597 29% /u2

/dev/vg00/lvol7 102400 4284 92256 4% /tmp

/dev/vg00/lvol13 2039808 1664073 352294 83% /test2

/dev/vg00/lvol6 720896 531295 177953 75% /opt

/dev/vg00/lvol5 409600 225464 176663 56% /home

Table 5.9 HP-UX bdf Output Columns of Interest

DF OUTPUT COLUMNS COLUMN CONTENTS

Column 1 The filesystem device name, Filesystem

Column 2 The size of the filesystem in 1k-blocks, kbytes

Column 4 The kilobytes of free filesystem space, avail

Column 5 The percentage of used capacity, %used

Column 6 The mount point of the filesystem, Mounted on

Now that we know how the commands and output vary between operating sys-
tems, we can take this into account when creating the shell functions to load the correct
filesystem data for each system. Note in each of the following functions that one or
more filesystems or devices are set to be ignored, which is specified by the egrep part
of the statement.

####################################

function load_AIX_FS_data

{

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’ \

| awk ‘{print $1, $2, $3, $4, $7}’ > $WORKFILE

}

####################################

function load_HP_UX_FS_data

{

bdf | tail +2 | egrep -v ‘/mnt/cdrom’ \

| awk ‘{print $1, $2, $4, $5, $6}’ > $WORKFILE

File System Monitoring 133

Free & Share & Open

}

####################################

function load_LINUX_FS_data

{

df -k | tail +2 | egrep -v ‘/mnt/cdrom’\

| awk ‘{print $1, $2, $4, $5, $6}’ > $WORKFILE

}

####################################

function load_Solaris_FS_data

{

df -k | tail +2 | egrep -v ‘/dev/fd|/etc/mnttab|/proc’\

| awk ‘{print $1, $2, $4, $5, $6}’ > $WORKFILE

}

Each Unix system is different, and these functions may need to be modified for your
particular environment. The script modification to execute on all of the four operating
systems includes entering the functions into the top part of the script, where functions
are defined, and to replace the current load_FS_data function with a case statement
that utilizes the get_OS_info function. This is an excellent example of how using
functions can make life doing modifications much easier. The final script (it is never a
final script!) will look like the following code, shown in Listing 5.15. Please scan
through the boldface text in detail.

#!/usr/bin/ksh

#

SCRIPT: fs_mon_ALL_OS.ksh

AUTHOR: Randy Michael

DATE: 08-22-2001

REV: 5.1.D

PURPOSE: This script is used to monitor for full filesystems,

which are defined as “exceeding” the MAX_PERCENT value.

A message is displayed for all “full” filesystems.

#

PLATFORM: AIX, Linux, HP-UX and Solaris

#

REV LIST:

Randy Michael - 08-27-2001

Changed the code to use MB of free space instead of

the %Used method.

#

Randy Michael - 08-27-2001

Added code to allow you to override the set script default

Listing 5.15 fs_mon_ALL_OS.ksh shell script.

134 Chapter 5

for MIN_MB_FREE of FS Space

Randy Michael - 08-28-2001

Changed the code to handle both %Used and MB of Free Space.

It does an “auto-detection” but has override capability

of both the trigger level and the monitoring method using

the exceptions file pointed to by the $EXCEPTIONS variable

#

Randy Michael - 08-28-2001

Added code to allow this script to be executed on

AIX, Linux, HP-UX, and Solaris

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

#

DEFINE FILES AND VARIABLES HERE ####

MIN_MB_FREE=”100MB” # Min. MB of Free FS Space

MAX_PERCENT=”85%” # Max. FS percentage value

FSTRIGGER=”1000MB” # Trigger to switch from % Used to MB Free

WORKFILE=”/tmp/df.work” # Holds filesystem data

>$WORKFILE # Initialize to empty

OUTFILE=”/tmp/df.outfile” # Output display file

>$OUTFILE # Initialize to empty

EXCEPTIONS=”/usr/local/bin/exceptions” # Override data file

DATA_EXCEPTIONS=”/tmp/dfdata.out” # Exceptions file w/o # rows

EXCEPT_FILE=”N” # Assume no $EXCEPTIONS FILE

THISHOST=`hostname` # Hostname of this machine

FORMAT VARIABLES HERE

Both of these variables need to be multiplied by 1024 blocks

((MIN_MB_FREE = $(echo $MIN_MB_FREE | sed s/MB//g) * 1024))

((FSTRIGGER = $(echo $FSTRIGGER | sed s/MB//g) * 1024))

######################################

####### DEFINE FUNCTIONS HERE ########

######################################

function get_OS_info

{

For a few commands it is necessary to know the OS and its level

to execute the proper command syntax. This will always return

the OS in UPPERCASE

typeset -u OS # Use the UPPERCASE values for the OS variable

OS=`uname` # Grab the Operating system, i.e. AIX, HP-UX

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continues)

File System Monitoring 135

Free & Share & Open

print $OS # Send back the UPPERCASE value

}

####################################

function check_exceptions

{

set -x # Uncomment to debug this function

while read FSNAME FSLIMIT

do

IN_FILE=”N”

Do an NFS sanity check and get rid of any “:”.

If this is found it is actually an error entry

but we will try to resolve it. It will only

work if it is an NFS cross mount to the same

mount point on both machines.

echo $FSNAME | grep ‘:’ >/dev/null \

&& FSNAME=$(echo $FSNAME | cut -d ‘:’ -f2)

Check for empty and null variable

if [[! -z $FSLIMIT && $FSLIMIT != ‘’]]

then

if [[$FSNAME = $FSMOUNT]] # Found it!

then

Check for “MB” Characters...Set IN_FILE=MB

echo $FSLIMIT | grep MB >/dev/null && IN_FILE=”MB” \

&& ((FSLIMIT = $(echo $FSLIMIT \

| sed s/MB//g) * 1024))

check for “%” Character...Set IN_FILE=PC, for %

echo $FSLIMIT | grep “%” >/dev/null && IN_FILE=”PC” \

&& FSLIMIT=$(echo $FSLIMIT | sed s/\%//g)

case $IN_FILE in

MB) # Use MB of Free Space Method

Up-case the characters, if they exist

FSLIMIT=$(echo $FSLIMIT | tr ‘[a-z]’ ‘[A-Z]’)

Get rid of the “MB” if it exists

FSLIMIT=$(echo $FSLIMIT | sed s/MB//g)

Test for blank and null values

if [[! -z $FSLIMIT && $FSLIMIT != ‘’]]

then

Test for a valid filesystem “MB” limit

if ((FSLIMIT >= 0 && FSLIMIT < FSSIZE))

then

if ((FSMB_FREE < FSLIMIT))

then

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continued)

136 Chapter 5

return 1 # Found out of limit

using MB Free method

else

return 3 # Found OK

fi

else

echo “\nERROR: Invalid filesystem MAX for\

$FSMOUNT - $FSLIMIT”

echo “ Exceptions file value must be less\

than or”

echo “ equal to the size of the filesystem\

measured”

echo “ in 1024 bytes\n”

fi

else

echo “\nERROR: Null value specified in exceptions\

file”

echo “ for the $FSMOUNT mount point.\n”

fi

;;

PC) # Use Filesystem %Used Method

Strip out the % sign if it exists

PC_USED=$(echo $PC_USED | sed s/\%//g)

Test for blank and null values

if [[! -z $FSLIMIT && $FSLIMIT != ‘’]]

then

Test for a valid percentage, i.e. 0-100

if ((FSLIMIT >= 0 && FSLIMIT <= 100))

then

if (($PC_USED > $FSLIMIT))

then

return 2 # Found exceeded by % Used method

else

return 3 # Found OK

fi

else

echo “\nERROR: Invalid percentage for $FSMOUNT -\

$FSLIMIT”

echo “ Exceptions file values must be”

echo “ between 0 and 100%\n”

fi

else

echo “\nERROR: Null value specified in exceptions\

file”

echo “ for the $FSMOUNT mount point.\n”

fi

;;

N) # Method Not Specified - Use Script Defaults

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continues)

File System Monitoring 137

Free & Share & Open

if ((FSSIZE >= FSTRIGGER))

then # This is a “large” filesystem

if ((FSMB_FREE < MIN_MB_FREE))

then

return 1 # Found out of limit

using MB Free method

else

return 3 # Found OK

fi

else # This is a standard filesystem

PC_USED=$(echo $PC_USED | sed s/\%//g) # Remove %

FSLIMIT=$(echo $FSLIMIT | sed s/\%//g) # Remove %

if ((PC_USED > FSLIMIT))

then

return 2 # Found exceeded by % Used method

else

return 3 # Found OK

fi

fi

;;

esac

fi

fi

done < $DATA_EXCEPTIONS # Feed the loop from the bottom!!!

return 4 # Not found in $EXCEPTIONS file

}

####################################

function display_output

{

if [[-s $OUTFILE]]

then

echo “\nFull Filesystem(s) on $THISHOST\n”

cat $OUTFILE

print

fi

}

####################################

function load_EXCEPTIONS_data

{

Ignore any line that begins with a pound sign,

and omit all blank lines

cat $EXCEPTIONS | grep -v “^#” | sed /^$/d > $DATA_EXCEPTIONS

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continued)

138 Chapter 5

}

####################################

function load_AIX_FS_data

{

df -k | tail +2 | egrep -v ‘/dev/cd[0-9]|/proc’ \

| awk ‘{print $1, $2, $3, $4, $7}’ > $WORKFILE

}

####################################

function load_HP_UX_FS_data

{

bdf | tail +2 | egrep -v ‘/cdrom’ \

| awk ‘{print $1, $2, $4, $5, $6}’ > $WORKFILE

}

####################################

function load_LINUX_FS_data

{

df -k | tail +2 | egrep -v ‘/cdrom’\

| awk ‘{print $1, $2, $4, $5, $6}’ > $WORKFILE

}

####################################

function load_Solaris_FS_data

{

df -k | tail +2 | egrep -v ‘/dev/fd|/etc/mnttab|/proc’\

| awk ‘{print $1, $2, $4, $5, $6}’ > $WORKFILE

}

####################################

######### START OF MAIN ############

####################################

Query the operating system to find the Unix flavor, then

load the correct filesystem data for the resident OS

case $(get_OS_info) in

AIX) # Load filesystem data for AIX

load_AIX_FS_data

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continues)

File System Monitoring 139

Free & Share & Open

;;

HP-UX) # Load filesystem data for HP-UX

load_HP_UX_FS_data

;;

LINUX) # Load filesystem data for Linux

load_LINUX_FS_data

;;

SUNOS) # Load filesystem data for Solaris

load_Solaris_FS_data

;;

*) # Unsupported in script

echo “\nUnsupported Operating System for this\

Script...EXITING\n”

exit 1

esac

Do we have a nonzero size $EXCEPTIONS file?

if [[-s $EXCEPTIONS]]

then # Found a nonempty $EXCEPTIONS file

load_EXCEPTIONS_data

EXCEP_FILE=”Y”

fi

while read FSDEVICE FSSIZE FSMB_FREE PC_USED FSMOUNT

do

if [[$EXCEP_FILE = “Y”]]

then

check_exceptions

CE_RC=”$?” # Check Exceptions Return Code (CE_RC)

case $CE_RC in

1) # Found exceeded in exceptions file by MB Method

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT has ${FS_FREE_OUT}MB\

Free” >> $OUTFILE

;;

2) # Found exceeded in exceptions file by %Used method

echo “$FSDEVICE mount on $FSMOUNT is ${PC_USED}%” \

>> $OUTFILE

;;

3) # Found OK in exceptions file

: # NO-OP Do Nothing. A “:” is a no-op!

;;

4) # Not found in exceptions file - Use Default Triggers

if ((FSSIZE >= FSTRIGGER))

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continued)

140 Chapter 5

then # This is a “large” filesystem

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g) # Remove the\

“MB”

if ((FSMB_FREE < MIN_MB_FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT has {FS_FREE_OUT}MB\

Free” >> $OUTFILE

fi

else # This is a standard filesystem

PC_USED=$(echo $PC_USED | sed s/\%//g)

MAX_PERCENT=$(echo $MAX_PERCENT | sed s/\%//g)

if ((PC_USED > MAX_PERCENT))

then

echo “$FSDEVICE mount on $FSMOUNT is ${PC_USED}%” \

>> $OUTFILE

fi

fi

;;

esac

else # NO $EXCEPTIONS FILE USE DEFAULT TRIGGER VALUES

if ((FSSIZE >= FSTRIGGER))

then # This is a “large” filesystem - Use MB Free Method

FSMB_FREE=$(echo $FSMB_FREE | sed s/MB//g) # Remove the “MB”

if ((FSMB_FREE < MIN_MB_FREE))

then

((FS_FREE_OUT = FSMB_FREE / 1000))

echo “$FSDEVICE mounted on $FSMOUNT has ${FS_FREE_OUT}MB

Free” \

>> $OUTFILE

fi

else # This is a standard filesystem - Use % Used Method

PC_USED=$(echo $PC_USED | sed s/\%//g)

MAX_PERCENT=$(echo $MAX_PERCENT | sed s/\%//g)

if ((PC_USED > MAX_PERCENT))

then

echo “$FSDEVICE mount on $FSMOUNT is ${PC_USED}%” \

>> $OUTFILE

fi

fi

fi

done < $WORKFILE # Feed the while loop from the bottom!!!!!

display_output

End of Script

Listing 5.15 fs_mon_ALL_OS.ksh shell script. (continued)

File System Monitoring 141

Free & Share & Open

A good study of the script in Listing 5.15 will reveal some nice ways to handle the
different situations we encounter while writing shell scripts. As always, it is intuitively
obvious!

The /usr/local/bin/exceptions file in Listing 5.16 is used on yogi.

FILE: “exceptions”

#

This file is used to override the default

trigger value in the filesystem monitoring script

fs_mon_ALL_OS_excep.ksh, but also allows overriding the

monitoring technique used, i.e. Max %Used and

MINIMUM MB FREE of filesystem space. The syntax to

override is a /mount-point and a “trigger value” with

either “%” or “MB” as a suffix.

#

EXAMPLES:

#

/usr 96%

OR

/usr 50MB

#

All lines beginning with a # are ignored.

#

NOTE: All Entries MUST have either “MB” or

“%” as a suffix!!! Or else the script

defaults are used. NO SPACES PLEASE!

#

/opt 95%

/ 50%

/usr 70MB

/home 50MB

Listing 5.16 Sample exceptions file.

Listing 5.16 should work, but it gives an error. If the monitoring script is executed
using these exception file entries, it will result in the following output:

ERROR: Invalid filesystem MINIMUM_MB_FREE specified

for /home - 50MB -- Current size is 4MB.

Exceptions file value must be less than or equal

to the size of the filesystem measured Megabytes

Full Filesystem(s) on yogi

/dev/hd4 mount on / is 51%

/dev/hd2 mounted on /usr has 57MB Free

/dev/hd10opt mount on /opt is 97%

142 Chapter 5

The problem is with the /home filesystem entry in the $EXCEPTIONS file. The value
specified is 50 Megabytes, and the /home filesystem is only 4MB in size. In a case like
this the check_exceptions function will display an error message and then use the
shell script default values to measure the filesystem and return an appropriate return
code to the calling script. So, if a modification is made to the exceptions file, the script
needs to be run to check for any errors.

The important thing to note is that error checking and data validation should take
place before the data is used for measurement. This sequence will also prevent any
messages from standard error (stderr) that the system may produce.

Other Options to Consider

We can always improve on a script, and the full filesystems script is no exception.

Event Notification
Because monitoring for full filesystems should involve event notification, it is wise to
modify the display_output function to send some kind of message, whether by
page or email, or otherwise this information needs to be made known so that we can
call ourselves proactive. Sending an email to your pager and desktop would be a good
start. An entry like the statement that follows might work, but its success depends on
the mail server and firewall configurations.

echo “Full Filesystem(s) on $THISHOST\n” > $MAILFILE

cat $OUTFILE >> $MAILFILE

mailx -s “Full Filesystem(s) on $THISHOST” $MAIL_LIST < $MAILFILE

For pager notification, the text message must be very short, but descriptive enough to
get the point across.

Automated Execution
If we are to monitor the system, we want the system to tell us when it has a problem.
We want event notification, but we also want the event notification to be automated.
For filesystem monitoring, a cron table entry is the best way to do this. An interval of
about 10–15 minutes 24 × 7 is most common. We have the exceptions capability built in
so that if pages become a problem, the exceptions file can be modified to stop the
filesystem from being in error, and thus stop the paging. The cron entry that follows
will execute the script every 10 minutes, on the 5s, 24 hours a day, 7 days a week.

5,15,25,35,45,55 * * * * /usr/local/bin/fs_mon_ALL_OS.ksh 2>&1

To make this cron entry you can either edit a cron table with crontab -e or use the fol-
lowing command sequence to append an entry to the end of the cron table.

File System Monitoring 143

Free & Share & Open

crontab -l > /tmp/cron_hold.out

echo ‘5,15,25,35,45,55 * * * * /usr/local/bin/fs_mon_ALL_OS.ksh 2>&1’ \

>> /tmp/cron_hold.out

crontab /tmp/cron_hold.out

rm /tmp/cron_hold.out

For this to work, the fs_mon_ALL_OS.ksh script must be modified to send notifi-
cation by some method. Paging, email, SNMP traps, and modem dialing are the pre-
ferred methods. You could send this output to the systems console, but who would
ever see it?

Modify the egrep Statement
It may be wise to remove the egrep part of the df statement, used for filesystem exclu-
sion, and use another method. As pointed out previously, grepping can be a mistake.
Grepping was done here because most of the time we can get a unique character string
for a filesystem device to make grep and egrep work without error, but not always. If
this is a problem, then creating a list either in a variable assignment in the script or in a
file is the best bet. Then the new $IGNORE_LIST list can be searched and an exact
match can be made.

Summary

Through this chapter we have changed our thinking about monitoring for full filesys-
tems. The script that we use can be very simple for the average small shop or more
complex as we move to larger and larger storage solutions. All filesystems are not cre-
ated equal in size, and when you get a mix of large and small filesystems on mixed
operating systems, we have shown how to handle the mix with ease.

In the next chapter we will move into monitoring the paging and/or swap space. If
we run out of paging or swap space, the system will start thrashing, and if the problem
is chronic, the system may crash. We will look at the different monitoring methods for
each operating system.

144 Chapter 5

145

Every Systems Administrator loves paging and swap space because they are the magic
bullets to fix a system that does not have enough memory. Wrong! This misconception
is thought to be true by many people, at various levels, in a lot of organizations. The
fact is that if your system does not have enough real memory to run your applications,
adding more paging and swap space is not going to help. Depending on the applica-
tion(s) running on your system, swap space should start at least 1.5 times physical
memory. Many high-performance applications require 4 to 6 times real memory so the
actual amount of paging and swap space is variable, but 1.5 times is a good place to
start. Use the application’s recommended requirement, if one is suggested, as a start-
ing point.

Some of you may be asking “What is the difference between paging space and swap
space?” It depends on the Unix flavor whether your system does swapping or paging,
but both swap space and paging space are disk storage that makes up virtual memory
along with real, or physical, memory. A page fault happens when a memory segment, or
page, is needed in memory but is not currently resident in memory. When a page fault
occurs, the system attempts to load the needed data into memory; this is called paging
or swapping, depending on the Unix system you are running. When the system is
doing a lot of paging in and out of memory we need to be able to monitor this activity.
If your system runs out of paging space or is in a state of continuous swapping, such
that as soon as a segment is paged out of memory it is immediately needed again, the

Monitoring Paging
and Swap Space

C H A P T E R

6

Free & Share & Open

system is thrashing. If this thrashing condition continues for very long, you have a risk
of the system crashing. In this chapter we are going to use the terms “paging” and
“swapping” interchangeably.

Each of our four Unix flavors, AIX, HP-UX, Linux, and Solaris, use different com-
mands to list the swap space usage; the output for each command and OS varies also.
The goal of this chapter is to create five shell scripts: one script of each of the four oper-
ating systems and an all-in-one shell script that will run on any of our four Unix fla-
vors. Each of the shell scripts must produce the exact same output, which is shown in
Listing 6.1.

Paging Space Report for yogi

Wed Jun 5 21:48:16 EDT 2002

Total MB of Paging Space: 336MB

Total MB of Paging Space Used: 33MB

Total MB of Paging Space Free: 303MB

Percent of Paging Space Used: 10%

Percent of Paging Space Free: 90%

Listing 6.1 Required paging and swap space report.

Before we get started creating the shell scripts, we need the command syntax for
each operating system. Each of the commands produces a different result, so this
should be an interesting chapter in which we can try some varied techniques.

Syntax

As usual, we need the correct command syntax before we can write a shell script. As
we go through each of the operating systems, the first thing I want you to notice is the
command syntax used and the output received back. Because we want each Unix fla-
vor to produce the same output, as shown in Listing 6.1, we are going to have to do
some math. This is not going to be hard math, but each of the paging and swap space
command outputs is lacking some of the desired information so we must calculate the
missing pieces. Now we are going to see the syntax for each operating system.

AIX lsps Command
AIX does paging instead of swapping. This technique uses 4096-byte blocks pages.
When a page fault occurs, AIX has a complex algorithm that frees memory of the least
used noncritical memory page to disk paging space. When the memory has space

146 Chapter 6

available, the page of data is paged in to memory. To monitor paging space usage in
AIX, you use the lsps command, which stands for list paging space. The lsps command
has two command options, -a, to list each paging space separately, and -s, to show a
summary of all paging spaces. Both lsps options are shown here:

lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto Type

paging00 hdisk2 rootvg 1024MB 11 yes yes lv

hd6 hdisk0 rootvg 1024MB 9 yes yes lv

lsps -s

Total Paging Space Percent Used

2048MB 10%

From the first command output, lsps -a, on this system notice that there are two
paging spaces defined, paging00 and hd6, both are the same size at 1GB each, and
each paging space is on a separate disk. This is an important point. In AIX, paging
space is used in a round-robin fashion, starting with the paging space that has the
largest area of free space. If one paging space is significantly larger, the round-robin
technique is defeated, and the system will almost always use the larger paging space.
This has a negative effect on performance because one disk will take all of the paging
activity.

In the second output, lsps -s, we get a summary of all of the paging space usage.
Notice that the only data that we get is the total size of the paging space and the per-
centage used. From these two pieces of data we must calculate the remaining parts of
our required output, which is total paging space in MB, free space in MB, used space in
MB, percent used, and percent free. We will cover these points in the scripting section
for AIX later in this chapter.

HP-UX swapinfo Command
The HP-UX operating system uses swapping, which is evident by the command
swapinfo. HP-UX does the best job of giving us the best detailed command output so
we need to calculate only one piece of data for our required output, percent of total
swap space free. Everything else is provided with the swapinfo -tm command. The -m
switch specifies to produce output in MB, and the -t switch specifies to produce a total
line for a summary of all virtual memory. This command output is shown here.

[root@dino]/> swapinfo -tm

Mb Mb Mb PCT START/ Mb

TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME

dev 96 21 73 22% 928768 - 1 /dev/dsk/c0t6d0

reserve - 46 -46

memory 15 5 10 33%

total 111 72 37 65% - 0 -

Monitoring Paging and Swap Space 147

Free & Share & Open

Notice in this output that HP-UX splits up virtual memory into three categories:
dev, reserve, and memory. For our needs we could use the summary information
that is shown in the total line at the bottom. As you can see on the total line, the
total virtual memory is 111MB, the system is consuming 72MB of this total, which
leaves 37MB of free virtual memory. The fifth column shows that the system is con-
suming 65 percent of the available virtual memory. This total row is misleading,
though, when we are interested only in the swap space usage. The actual swap space
usage is located on the dev row of data at the top of the command output. As you can
see, we need to calculate only the percent free, which is a simple calculation.

Linux free Command
Linux uses swapping and uses the free command to view memory and swap space
usage. The free command has several command switches, but the only one we are con-
cerned with is the -m command switch to list output in MB. The swap information
given by the free -m command is listed only in MB, and there are no percentages
presented in the output. Therefore, from the total MB, used MB, and free MB, we must
calculate the percentages for percentage used and percentage free. The following
shows the free -m command output:

free -m

total used free shared buffers cached

Mem: 52 51 1 0 1 20

-/+ buffers/cache: 30 22

Swap: 211 9 202

The last line in this output has the swap information listed in MB, specified by the
-m switch. This command output shows that the system has 211MB of total swap
space, of which 9MB has been used and 202MB of swap space is free.

Solaris swap Command
The Solaris operating system does swapping, as indicated by the command swap. Of
the swap command switches we are concerned with only the -s switch, which pro-
duces a summary of swap space usage. All output from this command is produced in
KB so we have to do a little division by 1,000 to get our standard MB output. Like
Linux, the Solaris swap output does not show the swap status using percentages, so we
must calculate these values. The swap -s output is shown here.

swap -s

total: 26788k bytes allocated + 7256k reserved = 34044k used, 557044k

available

This is an unusual output to decipher because the data is all on the same line, but
because Solaris attempts to create a mathematical statement we will have to use our

148 Chapter 6

own mathematical statements to fill in the blanks to get our required script output. The
swap -s command output shows that the system has used a total of 34MB and it has
557MB of free swap space. We must calculate the total MB, the percentage used, and
the percentage of free swap space. These calculations are not too hard to handle as we
will see in the shell scripting section for Solaris later in this chapter.

Creating the Shell Scripts

Now that we have the basic syntax of the commands to get paging and swap space sta-
tistics, we can start our scripting of the solutions. In each case you should notice which
pieces of data are missing from our required output, as shown in Listing 6.1. All of
these shell scripts are different. Some pipe command outputs to a while loop to assign
the values to variables, and some use other techniques to extract the desired data from
the output. Please study each shell script in detail, and you will learn how to handle
the different situations you are challenged with when working in a heterogeneous
environment.

AIX Paging Monitor
As we previously discussed, the AIX lsps -s command output shows only the total
amount of paging space measured in MB and the percentage of paging space that is
currently in use. To get our standard set of data to display we need to do a little math.
This is not too difficult when you take one step at a time. In this shell script let’s use a
file to store the command output data. To refresh your memory the lsps -s command
output is shown again here (this output is using a different AIX system):

lsps -s

Total Paging Space Percent Used

336MB 2%

The first thing we need to do is to remove the columns heading. I like to use the
tail command in a pipe for this purpose. The command syntax is shown in the next
statement:

lsps -s | tail +2

336MB 2%

This resulting output contains only the data, without the columns heading. The next
step is to store these values in variables so that we can work with them for some cal-
culations. We are going to use a file for initial storage and then use a while read loop,
which we feed from the bottom using input redirection with the filename. Of course,
we could have piped the command output to the while read loop, but I want to vary
the techniques in each shell script in this chapter. Let’s look at the first part of the data
gathering and the use of the while read loop, as shown in Listing 6.2.

Monitoring Paging and Swap Space 149

Free & Share & Open

PAGING_STAT=/tmp/paging_stat.out # Paging Stat hold file

Load the $PAGING_STAT file with data

lsps -s | tail +2 > $PAGING_STAT

Use a while loop to assign the values to variables

while read TOTAL PERCENT

do

DO CALCULATIONS HERE

done < $PAGING_STAT

Listing 6.2 Logical view of AIX lsps -s data gathering.

Notice in Listing 6.2 that we first define a file to hold the data, which is pointed to
by the $PAGING_STAT variable. In the next step we redirect output of our paging
space status command to the defined file. Next comes a while loop where we read the
file data and assign the first data field to the variable TOTAL and the second data field
to the variable PERCENT.

Notice how the $PAGING_STAT file is used to feed the while loop from the bottom.
As you saw in Chapter 2, “Twelve Ways to Process a File Line by Line,” this technique
is one of the two fastest methods of reading data from a file. The middle of the while
loop is where we do our calculations to fill in the blanks of our required output.

Speaking of calculations, we need to do three calculations for this script, but before
we can perform the calculations on the data we currently have, we need to get rid of
the suffixes attached to the variable data. The first step is to extract the MB from the
$TOTAL variable and then extract the percent sign, %, from the $PERCENT variable. We
do both of these operations using a cut command in a pipe, as shown here:

PAGING_MB=$(echo $TOTAL | cut -d ‘MB’ -f1)

PAGING_PC=$(echo $PERCENT | cut -d% -f1)

In both of these statements we use command substitution, specified by the
$(command_statement) notation, to execute a command statement and assign the
result to the variable specified. In the first statement we echo the $TOTAL variable and
pipe the output to the cut command. For the cut command we specify the delimiter to
be MB, and we enclose it with single tic marks, ‘MB’. Then we specify that we want the
first field, specified by -f1. In the second statement we do the exact same thing except
that this time we specify that the percent sign, %, is the delimiter. The result of these
two statements is that we have the PAGING_MB and PAGING_PC variables pointing to
integer values without any other characters. Now we can do our calculations!

Let’s do the most intuitive calculation first. We have the value of the percent of
paging space used stored in the $PAGING_PC variable as an integer value. To get the

150 Chapter 6

percent of free paging space, we need to subtract the percent used value from 100, as
shown in the next command statement.

((PAGING_PC_FREE = 100 - PAGING_PC))

Notice that we used the double parentheses mathematical method, specified by the
((Math Statement)). I like this method because it is so intuitive to use. Also
notice that you do NOT use the dollar sign, $, with variables when using this method.
Because the double parentheses method expects a mathematical statement, any char-
acter string that is not numeric is assumed to be a variable, so the dollar sign should be
omitted. If you add a dollar sign to the variable name, then the statement may fail
depending on the OS you are running! I always remove the dollar sign, just in case.
This is a common cause of frustration when using math in shell scripts, and it is
extremely hard to troubleshoot.

The next calculation is not so intuitive to some. We want to calculate the MB of pag-
ing space that is currently in use. Now let’s think about this. We have the percentage of
paging space used, the percentage of paging space free, and the total amount of paging
space measured in MB. To calculate the MB of used paging space, we can use the value
of the total MB of paging space and the percentage of paging space used divided by
100, which converts the value of paging space used into a decimal value internally. See
how this is done in the next statement.

((MB_USED = PAGING_MB * PAGING_PC / 100))

One thing to note in the last math statement: This will produce only an integer out-
put. If you want to see the output in floating-point notation, then you need to use the
bc utility, which you will see in some of the following sections.

The last calculation is another intuitive calculation, to find the MB of free paging
space. Because we already have the values for the total paging space in MB, and the
MB of paging space in use, then we need only to subtract the used value from the total.
This is shown in the next statement.

((MB_FREE = PAGING_MB - MB_USED))

We have completed all of the calculations so now we are ready to produce the
required output for the AIX shell script. Take a look at the entire shell script shown in
Listing 6.3, and pay particular attention to the boldface type.

#!/usr/bin/ksh

#

SCRIPT: AIX_paging_mon.ksh

#

AUTHOR: Randy Michael

DATE: 5/31/2002

REV: 1.1.P

#

Listing 6.3 AIX_paging_mon.ksh shell script listing. (continues)

Monitoring Paging and Swap Space 151

Free & Share & Open

PLATFORM: AIX Only

#

PURPOSE: This shell script is used to produce a report of

the system’s paging space statistics including:

#

Total paging space in MB, MB of free paging space,

MB of used paging space, % of paging space used, and

% of paging space free

#

REV LIST:

#

#

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

#

###

################ DEFINE VARIABLES HERE ####################

PC_LIMIT=65 # Percentage Upper limit of paging space

before notification

THISHOST=$(hostname) # Host name of this machine

PAGING_STAT=/tmp/paging_stat.out # Paging Stat hold file

###

################ INITIALIZE THE REPORT ####################

echo “\nPaging Space Report for $THISHOST\n”

date

###

############# CAPTURE AND PROCESS THE DATA ################

Load the data in a file without the column headings

lsps -s | tail +2 > $PAGING_STAT

Start a while loop and feed the loop from the bottom using

the $PAGING_STAT file as redirected input, after “done”

while read TOTAL PERCENT

do

Clean up the data by removing the suffixes

PAGING_MB=$(echo $TOTAL | cut -d ‘MB’ -f1)

PAGING_PC=$(echo $PERCENT | cut -d% -f1)

Calculate the missing data: %Free, MB used and MB free

((PAGING_PC_FREE = 100 - PAGING_PC))

Listing 6.3 AIX_paging_mon.ksh shell script listing. (continued)

152 Chapter 6

((MB_USED = PAGING_MB * PAGING_PC / 100))

((MB_FREE = PAGING_MB - MB_USED))

Produce the rest of the paging space report:

echo “\nTotal MB of Paging Space:\t$TOTAL”

echo “Total MB of Paging Space Used:\t${MB_USED}MB”

echo “Total MB of Paging Space Free:\t${MB_FREE}MB”

echo “\nPercent of Paging Space Used:\t${PERCENT}”

echo “\nPercent of Paging Space Free:\t${PAGING_PC_FREE}%”

Check for paging space exceeded the predefined limit

if ((PC_LIMIT <= PAGING_PC))

then

Paging space is over the limit, send notification

tput smso # Turn on reverse video!

echo “\n\nWARNING: Paging Space has Exceeded the ${PC_LIMIT}% \

Upper Limit!\n”

tput rmso # Turn off reverse video

fi

done < $PAGING_STAT

rm -f $PAGING_STAT

Add an extra new line to the output

echo “\n”

Listing 6.3 AIX_paging_mon.ksh shell script listing. (continued)

There is one part of our shell script in Listing 6.3 that we have not covered yet. At the
top of the script where we define variables, I added the PC_LIMIT variable. I normally
set this threshold to 65 percent so that I will know when I have exceeded a safe system
paging space limit. When your system starts running at a high paging space level, you
need to find the cause of this added activity. Sometimes developers do not write appli-
cations properly when it comes to deallocating memory. If a program runs for a long
time and it is not written to clean up and release allocated memory, then the program
is said to have a memory leak. The result of running this memory leak program for a
long time without a system reboot is that your system will run out of memory. When
your system runs out of memory, it starts paging in and out to disk, and then your
paging space starts edging up. The only way to correct this problem and regain your
memory is to reboot the system, most of the time.

Monitoring Paging and Swap Space 153

Free & Share & Open

Notice at the end of the script that there is a test to see if the percentage of paging
space used is greater than or equal to the limit that is set by the PC_LIMIT variable. If
the value is exceeded, then reverse video is turned on so the WARNING message
stands out on the screen. After the message is displayed, reverse video is turned back
off. To turn on reverse video use the tput smso command. When reverse video is on,
anything that you print to the screen appears in reverse video; however, do not forget
to turn it off because this mode will continue after the shell script ends execution if you
do not turn it off. To turn off the reverse video mode use the tput rmso command. List-
ings 6.4 and 6.5 show the shell script in action. Listing 6.4 shows a report of the system
within the set 65 percent limit, while Listing 6.5 shows the report when the system has
exceeded the 65 percent paging limit.

Paging Space Report for yogi

Fri Jun 7 15:47:08 EDT 2002

Total MB of Paging Space: 336MB

Total MB of Paging Space Used: 6MB

Total MB of Paging Space Free: 330MB

Percent of Paging Space Used: 2%

Percent of Paging Space Free: 98%

Listing 6.4 AIX_paging_mon.ksh in action.

As you can see in Listing 6.4, yogi is not doing too much right now. Let’s produce
a little load on the system and set the trigger threshold in the AIX_paging_mon.ksh
shell script to 5 percent so that we can see the threshold exceeded, as shown in
Listing 6.5.

Paging Space Report for yogi

Fri Jun 7 15:54:30 EDT 2002

Total MB of Paging Space: 336MB

Total MB of Paging Space Used: 23MB

Total MB of Paging Space Free: 313MB

Percent of Paging Space Used: 7%

Percent of Paging Space Free: 93%

WARNING: Paging Space has Exceeded the 5% Upper Limit!

Listing 6.5 AIX_paging_mon.ksh exceeding a 5 percent paging limit.

154 Chapter 6

This is still not much of a load, but it does make the point of the ability to set a trig-
ger threshold for notification purposes. Of course, the reverse video of the warning
message did not come to the page; believe me, it does show up in reverse video on the
screen. Let’s move on to the HP-UX system.

HP-UX Swap Space Monitor
The HP-UX operating system does swapping, as shown by the swapinfo command. To
check the statistics of swap space you use the swapinfo -tm command. The -t com-
mand switch adds a summary total line to the output, and the -m option specifies
that the output space measurements are in MB, as opposed to the default of KB. As I
said previously, HP-UX does the best job of producing the various virtual memory sta-
tistics, so we need to calculate only one piece of our required output, the percent of free
swap space. Before we go any further, let’s look at the command output we are dealing
with, as shown in Listing 6.6.

swapinfo -tm

Mb Mb Mb PCT START/ Mb

TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME

dev 96 23 71 24% 928768 - 1

/dev/dsk/c0t6d0

reserve - 45 -45

memory 15 6 9 40%

total 111 74 35 67% - 0 -

Listing 6.6 HP-UX swapinfo -tm command output.

As you can see, HP-UX shows paging space for devices, reserved memory, and real
memory usage. I like to use total row of output to get a good summary of what all of
the virtual memory is doing. It really does not matter if you use the dev row or the
total row to do your monitoring, but for this exercise I am going to use the dev row
to monitor only the swap space and not worry about what real memory is doing.

The easiest way to extract the data we want on the dev row in the output is to use
grep to pattern match on the string dev because dev appears on only one row of data.
Piping the swapinfo command output to a grep statement produces the following
output:

swapinfo -tm | grep dev

dev 96 23 71 24% 928768 - 1

/dev/dsk/c0t6d0

The output that we want to extract, Total MB, Used MB, Free MB, and Percent Used,
is located in fields $2, $3, $4, and $5, respectively. From looking at this we have at least
two options to assign the field values to variables. We can use five awk statements, or

Monitoring Paging and Swap Space 155

Free & Share & Open

we can pipe the preceding command output to a while read loop. Of course, the while
read loop runs for only one loop iteration. The easiest technique is to pipe to the while
loop. The following command will get us started:

swapinfo -tm | grep dev | while read junk SW_TOTAL SW_USED \

SW_FREE PERCENT_USED junk2

Notice in the while read portion of the previous statement how we assign unneeded
fields to variables named junk and junk2. The first field, specified by the junk vari-
able, targets dev; we are not interested in saving this field so it gets a junk assignment.
The last variable, junk2, is a catch-all for anything remaining on the line of output;
specifically, "928768 - 1 /dev/dsk/c0t6d0", gets assigned to the variable
junk2 as one field. This is an extremely important part of the while read statement
because you must account for everything when reading in a line of data. Had I left out
the junk2 variable, the PERCENT_USED variable would point to the data "24%
928768 - 1 /dev/dsk/c0t6d0" when the only thing we want is 24%. The
junk2 variable catches all of the remaining data on the line and assigns it to the junk2
variable. This brings up another point. If you want to capture the entire line of data and
assign it to a single variable, you can do this too by using the following syntax:

while read DATA_LINE

do

PARSE THE $DATA_LINE DATA HERE

done < $DATA_FILE

Using this syntax, all of the data is captured with a single variable, DATA_LINE, and
the data is separated into fields just as it appears in the command output.

Back to our previous swapinfo statement, we have the data of interest stored in the
following variables:

SW_TOTAL. Total swap space available on the system measured in MB.

SW_USED. MB of swap space that is currently in use.

SW_FREE. MB of swap space that is currently free.

PERCENT_USED. Percentage of total swap space that is in use.

The only part of our required output missing is the percentage of total swap
space that is currently free. This is an easy calculation because we already have the
$PERCENT_USED. For the calculation we need to remove the percent sign, %, in the
$PERCENT_USED variable. The following statement does the removal of the percent
sign and makes the calculation in one step.

((PERCENT_FREE = 100 - $(echo $PERCENT_USED | cut -d% -f1)))

In the preceding mathematical statement we assign 100 percent minus 24 percent to
the variable PERCENT_FREE using command substitution to remove the percent sign

156 Chapter 6

from the $PERCENT_USED variable using the cut command. In the cut part of the state-
ment we define % to be the delimiter, or field separator, specified by -d%, then we
extract the first field, 24 in this case, using the -f1 notation. Once the command sub-
stitution is complete, we are left with the following math statement:

((PERCENT_FREE = 100 - 24))

Now let’s examine the entire shell script that is shown in Listing 6.7.

#!/usr/bin/ksh

#

SCRIPT: HP-UX_swap_mon.ksh

#

AUTHOR: Randy Michael

DATE: 5/31/2002

REV: 1.1.P

PLATFORM: HP-UX Only

#

PURPOSE: This shell script is used to produce a report of

the system’s swap space statistics including:

#

Total paging space in MB, MB of free paging space,

MB of used paging space, % of paging space used, and

% of paging space free

#

REV LIST:

#

#

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

#

################ DEFINE VARIABLES HERE ####################

PC_LIMIT=65 # Percentage Upper limit of paging space

before notification

THISHOST=$(hostname) # Host name of this machine

###

################ INITIALIZE THE REPORT ####################

echo “\nSwap Space Report for $THISHOST\n”

date

###

Listing 6.7 HP-UX_swap_mon.ksh shell script listing. (continues)

Monitoring Paging and Swap Space 157

Free & Share & Open

############# CAPTURE AND PROCESS THE DATA ################

Start a while read loop by using the piped-in input from

the swapinfo -tm command output.

swapinfo -tm | grep dev | while read junk SW_TOTAL SW_USED \

SW_FREE PERCENT_USED junk2

do

Calculate the percentage of free swap space

((PERCENT_FREE = 100 - $(echo $PERCENT_USED | cut -d% -f1)))

echo “\nTotal Amount of Swap Space:\t${SW_TOTAL}MB”

echo “Total MB of Swap Space Used:\t${SW_USED}MB”

echo “Total MB of Swap Space Free:\t${SW_FREE}MB”

echo “\nPercent of Swap Space Used:\t${PERCENT_USED}”

echo “\nPercent of Swap Space Free:\t${PERCENT_FREE}%”

Check if paging space exceeded the predefined limit

if ((PC_LIMIT <= $(echo $PERCENT_USED | cut -d% -f1)))

then

Swap space is over the predefined limit, send notification

tput smso # Turn on reverse video!

echo “\n\nWARNING: Swap Space has Exceeded the\

${PC_LIMIT}% Upper Limit!\n”

tput rmso # Turn reverse video off!

fi

done

echo “\n”

Listing 6.7 HP-UX_swap_mon.ksh shell script listing. (continued)

There are a few things that I want to point out in Listing 6.7. The first point is that any
time we use the $PERCENT_USED value we always use command substitution to
remove the percent sign, %, as shown in the following command substitution statement:

$(echo $PERCENT_USED | cut -d% -f1)

The next part I want to go over is our required report output. At the top of the shell
script we initialize the report by stating a report header including the hostname of the

158 Chapter 6

machine and the date stamp of the time the report was executed. Then we do any cal-
culation that is needed to gather any missing data for our required output. Once all of
our required data is gathered, we have a series of echo statements that add to the
report. In these echo statements we spell out the data in an easily readable list. I want
you to look at each echo statement and then look at the report output in Listing 6.8.

Swap Space Report for dino

Sun Oct 21 17:27:20 EDT 2001

Total Amount of Swap Space: 96MB

Total MB of Swap Space Used: 24MB

Total MB of Swap Space Free: 70MB

Percent of Swap Space Used: 25%

Percent of Swap Space Free: 75%

Listing 6.8 HP-UX swap space report.

There are three thing I want you to notice in the echo statements. First is the use of
the \n when we want to add another new line to the output, which is a blank line in
this case. Second is the use of the \t to add a TAB to align the data output. And finally,
note the use of the curly braces, {VAR}, around the variable names. The curly braces
are needed because we are adding characters to the output, and these characters are
adjacent to the variable data and there is not a space, which include MB and % suffixes.
To separate the extra characters from the variable name we need to use curly braces to
ensure the separation.

At the end of the script in Listing 6.7 we compare the percent used variable to the
trigger threshold that is defined in the DEFINE VARIABLES section at the top of the
shell script. If the threshold is exceeded, then we turn on reverse video, print a warning
message, and then turn reverse video back off. The over threshold warning message is
shown in Listing 6.9.

Swap Space Report for dino

Sun Oct 21 17:40:35 EDT 2001

Total Amount of Swap Space: 96MB

Total MB of Swap Space Used: 24MB

Listing 6.9 HP-UX swap space report with over limit warning. (continues)

Monitoring Paging and Swap Space 159

Free & Share & Open

Total MB of Swap Space Free: 70MB

Percent of Swap Space Used: 25%

Percent of Swap Space Free: 75%

WARNING: Swap Space has Exceeded the 20% Upper Limit!

Listing 6.9 HP-UX swap space report with over limit warning. (continued)

I edited the shell script and changed the PC_LIMIT variable assignment to 20 per-
cent for this example. The reverse video does not show up on paper, but on the screen
it stands out so that the user will always notice the warning message. I usually set this
threshold to 65 percent. When you exceed this level of swap space usage, you really
need to find the cause of the increased swapping.

Linux Swap Space Monitor
The Linux operating system does swapping, and the command to gather swap space
statistics is the free command. The free command output by default lists swap space
usage in KB, but the -m switch is available for listing the statistics in MB. Additionally,
the free -m output does not include any statistics measured in percentages, so we must
calculate the percentage of free swap space and the percentage of used swap space.

These percentage calculations are relatively easy, but we really want to measure the
percentage using floating-point notation this time. We need to use the bc utility for the
mathematical calculations. Chapter 22 goes into great detail on floating-point math
and the use of the bc utility. First, let’s look at the following free -m output so that we
know what we are dealing with:

free -m

total used free shared buffers cached

Mem: 52 51 0 0 0 18

-/+ buffers/cache: 32 19

Swap: 211 14 197

The row of output that we are interested in is the last line of output, beginning with
Swap:. This output shows that we have a total of 211MB of swap space where 14MB is
currently being used. This leaves 197MB of free swap space. We have three out of five
pieces of our required output, so we need to calculate only the percentage of free swap
space and the percentage of used space. For these calculations we need to look at the
use of the bc utility.

The bc utility is a precision calculator language that is a Unix level built-in program.
For our purposes we have two techniques for using the bc utility. We can place our

160 Chapter 6

mathematical statement in an echo statement and pipe the output to bc. The second
option is to use a here document with command substitution. For this exercise we are
going to use the second option to look at the use of a here document.

To calculate the percentage of used swap space we divide the total amount of swap
space into MB of used swap space and multiply this total by 100, as shown in the fol-
lowing statement:

($SW_USED / $SW_TOTAL) * 100

This looks simple enough, but how do we get a floating-point output in a shell
script? This is where the bc utility comes in. There is an option in bc called scale. The
scale indicates how many decimal places to the right of the decimal point that we want
to use in the calculation. In our case we need to set scale=4. Now you are asking, Why
four places? Because we are multiplying the result of the division by 100 we will have
only two active decimal places with data, and the last two will have zeros in the end.
Let’s look at the following example to clear up any confusion:

PERCENT_USED=$(bc <<EOF

scale=4

($SW_USED / $SW_TOTAL) * 100

EOF

)

From the previous values, the result of this calculation is 7.1000 percent of used
space because $SW_USED is 15MB and $SW_TOTAL is 211MB. Now let’s look more
closely at the use of the bc utility. We are using command substitution with an enclosed
here document. A here document has the following form:

command <<LABEL

...

Input to the command

...

LABEL

This is a neat way of providing input to a command that usually requires user input,
and this is why it is referred to as a here document, because the input is here, as
opposed to being entered by the user at the command line.

In our case we use the here document inside command substitution, which is speci-
fied by the $(commands) notation. The result is assigned to the PERCENT_USED vari-
able. The calculation of the percent free is done in the same manner except that this
time we divide the MB of free space into the MB of total swap space, as shown here.

PERCENT_FREE=$(bc <<EOF

scale=4

($SW_FREE / $SW_TOTAL) * 100

EOF

)

Monitoring Paging and Swap Space 161

Free & Share & Open

In our case, using the previously acquired data we get a result of 92.4100 percent.
With these two calculations we have all of the data required for our standard output.
We will cover the bc command, and we will use it again in the next section that deals
with the Solaris swap space monitor. Take a look at the entire shell script in Listing 6.10,
and pay particular attention to the boldface type.

#!/usr/bin/ksh

#

SCRIPT: linux_swap_mon.ksh

#

AUTHOR: Randy Michael

DATE: 5/31/2002

REV: 1.1.P

PLATFORM: Linux Only

#

#

PURPOSE: This shell script is used to produce a report of

the system’s swap space statistics including:

#

Total paging space in MB, MB of free paging space,

MB of used paging space, % of paging space used, and

% of paging space free

#

REV LIST:

#

#

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

#

###

################ DEFINE VARIABLES HERE ####################

THISHOST=$(hostname) # Host name of this machine

PC_LIMIT=65 # Upper limit of Swap space percentage

before notification

###

################ INITIALIZE THE REPORT ####################

echo “\nSwap Space Report for $THISHOST\n”

date

###

############# CAPTURE AND PROCESS THE DATA ################

free -m | grep -i swap | while read junk SW_TOTAL SW_USED SW_FREE

Listing 6.10 Linux_swap_mon.ksh shell script listing.

162 Chapter 6

do

Use the bc utility in a here document to calculate

the percentage of free and used swap space.

PERCENT_USED=$(bc <<EOF

scale=4

($SW_USED / $SW_TOTAL) * 100

EOF

)

PERCENT_FREE=$(bc <<EOF

scale=4

($SW_FREE / $SW_TOTAL) * 100

EOF

)

Produce the rest of the paging space report:

echo “\nTotal Amount of Swap Space:\t${SW_TOTAL}MB”

echo “Total KB of Swap Space Used:\t${SW_USED}MB”

echo “Total KB of Swap Space Free:\t${SW_FREE}MB”

echo “\nPercent of Swap Space Used:\t${PERCENT_USED}%”

echo “\nPercent of Swap Space Free:\t${PERCENT_FREE}%”

Grab the integer portion of the percent used to

test for the over limit threshold

INT_PERCENT_USED=$(echo $PERCENT_USED | cut -d. -f1)

if ((PC_LIMIT <= INT_PERCENT_USED))

then

Swap space limit has exceeded the threshold, send

notification

tput smso # Turn on reverse video!

echo “\n\nWARNING: Paging Space has Exceeded the ${PC_LIMIT}%

Upper Limit!\n”

tput rmso # Turn off reverse video!

fi

done

echo “\n”

Listing 6.10 Linux_swap_mon.ksh shell script listing. (continued)

Notice the while read portion of the free -m command. We use the variable junk as
a place to store the first field, which contains Swap:. This is the same technique that we

Monitoring Paging and Swap Space 163

Free & Share & Open

used in the HP-UX section of this chapter. If we had additional data fields after the MB
of free swap space, we could use a junk2 variable to hold this extra unneeded data, too.

Also notice that our bc calculations are done inside our while read loop. Even
though I have indented everything else inside the loop for readability, you cannot use
indention with these documents! If you do indent anything, the calculation will fail,
and this is extremely difficult to troubleshoot because it looks as if it should work.

Let’s take a look at the shell script in Listing 6.10 in action in Listing 6.11.

./linux_swap_mon.ksh

Swap Space Report for bambam

Sun Jun 9 13:01:06 EDT 2002

Total Amount of Swap Space: 211MB

Total KB of Swap Space Used: 16MB

Total KB of Swap Space Free: 195MB

Percent of Swap Space Used: 7.5800%

Percent of Swap Space Free: 92.4100%

Listing 6.11 Linux_swap_mon.ksh in action.

Notice that the last two numbers in the percentage of used and free swap space are
zeros. I am leaving the task of removing these two numbers as an exercise for you to
complete. Now let’s move on to the Solaris swap space monitor.

Solaris Swap Space Monitor
The Solaris operating system does swapping, and the command to gather swap space
statistics is swap -s. The output of the swap -s command is all on a single line, which is
different from any of the previously studied operating systems. Additionally, all of the
swap space statistics are measured in KB as opposed to MB, which is our required mea-
surement. Before we go any further, let’s look at the Solaris swap -s output.

swap -s

total: 56236k bytes allocated + 9972k reserved = 66208k used, 523884k

available

As you can see, the output is a little difficult to understand. We are interested in two
fields for our purposes, the ninth field, 66208k, and the eleventh field, 523884k. The
ninth field represents the total amount of used swap space, and the eleventh field rep-
resents the free swap space, where both are measured in KB. We are not interested in

164 Chapter 6

the amount of reserved and allocated swap space individually, but in the total, which
is located in the ninth field.

When I say the ninth and eleventh fields I am specifying that each field in the out-
put is separated by at least one blank space, also called white space. From this defini-
tion it is intuitively obvious that total:, +, =, and used are all individual fields in the
command output. This is important to know because we are going to use two awk
statements to extract the $9 and $11 fields.

As in the Linux section, we do not have any percentages given in the output so we
must calculate the percentage of free swap space and the percentage of used swap
space. If you looked at the Linux section, then you already know how to use the bc util-
ity. If you jumped to the Solaris section, we will cover this again here.

The bc utility is a precision calculator language that is a Unix level built-in program.
For our purposes, we have two techniques for using the bc utility. We can place our
mathematical statement in an echo statement and pipe the output to bc. The second
option is to use a here document with command substitution. For this exercise we are
going to use the second option and look at the use of a here document.

To calculate the percentage of used swap space we divide the total amount of swap
space into MB of used swap space and multiply this total by 100, as shown in the fol-
lowing statement:

($SW_USED / $SW_TOTAL) * 100

This looks simple enough, but how do we get a floating-point output in a shell
script? This is where the bc utility comes in. There is an option in bc called scale. The
scale indicates how many decimal places to the right of the decimal point that we want
to use in the calculation. In our case we need to set scale=4. Now you are asking, Why
4 places? Because we are multiplying the result of the division by 100, we will have
only two active decimal places with data after this multiplication, and the last two will
have zeros. Let’s look at this next example to clear up any confusion.

PERCENT_USED=$(bc <<EOF

scale=4

($SW_USED / $SW_TOTAL) * 100

EOF

)

From the previous values the result of this calculation is 11.2200 percent of used
space because $SW_USED is 66MB and $SW_TOTAL is 590MB. Now let’s look more
closely at the use of the bc utility. We are using command substitution with an enclosed
here document. A here document has the following form:

command <<LABEL

...

Input to the command

...

LABEL

Monitoring Paging and Swap Space 165

Free & Share & Open

This is a neat way of providing input to a command that usually requires user input,
and this is why it is referred to as a here document—the input is here, as opposed to
being entered by the user at the command line.

In our case, we use the here document inside command substitution, which is spec-
ified by the $(commands) notation. The result is assigned to the PERCENT_USED vari-
able. The calculation of the percent free is done in the same manner except that this
time we divide the MB of free space into the MB of total swap space, as shown in the
code that follows.

PERCENT_FREE=$(bc <<EOF

scale=4

($SW_FREE / $SW_TOTAL) * 100

EOF

)

In our case, the percentage of used swap space is 11.220 percent, and the percentage
of free swap space is 88.7800 percent. Of course, to get the total swap space we added
the $9 and $11 fields together. The entire shell script is shown in Listing 6.12.

#!/usr/bin/ksh

#

SCRIPT: SUN_swap_mon.ksh

#

AUTHOR: Randy Michael

DATE: 5/31/2002

REV: 1.1.P

PLATFORM: Solaris Only

#

PURPOSE: This shell script is used to produce a report of

the system’s swap space statistics including:

#

Total paging space in MB, MB of free paging space,

MB of used paging space, % of paging space used, and

% of paging space free

#

REV LIST:

#

#

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

#

###

################ DEFINE VARIABLES HERE ####################

PC_LIMIT=65 # Upper limit of Swap space percentage

Listing 6.12 SUN_swap_mon.ksh shell script listing.

166 Chapter 6

before notification

THISHOST=$(hostname) # Host name of this machine

###

################ INITIALIZE THE REPORT ####################

echo “\nSwap Space Report for $THISHOST\n”

date

###

############# CAPTURE AND PROCESS THE DATA ################

Use two awk statements to extract the $9 and $11 fields

from the swap -s command output

SW_USED=$(swap -s | awk ‘{print $9}’ | cut -dk -f1)

SW_FREE=$(swap -s | awk ‘{print $11}’ | cut -dk -f1)

Add SW_USED to SW_FREE to get the total swap space

((SW_TOTAL = SW_USED + SW_FREE))

Calculate the percent used and percent free using the

bc utility in a here documentation with command substitution

PERCENT_USED=$(bc <<EOF

scale=4

($SW_USED / $SW_TOTAL) * 100

EOF

)

PERCENT_FREE=$(bc <<EOF

scale=4

($SW_FREE / $SW_TOTAL) * 100

EOF

)

Convert the KB measurements to MB measurements

((SW_TOTAL_MB = SW_TOTAL / 1000))

((SW_USED_MB = SW_USED / 1000))

((SW_FREE_MB = SW_FREE / 1000))

Produce the remaining part of the report

echo “\nTotal Amount of Swap Space:\t${SW_TOTAL_MB}MB”

echo “Total KB of Swap Space Used:\t${SW_USED_MB}MB”

Listing 6.12 SUN_swap_mon.ksh shell script listing. (continues)

Monitoring Paging and Swap Space 167

Free & Share & Open

echo “Total KB of Swap Space Free:\t${SW_FREE_MB}MB”

echo “\nPercent of Swap Space Used:\t${PERCENT_USED}%”

echo “\nPercent of Swap Space Free:\t${PERCENT_FREE}%”

Grab the integer portion of the percent used

INT_PERCENT_USED=$(echo $PERCENT_USED | cut -d. -f1)

Check to see if the percentage used maximum threshold

has been exceeded

if ((PC_LIMIT <= INT_PERCENT_USED))

then

Percent used has exceeded the threshold, send notification

tput smso # Turn on reverse video!

echo “\n\nWARNING: Swap Space has Exceeded the ${PC_LIMIT}% Upper

Limit!\n”

tput rmso # Turn off reverse video!

fi

echo “\n”

Listing 6.12 SUN_swap_mon.ksh shell script listing. (continued)

Notice how we used two awk statements using two separate reads of the swap -s
command output. These two measurements occur in such a short amount of time that
it should not matter; however, you may want to change the method to a single read
and store the output in a variable or file; I’m leaving this modification task for you to
do as an exercise. In the next step we add the KB of free swap space to the KB of used
swap space to find the total swap space on the system.

With these three KB measurements we calculate the percentage of used and free
swap space using the bc utility inside a command substitution statement while using
a here document to provide input to the bc command. There is still one more step
before we are ready to print the report—convert the KB measurements to MB. We only
need to divide our KB measurements by 1,000, and we are ready to go. Next the
remaining portions of the report are printed, and then the test is made to see if the per-
cent used has exceeded the threshold limit, specified by the PC_LIMIT variable. If the
percentage used limit is exceeded, then reverse video is turned on, the warning mes-
sage is displayed, and reverse video is turned back off. The SUN_swap_mon.ksh shell
script is in action in Listing 6.13.

168 Chapter 6

./SUN_swap_mon.ksh

Swap Space Report for wilma

Mon Jun 10 03:50:29 EDT 2002

Total Amount of Swap Space: 590MB

Total KB of Swap Space Used: 66MB

Total KB of Swap Space Free: 524MB

Percent of Swap Space Used: 11.2200%

Percent of Swap Space Free: 88.7800%

Listing 6.13 SUN_swap_mon.ksh script in action.

Notice that the percentages are given as floating-pointing numbers, but there are
two extra zeros. These two extra zeros are the result of specifying in the bc here docu-
ment that the scale=4 and then multiplying the result by 100. As an exercise, add a
command to remove the two extra zeros. Are we finished? Not yet; we still need a sin-
gle shell script that will run on all four operating systems. Let’s move on to the all-in-
one section.

All-in-One Paging and Swap Space Monitor
Let’s put everything together by making the four previous scripts into functions and
use the uname command in a case statement to determine the Unix flavor, and thus
which function to run.

Let’s look at this combined shell script, and we will go over the details at the end.
The combined shell script is called all-in-one_swapmon.ksh and is shown in List-
ing 6.14.

#!/usr/bin/ksh

#

SCRIPT: all-in-one_swapmon.ksh

#

AUTHOR: Randy Michael

DATE: 6/6/2002

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continues)

Monitoring Paging and Swap Space 169

Free & Share & Open

REV: 2.0.P

#

PLATFORM: AIX, Solaris, HP-UX and Linux Only

#

PURPOSE: This shell script is used to produce a report of

the system’s paging or swap space statistics including:

#

Total paging space in MB, MB of Free paging space,

MB of Used paging space, % of paging space Used, and

% of paging space Free

#

REV LIST:

#

#

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

#

###

################ DEFINE VARIABLES HERE ####################

PC_LIMIT=65 # Upper limit of Swap space percentage

before notification

THISHOST=$(hostname) # Host name of this machine

###

################ INITIALIZE THE REPORT ####################

echo “\nSwap Space Report for $THISHOST\n”

date

###

################ DEFINE FUNCTIONS HERE ####################

function SUN_swap_mon

{

############# CAPTURE AND PROCESS THE DATA ################

Use two awk statements to extract the $9 and $11 fields

from the swap -s command output

SW_USED=$(swap -s | awk ‘{print $9}’ | cut -dk -f1)

SW_FREE=$(swap -s | awk ‘{print $11}’ | cut -dk -f1)

Add SW_USED to SW_FREE to get the total swap space

((SW_TOTAL = SW_USED + SW_FREE))

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continued)

170 Chapter 6

Calculate the percent used and percent free using the

bc utility in a here documentation with command substitution

PERCENT_USED=$(bc <<EOF

scale=4

($SW_USED / $SW_TOTAL) * 100

EOF

)

PERCENT_FREE=$(bc <<EOF

scale=4

($SW_FREE / $SW_TOTAL) * 100

EOF

)

Convert the KB measurements to MB measurements

((SW_TOTAL_MB = SW_TOTAL / 1000))

((SW_USED_MB = SW_USED / 1000))

((SW_FREE_MB = SW_FREE / 1000))

Produce the remaining part of the report

echo “\nTotal Amount of Swap Space:\t${SW_TOTAL_MB}MB”

echo “Total KB of Swap Space Used:\t${SW_USED_MB}MB”

echo “Total KB of Swap Space Free:\t${SW_FREE_MB}MB”

echo “\nPercent of Swap Space Used:\t${PERCENT_USED}%”

echo “\nPercent of Swap Space Free:\t${PERCENT_FREE}%”

Grab the integer portion of the percent used

INT_PERCENT_USED=$(echo $PERCENT_USED | cut -d. -f1)

Check to see if the percentage used maximum threshold

has been exceeded

if ((PC_LIMIT <= INT_PERCENT_USED))

then

Percent used has exceeded the threshold, send notification

tput smso # Turn on reverse video!

echo “\n\nWARNING: Swap Space has Exceeded the ${PC_LIMIT}% Upper

Limit!\n”

tput rmso # Turn off reverse video!

fi

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continues)

Monitoring Paging and Swap Space 171

Free & Share & Open

echo “\n”

}

###

function Linux_swap_mon

{

free -m | grep -i swap | while read junk SW_TOTAL SW_USED SW_FREE

do

Use the bc utility in a here document to calculate

the percentage of free and used swap space.

PERCENT_USED=$(bc <<EOF

scale=4

($SW_USED / $SW_TOTAL) * 100

EOF

)

PERCENT_FREE=$(bc <<EOF

scale=4

($SW_FREE / $SW_TOTAL) * 100

EOF

)

Produce the rest of the paging space report:

echo “\nTotal Amount of Swap Space:\t${SW_TOTAL}MB”

echo “Total KB of Swap Space Used:\t${SW_USED}MB”

echo “Total KB of Swap Space Free:\t${SW_FREE}MB”

echo “\nPercent of Swap Space Used:\t${PERCENT_USED}%”

echo “\nPercent of Swap Space Free:\t${PERCENT_FREE}%”

Grab the integer portion of the percent used to

test for the over limit threshold

INT_PERCENT_USED=$(echo $PERCENT_USED | cut -d. -f1)

if ((PC_LIMIT <= INT_PERCENT_USED))

then

tput smso

echo “\n\nWARNING: Paging Space has Exceeded the \

${PC_LIMIT}% Upper Limit!\n”

tput rmso

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continued)

172 Chapter 6

fi

done

echo “\n”

}

###

function HP_UX_swap_mon

{

Start a while read loop by using the piped in input from

the swapinfo -tm command output.

swapinfo -tm | grep dev | while read junk SW_TOTAL SW_USED \

SW_FREE PERCENT_USED junk2

do

Calculate the percentage of free swap space

((PERCENT_FREE = 100 - $(echo $PERCENT_USED | cut -d% -f1)))

echo “\nTotal Amount of Swap Space:\t${SW_TOTAL}MB”

echo “Total MB of Swap Space Used:\t${SW_USED}MB”

echo “Total MB of Swap Space Free:\t${SW_FREE}MB”

echo “\nPercent of Swap Space Used:\t${PERCENT_USED}”

echo “\nPercent of Swap Space Free:\t${PERCENT_FREE}%”

Check for paging space exceeded the predefined limit

if ((PC_LIMIT <= $(echo $PERCENT_USED | cut -d% -f1)))

then

Swap space is over the predefined limit, send notification

tput smso # Turn on reverse video!

echo “\n\nWARNING: Swap Space has Exceeded the\

${PC_LIMIT}% Upper Limit!\n”

tput rmso # Turn reverse video off!

fi

done

echo “\n”

}

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continues)

Monitoring Paging and Swap Space 173

Free & Share & Open

###

function AIX_paging_mon

{

################ DEFINE VARIABLES HERE ####################

PAGING_STAT=/tmp/paging_stat.out # Paging Stat hold file

############# CAPTURE AND PROCESS THE DATA ################

Load the data in a file without the column headings

lsps -s | tail +2 > $PAGING_STAT

Start a while loop and feed the loop from the bottom using

the $PAGING_STAT file as redirected input

while read TOTAL PERCENT

do

Clean up the data by removing the suffixes

PAGING_MB=$(echo $TOTAL | cut -d ‘MB’ -f1)

PAGING_PC=$(echo $PERCENT | cut -d% -f1)

Calculate the missing data: %Free, MB used and MB free

((PAGING_PC_FREE = 100 - PAGING_PC))

((MB_USED = PAGING_MB * PAGING_PC / 100))

((MB_FREE = PAGING_MB - MB_USED))

Produce the rest of the paging space report:

echo “\nTotal MB of Paging Space:\t$TOTAL”

echo “Total MB of Paging Space Used:\t${MB_USED}MB”

echo “Total MB of Paging Space Free:\t${MB_FREE}MB”

echo “\nPercent of Paging Space Used:\t${PERCENT}”

echo “\nPercent of Paging Space Free:\t${PAGING_PC_FREE}%”

Check for paging space exceeded the predefined limit

if ((PC_LIMIT <= PAGING_PC))

then

Paging space is over the limit, send notification

tput smso # Turn on reverse video!

echo “\n\nWARNING: Paging Space has Exceeded the ${PC_LIMIT}%

\

Upper Limit!\n”

tput rmso # Turn off reverse video

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continued)

174 Chapter 6

fi

done < $PAGING_STAT

rm -f $PAGING_STAT

Add an extra new line to the output

echo “\n”

}

###

################## BEGINNING OF MAIN ######################

###

Find the Operating System and execute the correct function

case $(uname) in

AIX) AIX_paging_mon

;;

HP-UX) HP_UX_swap_mon

;;

Linux) Linux_swap_mon

;;

SunOS) SUN_swap_mon

;;

*) echo “\nERROR: Unsupported Operating System...EXITING...\n”

exit 1

;;

esac

End of all-in-one_swapmon.ksh

Listing 6.14 all-in-one_swapmon.ksh shell script listing. (continued)

As you can see, there is not much to converting a shell script into a function. The
only thing required is that you extract out of each shell script the core code that makes
up the shell script. The common code should remain in the main body of the new shell
script. In our example, the common parts are the PC_LIMIT, which defines the over
limit percentage threshold, and the hostname of the machine. Everything else is unique
to each of the four shell scripts and functions here.

To turn a shell script into a function, all you need to do is a cut and paste in your
favorite editor and copy the main body of the shell script into a new shell script. This
new function can be enclosed into a function in two ways, as follows:

Monitoring Paging and Swap Space 175

Free & Share & Open

function was_a_shell_script

{

shell_script_code_here

}

OR

was_a_shell_script ()

{

shell_script_code_here

}

I tend to use the function definition instead of the C language type definition. This
is a personal choice, but both types of function definitions produce the same result. If
you are a C programmer you will most likely prefer the C type notation. I like to use the
function definition so that a person coming behind me trying to edit the shell script
will know intuitively that this is a function because it is spelled out in the definition.

Once we have each of the four functions defined inside a single shell script, we need
to know only on which operating system that we are running and to execute the appro-
priate function. To determine the Unix flavor, we use the uname command. The fol-
lowing case statement runs the correct swap/paging function as defined by the Unix
flavor.

case $(uname) in

AIX) AIX_paging_mon

;;

HP-UX) HP_UX_swap_mon

;;

Linux) Linux_swap_mon

;;

SunOS) SUN_swap_mon

;;

*) echo “\nERROR: Unsupported Operating System...EXITING...\n”

esac

Notice that if the Unix flavor is not AIX, HP-UX, Linux, or SunOS, the shell script
gives an error message and exits with a return code of 1.

Other Options to Consider

As usual, we can always improve on a shell script, and this chapter is no exception.
Each of these shell scripts could stand a little improvement one way or another because
there is not just one way to do anything! I have noted a few suggestions here.

176 Chapter 6

Event Notification
The only event notification I have included in these shell scripts and functions is a
warning message presented to the user in reverse video. I usually add email notifica-
tion to my alphanumeric pager also. Just use your preferred method of remote notifi-
cation, and you will have the upper hand on keeping your systems running smoothly.

Log File
A log file is a great idea for this type of monitoring. I suggest that any time the thresh-
old is crossed that a log file receives an appended message. This is simple to do by
using the tee -a command in a pipe. See the man page on tee for more information.

Scheduled Monitoring
If you are going to do paging/swap monitoring, it is an extremely good idea to do this
monitoring on a scheduled basis. Different shops have different requirements. I like to
monitor every 15 minutes from 6:00 A.M. until 10:00 P.M. This way I have covered every-
one from the East Coast to the West Coast. If you have locations in other time zones
around the world then you may want to extend your coverage to include these times
as well. The monitoring is up to you, but it is best to take a proactive approach and find
the problem before someone tells you about it. You may also discover some trends of
heavy system loads to help in troubleshooting.

Summary

In this chapter we started out with a predetermined output that we had to adhere to for
any Unix flavor, and we held to it. Each operating system presented us with a new
challenge because in each instance we lacked part of the required data and we had to
do a little math to get into the correct format. Each of these shell scripts is a unique
piece of work, but in the end we combined everything into a single multi-OS function-
ing shell script that determines what the Unix flavor is and executes the proper func-
tion to get the desired result. If the Unix flavor is not AIX, HP-UX, Linux, or Solaris,
then the shell script gives an error message and exits cleanly.

In this chapter we covered various techniques to extract and calculate data to pro-
duce an identical output no matter the Unix flavor. I hope you gained some valuable
experience with dealing with the challenge of handling different types of data to pro-
duce a standard report. This type of experience is extremely important for heteroge-
neous environments. In the next chapter, we will look at some techniques to monitor
the load on a system.

Monitoring Paging and Swap Space 177

Free & Share & Open

179

Have you ever seen a system start slowing down as the wait state and uptime stats rise,
and finally the system crashes? I have, and it is not a pretty sight when all of the heads
start popping up over the cubes. In this chapter, we are going to look at some tech-
niques to monitor the load on a Unix system. When the system is unhappy running
under a heavy load, there are many possible causes. The system may have a runaway
process that is producing a ton of zombie processes every second, or it may have been
up for more than a year due to the competition between System Administrators to see
who can run his or her system the longest without a reboot. In any case, we want to be
proactive in catching a symptom in the early stages of loading down the system.

There are really only three basic things to look at when monitoring the load on the
system. First is to look at the load statistics produced as part of the uptime command.
This output indicates the average number of jobs in the run queue over the last 5, 10,
and 15 minutes in AIX and 1, 5, and 15 minutes for HP-UX, Linux, and Solaris. The sec-
ond measurement to look at is the percentages of CPU usage for system/kernel,
user/application, I/O wait state, and idle time. These four measurements can be
obtained from the iostat, vmstat, and sar outputs. We will look at each of these com-
mands individually. The final step in monitoring the CPU load is to find the CPU hogs.
Most systems have a top like monitoring tool that shows the CPU process users in
descending order of CPU usage.

We can also use the ps auxw command that displays CPU % usage for each process
in descending order from the top. We will look at each of these in this chapter. First,
let’s look at the command syntax for the commands we use.

Monitoring System Load

C H A P T E R

7

Free & Share & Open

Syntax

As usual with Unix, there is not just one way to monitor a system for load. We can use
any of the following commands to get system load statictics: uptime, iostat, sar, and
vmstat. To illustrate the ability of each of these commands, we are going to take a look
at each one of the commands individually.

Syntax for uptime
Using the uptime command is the most direct method of getting a measurement of the
system load. Part of the output of the uptime command is a direct measure of the aver-
age length of the run queue over the last 5 minutes, last 10 minutes, and the last mea-
surement is averaged over 15 minutes on AIX. For HP-UX, Linux, and Solaris the uptime
command is a direct measure of the average length of the run queue over the last 1
minute, 5 minutes, and the last measurement is averaged over 15 minutes. The length of
the run queue is a direct measurement of how busy the CPU is by the number of
runnable processes waiting for CPU time, as an average, over a period of time.

We do need to put a bit of logic into the use of the uptime command because the out-
put field positions vary depending on how long it has been since the last system reboot
and, possibly, which Unix flavor we are running. We are going to test each of these
options and produce a table of the field to extract as it relates to the Unix flavor and the
time since the last system reboot. We have five possible variations to look at in this
uptime output as you will see later. The first is 1–59 minutes, the second is 1–23 hours,
and the third measurement is when the system has been up for more than 24 hours.
After the system has been up for at least one day, then we have to consider hours and
minutes again! Believe it or not, the load fields continue to float during each day. When
the system reaches an exact hour, to the minute, of the reboot day, then an hrs field is
added; this is true for the anniversary first hour, too. In this case, the min field is added
along with the day field. Follow along through the next few sections to see how the
fields vary during these five stages.

AIX

This uptime output is shown when the AIX system has been up for 26 minutes. The
field we want is in the $9 position.

uptime

01:46PM up 26 mins, 7 users, load average: 3.11, 1.38, 0.58

This uptime output is shown when the AIX system has been up for 1 hour and 22
minutes. The field we want is in the $8 position.

uptime

01:08PM up 1:22, 6 users, load average: 2.74, 1.38, 0.59

This uptime output is shown when the AIX system has been up for 2 days, 22 hours,
and 3 minutes. The field we want is in the $10 position.

180 Chapter 7

uptime

04:59PM up 2 days, 22:03, 4 users, load average: 1.51, 1.67, 1.70

This uptime output is shown when the AIX system has been up for 21 days and
exactly 17 minutes. The field we want is in the $11 position.

uptime

09:16PM up 21 days, 17 mins, 9 users, load average: 1.31, 1.82, 1.61

This uptime output is shown when the AIX system has been up for 21 days and
exactly 6 hours. The field we want is in the $11 position.

uptime

09:16PM up 21 days, 6 hrs, 2 users, load average: 1.01, 1.62, 1.94

From these uptime command outputs on my AIX machine, notice the last three
columns. The load average is the average number of runnable processes over the pre-
ceding 5-, 10-, and 15-minute intervals. AIX is different in this respect because our
other Unix flavors show the load average over the last 1-, 5-, and 15-minute intervals.

HP-UX

This uptime output is shown when the HP-UX system has been up for 17 minutes. The
field we want is in the $9 position.

uptime

4:33am up 17 mins, 3 users, load average: 1.69, 1.36, 0.86

This uptime output is shown when the HP-UX system has been up for 1 hour and
38 minutes. The field we want is in the $8 position.

uptime

5:54am up 1:38, 3 users, load average: 1.67, 0.60, 0.38

This uptime output is shown when the HP-UX system has been up for 1 day, 5
hours, and 32 minutes. The field we want is in the $10 position.

uptime

5:49pm up 1 day, 5:32, 3 users, load average: 4.25, 1.85, 0.76

This uptime output is shown when the HP-UX system has been up for 4 days and
exactly 22 minutes. The field we want is in the $11 position.

uptime

9:16pm up 4 days, 22 mins, 9 users, load average: 2.33, 1.99, 1.30

This uptime output is shown when the HP-UX system has been up for 4 days and
exactly 5 hours. The field we want is in the $11 position.

Monitoring System Load 181

Free & Share & Open

uptime

9:16pm up 4 days, 5 hrs, 2 users, load average: 1.01, 1.62, 1.94

From the uptime commands output on my HP-UX machine, notice the last three
columns. The load average on an HP-UX machine shows the average number of
runnable processes over the preceding 1-, 5-, and 15-minute intervals.

Linux

This uptime output is shown when the Linux system has been up 20 minutes. The field
we want is in the $9 position.

uptime

12:17pm up 20 min, 4 users, load average: 2.29, 2.17, 1.51

This uptime output is shown when the Linux system has been up for 1 hour and 7
minutes. The field we want is in the $8 position.

uptime

1:04pm up 1:07, 4 users, load average: 1.74, 2.10, 2.09

This uptime output is shown when the Linux system has been up for 12 days, 19
hours, and 3 minutes. The field we want is in the $10 position.

uptime

4:40pm up 12 days, 19:03, 4 users, load average: 1.52, 0.47, 0.16

This uptime output is shown when the Linux system has been up for 14 days and
exactly 17 minutes. The field we want is in the $11 position.

uptime

9:16pm up 14 days, 17 mins, 9 users, load average: 1.31, 1.82, 1.61

This uptime output is shown when the Linux system has been up for 14 days and
exactly 5 hours. The field we want is in the $11 position.

uptime

9:16pm up 14 days, 5 hr, 2 users, load average: 1.01, 1.69, 1.84

From the uptime command output on my Linux machine, notice the last three
columns. The load average on a Linux machine shows the average number of runnable
processes over the preceding 1-, 5-, and 15-minute intervals. For Linux we need to
extract the $11 field from the uptime output to look at the CPU load over the last
1-minute interval.

182 Chapter 7

Solaris

This uptime output is shown when the Solaris system has been up 11 minutes. The
field we want is in the $9 position.

uptime

12:31pm up 11 min(s), 1 user, load average: 1.01, 0.75, 0.38

This uptime output is shown when the Solaris system has been up 1 hour and
30 minutes. The field we want is in the $8 position.

uptime

1:50pm up 1:30, 1 user, load average: 1.35, 1.87, 1.95

This uptime output is shown when the Solaris system has been up for 1 day, 5 hours,
and 41 minutes. The field we want is in the $10 position.

uptime

6:01pm up 1 day(s), 5:41, 1 user, load average: 2.70, 1.27, 0.53

This uptime output is shown when the Solaris system has been up for 2 days and
exactly 25 minutes. The field we want is in the $11 position.

uptime

9:16pm up 2 day(s), 25 mins, 9 users, load average: 3.31, 2.83, 2.40

This uptime output is shown when the Solaris system has been up for 2 days and
exactly 7 hours. The field we want is in the $11 position.

uptime

9:16pm up 2 days, 7 hrs, 2 users, load average: 2.02, 1.92, 0.97

From the uptime command output on my Solaris machine, notice the last three
columns. The load average on a Solaris machine shows the average number of
runnable processes over the preceding 1-, 5-, and 15-minute intervals.

What Is the Common Denominator?

In each case, we are interested in the newest available data, which is the last 5 minutes
on an AIX machine and the last minute on HP-UX, Linux, and Solaris machines. The
easiest way to look at this floating field is to make a table of the positional parameter’s
placement as related to the Unix flavor and the amount of time since the last system
reboot. Once we can see how the parameter is moving, we can build some logic into the
script to extract the latest load statistics. The field data is shown in Table 7.1.

Monitoring System Load 183

Free & Share & Open

Table 7.1 Field Movement Based on Uptime and Unix Flavor

TIME SINCE
LAST REBOOT: UNIX FLAVOR

AIX HP-UX LINUX SOLARIS

Minutes $9 $9 $9 $9

Hours $8 $8 $8 $8

Day(s) $10 $10 $10 $10

Day(s) on the
exact reboot hour
anniversary $11 $11 $11 $11

Day(s) on the first
59 minutes of the
reboot hour anniversary $11 $11 $11 $11

As you can see in Table 7.1, the most current load field varies all the time. It looks as
if we are in luck, though, for the operating system! We do not have to worry about the
Unix flavor, but we do have to test the time since the last system reboot. From the pre-
vious uptime command outputs, did you notice anything that will help us determine
which field we need to extract? It turns out that we have an indicator for each of the
five possible field values in the uptime output. If the system has been up for less than
one hour, then we grep on min, which will pattern match on each Unix flavor output.
If the system has been up for more than 24 hours, then we grep first for day and min in
the uptime output, then day and hr, and finally just day. At the end of the chapter, I will
show you a cleaner way to do this data extraction.

Scripting an Uptime Field Test Solution

With the five defined tests we can use grep to extract the correct field from the uptime
command output. Let’s look at the code in Listing 7.1 to see how this works.

#!/bin/ksh

#

SCRIPT: uptime_fieldtest.ksh

AUTHOR: Randy Michael

DATE: 07/28/2002

PLATFORM: Any Unix

PURPOSE: This shell script is used to demonstrate how the

average load statistics field shifts depending on

how long it has been since the last system reboot.

Listing 7.1 uptime_fieldtest.ksh shell script listing.

184 Chapter 7

The options are “min”, “day”, “hr” and combinations.

If all other tests fail then the system has been running

for 1-23 hours.

echo “\n” # Write one blank new line to the screen

Show a current uptime output

uptime

Find the correct field based on how long the system has been up.

if $(uptime | grep day | grep min >/dev/null)

then

FIELD=11

elif $(uptime | grep day | grep hr >/dev/null)

then

FIELD=11

elif $(uptime | grep day >/dev/null)

then

FIELD=10

elif $(uptime | grep min >/dev/null)

then

FIELD=9

else # The machine has been up for 1 to 23 hours.

FIELD=8

fi

Display the correct field.

echo “\nField is $FIELD \n”

Listing 7.1 uptime_fieldtest.ksh shell script listing. (continued)

The shell script in Listing 7.1 shows a method of grepping out the four known
options and defaulting to the fifth option field if the system has been up for 1–23 hours
because there is nothing to grep on. This is the method that is used in the shell script to
monitor the system load using the uptime command. The remaining load monitoring
techniques do not require any special treatment of positional parameters in the com-
mand output.

Note: In finding the floating fields in the uptime command output, I hope you real-
ize that you need to pay careful attention to each command’s output. What looks like
a simple, normal, always-the-same output can trick you into programming errors into
a shell script without really knowing. The exact error that is produced will likely

Monitoring System Load 185

Free & Share & Open

depend on when the system was last rebooted as related to when the shell script was
written and tested.

Syntax for iostat
To get the CPU load statistics from the iostat command, we have to be a little flexible
between Unix flavors. For AIX and HP-UX machines, we need to use the -t command
switch, and for Linux and Solaris we use the -c switch. Due to the Unix flavor depen-
dency, we need to first check the operating system using the uname command. Then,
based on the OS, we can assign the proper switch to the iostat command.

Let’s look at the output of the iostat command for each of our Unix flavors, AIX, HP-
UX, Linux, and Solaris.

AIX

iostat -t 10 2

tty: tin tout avg-cpu: % user % sys % idle % iowait

0.2 33.6 2.4 8.2 84.0 5.4

0.1 1188.4 16.8 83.2 0.0 0.0

In this AIX output, notice the last four fields, %user, %sys, %idle, and %iowait.
These four fields are the ones that we want to extract. The field positions are $3, $4, $5,
and $6, and we want just the last line of the output because the first line of data is an
average since the last system reboot. Also, notice that the rows of actual data consist
entirely of numeric characters. This will become important as we look at each operat-
ing system.

HP-UX

iostat -t 10 2

tty cpu

tin tout us ni sy id

0 2 1 0 1 97

device bps sps msps

c0t6d0 0 0.0 1.0

tty cpu

tin tout us ni sy id

0 0 41 0 59 0

device bps sps msps

c0t6d0 1 0.1 1.0

186 Chapter 7

Notice that the HP-UX output differs greatly from the AIX iostat output. The only
thing that distinguishes the CPU data from the rest of the data is the fact that the entire
row of data is numeric. This is an important characteristic of the HP-UX data, and it
will help us extract the data that we are looking for. Notice again that the first set of
statistics is an average since the last system reboot.

Linux

iostat -c 10 2

Linux 2.4.2-2 (bambam) 07/29/2002

avg-cpu: %user %nice %sys %idle

0.69 0.00 0.48 98.83

avg-cpu: %user %nice %sys %idle

62.80 0.00 37.20 0.00

Notice that the Linux iostat command switch for CPU statistics is -c, instead of the
-t that we used for AIX and HP-UX. In this output we have the average of the CPU load
since the last reboot, and then the current data is shown in the second command out-
put. Also notice that the actual data presented is entirely numeric. It looks as if we have
a trend.

Solaris

iostat -c 10 2

cpu

us sy wt id

3 14 0 83

17 81 0 2

The Solaris iostat -c output shows the load average statistics since the last system
reboot on the first line of data and the most current data on the last line. Notice again
that the actual data is a row of numeric characters. Knowing that the data is always on
a row that is numeric characters allows us to greatly simplify writing this shell script.

What Is the Common Denominator?

The real common denominator for the iostat command data between each Unix flavor
is that we have a row of numeric data only. The only thing remaining is the fields for
each OS, which vary by field and content. We want just the last line of data, which is
the most current data. From this set of criteria, let’s write a little code to see how we can
specify the correct switch and set the proper fields to extract. We can do both of these
tasks with a single case statement, as shown in Listing 7.2.

Monitoring System Load 187

Free & Share & Open

OS=$(uname)

case $OS in

AIX|HP-UX) SWITCH=’-t’

F1=3

F2=4

F3=5

F4=6

echo “\nThe Operating System is $OS\n”

;;

Linux|SunOS) SWITCH=’-c’

F1=1

F2=2

F3=3

F4=4

echo “\nThe Operating System is $OS\n”

;;

*) echo “\nERROR: $OS is not a supported operating system\n”

echo “\n\t...EXITING...\n”

exit 1

;;

esac

Listing 7.2 Case statement for the iostat fields of data.

Notice in Listing 7.2 that we use a single case statement to set up the environment
for the shell script to run the correct iostat command for each of the four Unix flavors.
If the Unix flavor is not in the list, then the user receives an error message before the
script exits with a return code of 1, one. Later we will cover the entire shell script.

Syntax for sar
The sar command stands for system activity report. Using the sar command we can take
direct sample intervals for a specific time period. For example, we can take 4 samples
that are 10 seconds each, and the sar command automatically averages the results for us.

Let’s look at the output of the sar command for each of our Unix flavors, AIX,
HP-UX, Linux, and Solaris.

AIX

sar 10 4

AIX yogi 1 5 000125604800 07/26/02

17:44:54 %usr %sys %wio %idle

17:45:04 25 75 0 0

188 Chapter 7

17:45:14 25 75 0 0

17:45:24 26 74 0 0

17:45:34 25 75 0 0

Average 25 75 0 0

Now let’s look at the average of the samples directly.

sar 10 4 | grep Average

Average 26 74 0 0

HP-UX

sar 10 4

HP-UX dino B.10.20 A 9000/715 07/29/102

22:48:10 %usr %sys %wio %idle

22:48:20 40 60 0 0

22:48:30 40 60 0 0

22:48:40 12 19 0 68

22:48:50 0 0 0 100

Average 23 35 0 42

Now let’s only look at the average of the samples directly.

sar 10 4 | grep Average

Average 25 37 0 38

Linux

sar 10 4

Linux 2.4.2-2 (bambam) 07/29/2002

10:01:59 PM CPU %user %nice %system %idle

10:02:09 PM all 0.10 0.00 0.00 99.90

10:02:19 PM all 0.00 0.00 0.10 99.90

10:02:29 PM all 11.40 0.00 5.00 83.60

10:02:39 PM all 60.80 0.00 36.30 2.90

Average: all 18.07 0.00 10.35 71.58

Now let’s look at the average of the samples directly.

sar 10 4 | grep Average

Average: all 18.07 0.00 10.35 71.58

Monitoring System Load 189

Free & Share & Open

Solaris

sar 10 4

SunOS wilma 5.8 Generic i86pc 07/29/02

23:01:55 %usr %sys %wio %idle

23:02:05 1 1 0 98

23:02:15 12 53 0 35

23:02:25 15 67 0 18

23:02:35 21 59 0 21

Average 12 45 0 43

Now let’s look at the average of the samples directly.

sar 10 4 | grep Average

Average 12 45 0 43

What Is the Common Denominator?

With the sar command the only common denominator is that we can always grep on
the word “Average.” Like the iostat command, the fields vary between some Unix
flavors. We can use a similar case statement to extract the correct fields for each Unix
flavor, as shown in Listing 7.3.

OS=$(uname)

case $OS in

AIX|HP-UX|SunOS)

F1=2

F2=3

F3=4

F4=5

echo “\nThe Operating System is $OS\n”

;;

Linux)

F1=3

F2=4

F3=5

F4=6

echo “\nThe Operating System is $OS\n”

;;

*) echo “\nERROR: $OS is not a supported operating system\n”

echo “\n\t...EXITING...\n”

exit 1

;;

esac

Listing 7.3 Case statement for the sar fields of data.

190 Chapter 7

Notice in Listing 7.3 that a single case statement sets up the environment for the
shell script to select the correct fields from the sar command for each of the four Unix
flavors. If the Unix flavor is not in the list, then the user receives an error message
before the script exits with a return code of 1, one. Later we will cover the entire shell
script.

Syntax for vmstat
The vmstat command stands for virtual memory statistics. Using the vmstat command,
we can get a lot of data about the system including memory, paging space, page faults,
and CPU statistics. We are concentrating on the CPU statistics in this chapter, so let’s
stay on track. The vmstat commands also allow us to take direct samples over intervals
for a specific time period. The vmstat command does not do any averaging for us,
however, we are going to stick with two intervals. The first interval is the average of
the system load since the last system reboot, like the iostat command. The last line con-
tains the most current sample.

Let’s look at the output of the vmstat command for each of our Unix flavors, AIX,
HP-UX, Linux, and Solaris.

AIX

[root:yogi]@/scripts# vmstat 30 2

kthr memory page faults cpu

----- ----------- ------------------------ ------------ -----------

r b avm fre re pi po fr sr cy in sy cs us sy id wa

0 0 23936 580 0 0 0 0 2 0 103 2715 713 8 25 67 0

1 0 23938 578 0 0 0 0 0 0 115 9942 2730 24 76 0 0

The last line of output is what we are looking for. This is the average of the CPU load
over the length of the interval. We want just the last four columns in the output. The
fields that we want to extract for AIX are in positions $14, $15, $16, and $17.

HP-UX

vmstat 30 2

procs memory page faults cpu

r b w avm free re at pi po fr de sr in sy cs us sy id

0 39 0 8382 290 122 26 2 0 0 0 3 128 2014 146 14 21 65

1 40 0 7532 148 345 71 0 0 0 0 0 108 5550 379 29 43 27

The HP-UX vmstat output is a long string of data. Notice for the CPU data that HP-
UX supplies only three values: user part, system part, and the CPU idle time. The fields
that we want to extract are in positions $16, $17, and $18.

Monitoring System Load 191

Free & Share & Open

Linux

vmstat 30 2

procs memory swap io system cpu

r b w swpd free buff cache si so bi bo in cs us sy id

2 0 0 244 1088 1676 21008 0 0 1 0 127 72 1 1 99

3 0 0 244 1132 1676 21008 0 0 0 1 212 530 37 23 40

Like HP-UX, the Linux vmstat output for CPU activity has three fields: user part,
system part, and the CPU idle time. The fields that we want to extract are in positions
$14, $15, and $16.

Solaris

vmstat 30 2

procs memory page disk faults cpu

r b w swap free re mf pi po fr de sr cd f0 s0 -- in sy cs us sy id

0 0 0 558316 33036 57 433 2 0 0 0 0 0 0 0 0 111 500 77 2 8 90

0 0 0 556192 29992 387 2928 0 0 0 0 0 1 0 0 0 155 2711 273 14 60 26

As with HP-UX and Linux, the Solaris vmstat output for CPU activity consists of the
last three fields: user part, system part, and the CPU idle time.

What Is the Common Denominator?

There are at least two common denominators for the vmstat command output between
the Unix flavors. The first is that the CPU data is in the last fields. On AIX the data is in
the last four fields with the added I/O wait state. HP-UX, Linux, and Solaris do not list
the wait state. The second common factor is that the data is always on a row that is
entirely numeric. Again, we need a case statement to parse the correct fields for the
command output. Take a look at Listing 7.4.

OS=$(uname)

case $OS in

AIX)

F1=14

F2=15

F3=16

F4=17

echo “\nThe Operating System is $OS\n”

;;

Listing 7.4 Case statement for the vmstat fields of data.

192 Chapter 7

HP-UX)

F1=16

F2=17

F3=18

F4=1 # This “F4=1” is bogus and not used for HP-UX

echo “\nThe Operating System is $OS\n”

;;

Linux)

F1=14

F2=15

F3=16

F4=1 # This “F4=1” is bogus and not used for Linux

echo “\nThe Operating System is $OS\n”

;;

SunOS)

F1=20

F2=21

F3=22

F4=1 # This “F4=1” is bogus and not used for SunOS

echo “\nThe Operating System is $OS\n”

;;

*) echo “\nERROR: $OS is not a supported operating system\n”

echo “\n\t...EXITING...\n”

exit 1

;;

esac

Listing 7.4 Case statement for the vmstat fields of data. (continued)

Notice in Listing 7.4 that the F4 variable gets a valid assignment only on the AIX
match. For HP-UX, Linux, and Solaris, the F4 variable is assigned the value of the $1
field, specified by the F4=1 variable assignment. This bogus assignment is made so
that we do not need a special vmstat command statement for each operating system.
You will see how this works in detail in the scripting section.

Scripting the Solutions

Each of the techniques presented is slightly different in execution and output. Some
options need to be timed over an interval for a user-defined amount of time, measured

Monitoring System Load 193

Free & Share & Open

in seconds. We can get an immediate load measurement using the uptime command,
but the sar, iostat, and vmstat commands require the user to specify a period of time to
measure over and the number of intervals to sample the load. If you enter the sar,
iostat, or vmstat commands without any arguments, then the statistics presented are
an average since the last system reboot. Because we want current statistics, the scripts
must supply a period of time to sample. We are always going to initialize the
INTERVAL variable to equal 2. The first line of output is measured since the last system
reboot, and the second line is the current data that we are looking for.

Let’s look at each of these commands in separate shell scripts in the following
sections.

Using uptime to Measure the System Load
Using uptime is one of the best indicators of the system load. The last columns of the
output represent the average of the run queue over the last 5, 10, and 15 minutes for an
AIX machine and over the last 1, 5, and 10 minutes for HP-UX, Linux, and Solaris. A
run queue is where jobs wanting CPU time line up for their turn for some processing
time in the CPU. The priority of the process, or on some systems a thread, has a direct
influence on how long a job has to wait in line before getting more CPU time. The
lower the priority, the more CPU time. The higher the priority, the less CPU time.

The uptime command always has an average of the length of the run queue. The
threshold trigger value that you set will depend on the normal load of your system. My
little C-10 AIX box starts getting very slow when the run queue hits 2, but the S-80 at
work typically runs with a run queue value over 8 because it is a multiprocessor
machine running a terabyte database. With these differences in acceptable run queue
levels, you will need to tailor the threshold level for notification on a machine-by-
machine basis.

Scripting with the uptime Command

Scripting the uptime solution is a short shell script, and the response is immediate. As
you remember in the “Syntax” section, we had to follow the floating load statistics as
the time since the last reboot moved from minutes, to hours, and even days after the
machine was rebooted. The good thing is that the floating fields are consistent across
the Unix flavors studied in this book. Let’s look at the uptime_loadmon.ksh shell
shown in Listing 7.5.

#!/bin/ksh

#

SCRIPT: uptime_loadmon.ksh

AUTHOR: Randy Michael

DATE: 07/26/2002

REV: 1.0.P

PLATFORM: AIX, HP-UX, Linux, and Solaris

#

Listing 7.5 uptime_loadmon.ksh shell script listing.

194 Chapter 7

PURPOSE: This shell script uses the “uptime” command to

extract the most current load average data. There

is a special need in this script to determine

how long the system has been running since the

last reboot. The load average field “floats”

during the first 24 hours after a system restart.

#

set -x # Uncomment to debug this shell script

set -n # Uncomment to check script syntax without any execution

#

###

############# DEFINE VARIABLES HERE ###############

###

MAXLOAD=2.00

typeset -i INT_MAXLOAD=$MAXLOAD

Find the correct field to extract based on how long

the system has been up, or since the last reboot.

if $(uptime | grep day | grep min >/dev/null)

then

FIELD=11

elif $(uptime | grep day | grep hrs >/dev/null)

then

FIELD=11

elif $(uptime | grep day >/dev/null)

then

FIELD=10

elif $(uptime | grep min >/dev/null)

then

FIELD=9

else

FIELD=8

fi

###

######## BEGIN GATHERING STATISTICS HERE ##########

###

echo “\nGathering System Load Average using the \”uptime\” command\n”

This next command statement extracts the latest

load statistics no matter what the Unix flavor is.

LOAD=$(uptime | sed s/,//g | awk ‘{print $’$FIELD’}’)

Listing 7.5 uptime_loadmon.ksh shell script listing. (continues)

Monitoring System Load 195

Free & Share & Open

We need an integer representation of the $LOAD

variable to do the test for the load going over

the set threshold defined by the $INT_MAXLOAD

variable

typeset -i INT_LOAD=$LOAD

If the current load has exceeded the threshold then

issue a warning message. The next step always shows

the user what the current load and threshold values

are set to.

((INT_LOAD >= INT_MAXLOAD)) && echo “\nWARNING: System load has \

reached ${LOAD}\n”

echo “\nSystem load value is currently at ${LOAD}”

echo “The load threshold is set to ${MAXLOAD}\n”

Listing 7.5 uptime_loadmon.ksh shell script listing. (continued)

There are two statements that I want to point out in Listing 7.5 that are highlighted
in boldface text. First, notice the LOAD= statement. To make the variable assignment we
use command substitution, defined by the VAR=$(command statement) notation.
In the command statement we execute the uptime command and pipe the output to a
sed statement. This sed statement removes all of the commas (,) from the uptime out-
put. We need to take this step because the load statistics are comma separated. Once
the commas are removed, the remaining output is piped to the awk statement that
extracts the correct field that is defined at the top of the shell script by the FIELD vari-
able and based on how long the system has been running.

In this awk statement notice how we find the positional parameter that the $FIELD
variable is pointing to. If you try to use the syntax $$FIELD, the result is the current
process ID ($$) and the word FIELD. To get around this little problem of directly access-
ing what a variable is pointing to, we use the following syntax:

The $8 variable points to the value 34.

FIELD=8

Wrong usage

echo $$FIELD

3243FIELD

Correct usage

echo $’$FIELD’

34

196 Chapter 7

Notice that the latter usage is correct, and the actual result is the value of the $8 field,
which is currently 34. This is really telling us the value of what a pointer is pointing to.
You will see other uses of this technique as we go through this chapter.

The second command statement that I want to point out is the test of the INT_LOAD
value to the INT_MAXLOAD value, which are integer values of the LOAD and MAXLOAD
variables. If the INT_LOAD is equal to, or has exceeded, the INT_MAXLOAD, then we
use a logical AND (&&) to echo a warning to the user’s screen. Using the logical AND
saves a little code and is faster than an if..then..else statement.

You can see the uptime_loadmon.ksh shell script in action in Listings 7.6 and 7.7.

./uptime_loadmon.ksh

Gathering System Load Average using the “uptime” command

System load value is currently at 1.86

The load threshold is set to 2.00

Listing 7.6 Script in action under “normal” load.

Listing 7.6 shows the uptime_loadmon.ksh shell script in action on a machine
that is under a normal load. Listing 7.7 shows the same machine under an excessive
load—at least, it is excessive for this little machine.

./uptime_loadmon.ksh

Gathering System Load Average using the “uptime” command

WARNING: System load has reached 2.97

System load value is currently at 2.97

The load threshold is set to 2.00

Listing 7.7 Script in action under “excessive” load.

This is about all there is to using the uptime command. Let’s move on to the sar
command.

Using sar to Measure the System Load
Most Unix flavors have sar data collection set up by default. This sar data is presented
when the sar command is executed without any switches. The data that is displayed is
automatically collected at scheduled intervals throughout the day and compiled into a

Monitoring System Load 197

Free & Share & Open

report at day’s end. By default, the system keeps a month’s worth of data available for
online viewing. This is great for seeing the basic trends of the machine as it is loaded
through the day. If we want to collect data at a specific time of day for a specific period
of time, then we need to add the number of seconds for each interval and the total
number of intervals to the sar command. The final line in the output is an average of all
of the previous sample intervals.

This is where our shell script comes into play. By using a shell script with the times
and intervals defined, we can take samples of the system load over small or large incre-
ments of time without interfering with the system’s collection of sar data. This can be
a valuable tool for things like taking hundreds of small incremental samples as a devel-
opment application is being tested. Of course, this technique can also help in trou-
bleshooting just about any application. Let’s look at how we script the solution.

Scripting with the sar Command

For each of our Unix flavors the sar command produces four CPU load statistics. The
outputs vary somewhat, but the basic idea remains the same. In each case, we define
an INTERVAL variable specifying the total number of samples to take and a SECS vari-
able to define the total number of seconds for each sample interval. Notice that we
used the variable SECS as opposed to SECONDS. We do not want to use the variable
SECONDS because it is a Korn shell built-in variable used for timing in a shell. As I
stated in the introduction, this book uses variable names in uppercase so the reader
will quickly know that the code is referencing a variable; however, in the real world
you may want to use the lowercase version of the variable name. It really would not
matter here because we are defining the variable value and then using it within the
same second, hopefully.

The next step in this shell script is to define which positional fields we need to
extract to get the sar data for each of the Unix operating systems. For this step we use
a case statement using the uname command output to define the fields of data. It turns
out that AIX, HP-UX, and SunOS operating systems all have the sar data located in the
$2, $3, $4, and $5 positions. Linux differs in this respect with the sar data residing in the
$3, $4, $5, and $6 positions. In each case, these field numbers are assigned to the F1, F2,
F3, and F4 variables inside the case statement.

Let’s look at the sar_loadmon.ksh shell script in Listing 7.8 and cover the remain-
ing details at the end.

#!/bin/ksh

#

SCRIPT: sar_loadmon.ksh

AUTHOR: Randy Michael

DATE: 07/26/2002

REV: 1.0.P

PLATFORM: AIX, HP-UX, Linux, and Solaris

#

Listing 7.8 sar_loadmon.ksh shell script listing.

198 Chapter 7

PURPOSE: This shell script takes multiple samples of the CPU

usage using the “sar” command. The average of

sample periods is shown to the user based on the

Unix operating system that this shell script is

executing on. Different Unix flavors have differing

outputs and the fields vary too.

#

REV LIST:

#

#

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

#

###

############# DEFINE VARIABLES HERE ###############

###

SECS=30 # Defines the number of seconds for each sample

INTERVAL=10 # Defines the total number of sampling intervals

OS=$(uname) # Defines the Unix flavor

###

SETUP THE ENVIRONMENT FOR EACH OS HERE

###

These “F-numbers” point to the correct field in the

command output for each Unix flavor.

case $OS in

AIX|HP-UX|SunOS)

F1=2

F2=3

F3=4

F4=5

echo “\nThe Operating System is $OS\n”

;;

Linux)

F1=3

F2=4

F3=5

F4=6

echo “\nThe Operating System is $OS\n”

;;

*) echo “\nERROR: $OS is not a supported operating system\n”

echo “\n\t...EXITING...\n”

exit 1

;;

Listing 7.8 sar_loadmon.ksh shell script listing. (continues)

Monitoring System Load 199

Free & Share & Open

esac

###

######## BEGIN GATHERING STATISTICS HERE ##########

###

echo “Gathering CPU Statistics using sar...\n”

echo “There are $INTERVAL sampling periods with”

echo “each interval lasting $SECS seconds”

echo “\n...Please wait while gathering statistics...\n”

This “sar” command takes $INTERVAL samples, each lasting

$SECS seconds. The average of this output is captured.

sar $SECS $INTERVAL | grep Average \

| awk ‘{print $’$F1’, $’$F2’, $’$F3’, $’$F4’}’ \

| while read FIRST SECOND THIRD FOURTH

do

Based on the Unix Flavor, tell the user the

result of the statistics gathered.

case $OS in

AIX|HP-UX|SunOS)

echo “\nUser part is ${FIRST}%”

echo “System part is ${SECOND}%”

echo “I/O Wait is ${THIRD}%”

echo “Idle time is ${FOURTH}%\n”

;;

Linux)

echo “\nUser part is ${FIRST}%”

echo “Nice part is ${SECOND}%”

echo “System part is ${THIRD}%”

echo “Idle time is ${FOURTH}%\n”

;;

esac

done

Listing 7.8 sar_loadmon.ksh shell script listing. (continued)

In the shell script in Listing 7.8 we start by defining the data time intervals. In these
definitions we are taking 10 interval samples of 30 seconds each, for a total of 300 sec-
onds, or 5 minutes. Then we grab the Unix flavor using the uname command and
assigning the operating system value to the OS variable. Following these definitions
we define the data fields that contain the sar data for each operating system. In this
case Linux is the oddball with an offset of one position.

200 Chapter 7

Now we get to the interesting part where we actually take the data sample. Look at
the following sar command statement, and we will decipher how it works.

sar $SECS $INTERVAL | grep Average \

| awk ‘{print $’$F1’, $’$F2’, $’$F3’, $’$F4’}’ \

| while read FIRST SECOND THIRD FOURTH

We really need to look at the statement one pipe at a time. In the very first part of the
statement we take the sample(s) over the defined number of intervals. Consider the
following statement and output:

SECS=30

INTERVAL=10

sar $SECS $INTERVAL

AIX yogi 1 5 000125604800 07/31/02

19:24:00 %usr %sys %wio %idle

19:24:30 0 1 1 98

19:25:00 4 15 13 68

19:25:30 26 28 40 6

19:26:00 13 12 11 64

19:26:30 16 44 0 39

19:27:00 27 73 0 0

19:27:30 20 48 2 30

19:28:00 5 6 9 80

19:28:30 11 9 5 75

19:29:00 9 18 0 73

Average 13 26 8 53

The previous output is produced by the first part of the sar command statement.
Then, all of this output is piped to the next part of the statement, as shown here:

sar $SECS $INTERVAL | grep Average

Average 13 26 8 53

Now we have the row of data that we want to work with, which we grepped out
using the word Average as a pattern match. The next step is to extract the positional
fields that contain the data for user, system, I/O wait, and idle time for AIX. Remem-
ber in the previous script section that we defined the field numbers and assigned them
to the F1, F2, F3, and F4 variables, which in our case results in F1=2, F2=3, F3=4, and
F4=5. Using the following extension to our previous command we get the following
statement:

sar $SECS $INTERVAL | grep Average \

| awk ‘{print $’$F1’, $’$F2’, $’$F3’, $’$F4’}’

Monitoring System Load 201

Free & Share & Open

Notice that we continued the command statement on the next line by placing a back-
slash (\) at the end of the first line of the statement. In the awk part of the statement
you can see a confusing list of dollar signs and "F" variables. The purpose of this set of
characters is to directly access what the "F" variables are pointing to. Let’s run through
this in detail by example.

The F1 variable has the value 2 assigned to it. This value is the positional location of
the first data field that we want to extract. So we want to access the value at the $2 posi-
tion. Makes sense? When we extract the $2 data we get the value 13, as defined in the
previous step. Instead of going in this roundabout method, we want to directly access
the field that the F1 variable points to. Just remember that a variable is only a pointer to
a value, nothing more! We want to point directly to what another variable is pointing
to. The solution is to use the following syntax:

$’$F1’

OR

$\$F1

In any case, the innermost pointer ($) must be escaped, which removes the special
meaning. For this shell script we use the $’$F1’ notation. The result of this notation,
in this example, is 13, which is the value that we want. This is not smoke and mirrors
when you understand how it works.

The final part of the sar command statement is to pipe the four data fields to a while
loop so that we can do something with the data, which is where we end the sar state-
ment and enter the while loop.

The only thing that we do in the while loop is to display the results based on the
Unix flavor. The sar_loadmon.ksh shell script is in action in Listing 7.9.

./sar_loadmon.ksh

The Operating System is AIX

Gathering CPU Statistics using sar...

There are 10 sampling periods with

each interval lasting 30 seconds

...Please wait while gathering statistics...

User part is 13%

System part is 26%

I/O wait state is 8%

Idle time is 53%

Listing 7.9 sar_loadmon.ksh shell script in action.

202 Chapter 7

From the output presented in Listing 7.9 you can see that the shell script queries the
system for its operating system, which is AIX here. Then the user is notified of the sam-
pling periods and the length of each sample period. The output is displayed to the user
by field. That is it for using the sar command. Now let’s move on to the iostat command.

Using iostat to Measure the System Load
The iostat command is mostly used to collect disk storage statistics, but by using
the -t, or -c command switch, depending on the operating system, we can see the CPU
statistics as we saw them in the syntax section for the iostat command. We are going to
create a shell script using the iostat command and use almost the same technique as we
did in the last section.

Scripting with the iostat Command

In this shell script we are going to use a very similar technique to the sar shell script in
the previous section. The difference is that we are going to take only two intervals with
a long sampling period. As an example, the INTERVAL variable is set to 2, and the
SECS variable is set to 300 seconds, which is 5 minutes. Also, because we have two
possible switch values, -t and -c, we need to add a new variable called SWITCH. Let’s
look at the iostat_loadmon.ksh shell script in Listing 7.10, and we will cover the
differences at the end in more detail.

#!/bin/ksh

#

SCRIPT: iostat_loadmon.ksh

AUTHOR: Randy Michael

DATE: 07/26/2002

REV: 1.0.P

PLATFORM: AIX, HP-UX, Linux, and Solaris

#

PURPOSE: This shell script take two samples of the CPU

usage using the “iostat” command. The first set of

data is an average since the last system reboot. The

second set of data is an average over the sampling

period, or $INTERVAL. The result of the data acquired

during the sampling period is shown to the user based

on the Unix operating system that this shell script is

executing on. Different Unix flavors have differing

outputs and the fields vary too.

#

REV LIST:

#

#

Listing 7.10 iostat_loadmon.ksh shell script listing. (continues)

Monitoring System Load 203

Free & Share & Open

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

#

###

############# DEFINE VARIABLES HERE ###############

###

SECS=300 # Defines the number of seconds for each sample

INTERVAL=2 # Defines the total number of sampling intervals

STATCOUNT=0 # Initializes a loop counter to 0, zero

OS=$(uname) # Defines the Unix flavor

###

SETUP THE ENVIRONMENT FOR EACH OS HERE

###

These “F-numbers” point to the correct field in the

command output for each Unix flavor.

case $OS in

AIX|HP-UX) SWITCH=’-t’

F1=3

F2=4

F3=5

F4=6

echo “\nThe Operating System is $OS\n”

;;

Linux|SunOS) SWITCH=’-c’

F1=1

F2=2

F3=3

F4=4

echo “\nThe Operating System is $OS\n”

;;

*) echo “\nERROR: $OS is not a supported operating system\n”

echo “\n\t...EXITING...\n”

exit 1

;;

esac

###

######## BEGIN GATHERING STATISTICS HERE ##########

###

echo “Gathering CPU Statistics using vmstat...\n”

Listing 7.10 iostat_loadmon.ksh shell script listing. (continued)

204 Chapter 7

echo “There are $INTERVAL sampling periods with”

echo “each interval lasting $SECS seconds”

echo “\n...Please wait while gathering statistics...\n”

Use “iostat” to monitor the CPU utilization and

remove all lines that contain alphabetic characters

and blank spaces. Then use the previously defined

field numbers, for example, F1=4,to point directly

to the 4th position, for this example. The syntax

for this techniques is ==> $’$F1’.

iostat $SWITCH $SECS $INTERVAL | egrep -v ‘[a-zA-Z]|^$’ \

| awk ‘{print $’$F1’, $’$F2’, $’$F3’, $’$F4’}’ \

| while read FIRST SECOND THIRD FOURTH

do

if ((STATCOUNT == 1)) # Loop counter to get the second set

then # of data produced by “iostat”

case $OS in # Show the results based on the Unix flavor

AIX)

echo “\nUser part is ${FIRST}%”

echo “System part is ${SECOND}%”

echo “Idle part is ${THIRD}%”

echo “I/O wait state is ${FOURTH}%\n”

;;

HP-UX|Linux)

echo “\nUser part is ${FIRST}%”

echo “Nice part is ${SECOND}%”

echo “System part is ${THIRD}%”

echo “Idle time is ${FOURTH}%\n”

;;

SunOS)

echo “\nUser part is ${FIRST}%”

echo “System part is ${SECOND}%”

echo “I/O Wait is ${THIRD}%”

echo “Idle time is ${FOURTH}%\n”

;;

esac

fi

((STATCOUNT = STATCOUNT + 1)) # Increment the loop counter

done

Listing 7.10 iostat_loadmon.ksh shell script listing. (continued)

The similarities are striking between the sar implementation and the iostat script
shown in Listing 7.10. At the top of the shell script we define an extra variable,

Monitoring System Load 205

Free & Share & Open

STATCOUNT. This variable is used as a loop counter, and it is initialized to 0, zero. We
need this counter because we have only two intervals, and the first line of the output is
the load average since the last system reboot. The second, and final, set of data is the
CPU load statistics collected during our sampling period, so it is the most current data.
Using a counter variable, STATCOUNT, we collect the data and assign it to variables on
the second loop iteration, or when the STATCOUNT is equal to 1, one.

In the next section we use the Unix flavor given by the uname command in a case
statement to assign the correct switch to use in the iostat command. This is also where
the F1, F2, F3, and F4 variables are defined with the positional placement of the data
we want to extract from the command output.

Now comes the fun part. Let’s look at the iostat command statement we use to
extract the CPU statistics here.

iostat $SWITCH $SECS $INTERVAL | egrep -v ‘[a-zA-Z]|^$’ \

| awk ‘{print $’$F1’, $’$F2’, $’$F3’, $’$F4’}’ \

| while read FIRST SECOND THIRD FOURTH

The beginning of the iostat command statement uses the correct command switch,
as defined by the operating system, and the sampling time and the number of inter-
vals, which is two this time. From this first part of the iostat statement we get the fol-
lowing output on a Linux system.

SWITCH=’-c’

SECS=300

INTERVAL=2

iostat $SWITCH $SECS $INTERVAL

Linux 2.4.2-2 (bambam) 07/31/2002

avg-cpu: %user %nice %sys %idle

23.15 0.00 26.09 50.76

avg-cpu: %user %nice %sys %idle

31.77 0.00 21.79 46.44

Remember that the first row of data is an average of the CPU load since the last sys-
tem reboot, so we are interested in the last row of output. If you remember from the
syntax section for the iostat command, the common denominator for this output is that
the data rows are entirely numeric characters. Using this as a criteria to extract data, we
add to our iostat command statement as shown here.

iostat $SWITCH $SECS $INTERVAL | egrep -v ‘[a-zA-Z]|^$’

The egrep addition to the previous command statement does two things for us.
First, it excludes all lines of the output that have alphabetic characters, leaving only the
rows with numbers. The second thing we get is the removal of all blank lines from the
output. Let’s look at each of these.

206 Chapter 7

To omit the alpha characters we use the egrep command with the -v option, which
says to display everything in the output except the rows that the pattern matched. To
specify all alpha characters we use the following expression:

[a-zA-Z]

Then to remove all blank lines we use the expression:

^$

The caret character means begins with, and to specify blank lines we use the dollar
sign ($). If you wanted to remove all of the lines in a file that are commented out with
a hash mark (#), then use ^#.

When we join these two expressions in a single extended grep (egrep), we get the
following extended regular expression:

egrep -v ‘[a-zA-Z]|^$’

At this point we are left with the following output:

23.15 0.00 26.09 50.76

31.77 0.00 21.79 46.44

This brings us to the next addition to the iostat command statement in the shell
script. This is where we add the awk part of the statement using the F1, F2, F3, and F4
variables, as shown here.

iostat $SWITCH $SECS $INTERVAL | egrep -v ‘[a-zA-Z]|^$’ \

| awk ‘{print $’$F1’, $’$F2’, $’$F3’, $’$F4’}’

This is the same code that we covered in the last section, where we point directly to
what another pointer is pointing to. For Linux F1=1, F2=2, F3=3, and F4=4. With this
information we know that $’$F1’ on the first line of output is equal to 23.15, and on
the second row this same expression is equal to 31.77. Now that we have the values
we have a final pipe to a while loop. Remember that in the while loop we have added
a loop counter, STATCOUNT. On the first loop iteration, the while loop does nothing.
On the second loop iteration, the values 31.77, 0.00, 21.79, and 46.44 are assigned
to the variables FIRST, SECOND, THIRD, and FOURTH, respectively.

Using another case statement with the $OS value the output is presented to the user
based on the operating system fields, as shown in Listing 7.11.

The Operating System is Linux

Gathering CPU Statistics using vmstat...

There are 2 sampling periods with

Listing 7.11 iostat_loadmon.ksh shell script in action. (continues)

Monitoring System Load 207

Free & Share & Open

each interval lasting 300 seconds

...Please wait while gathering statistics...

User part is 39.35%

Nice part is 0.00%

System part is 31.59%

Idle time is 29.06%

Listing 7.11 iostat_loadmon.ksh shell script in action. (continued)

Notice that the output is in the same format as the sar script output. This is all there
is to the iostat shell script. Let’s now move on to the vmstat solution.

Using vmstat to Measure the System Load
The vmstat shell script uses the exact same technique as the iostat shell script in the
previous section. Only AIX produces four fields of output; the remaining Unix flavors
have only three data points to measure for the CPU load statistics. The rest of the
vmstat output is for virtual memory statistics, which is the main purpose of this com-
mand anyway. Let’s look at the vmstat script.

Scripting with the vmstat Command

When you look at this shell script for vmstat you will think that you just saw this shell
script in the last section. Most of these two shell scripts are the same, with only minor
exceptions. Let’s look at the vmstat_loadmon.ksh shell script in Listing 7.12 and
cover the differences in detail at the end.

#!/bin/ksh

#

SCRIPT: vmstat_loadmon.ksh

AUTHOR: Randy Michael

DATE: 07/26/2002

REV: 1.0.P

PLATFORM: AIX, HP-UX, Linux, and Solaris

#

PURPOSE: This shell script takes two samples of the CPU

usage using the “vmstat” command. The first set of

data is an average since the last system reboot. The

second set of data is an average over the sampling

Listing 7.12 vmstat_loadmon.ksh shell script listing.

208 Chapter 7

period, or $INTERVAL. The result of the data acquired

during the sampling perion is shown to the user based

on the Unix operating system that this shell script is

executing on. Different Unix flavors have differing

outputs and the fields vary too.

#

REV LIST:

#

#

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

#

###

############# DEFINE VARIABLES HERE ###############

###

SECS=300 # Defines the number of seconds for each sample

INTERVAL=2 # Defines the total number of sampling intervals

STATCOUNT=0 # Initializes a loop counter to 0, zero

OS=$(uname) # Defines the Unix flavor

###

SETUP THE ENVIRONMENT FOR EACH OS HERE

###

These “F-numbers” point to the correct field in the

command output for each Unix flavor.

case $OS in

AIX) # AIX has four relative columns in the output

F1=14

F2=15

F3=16

F4=17

echo “\nThe Operating System is $OS\n”

;;

HP-UX) # HP-UX has only three relative columns in the output

F1=16

F2=17

F3=18

F4=1 # This “F4=1” is bogus and not used for HP-UX

echo “\nThe Operating System is $OS\n”

;;

Linux) # Linux has only three relative columns in the output

F1=14

F2=15

Listing 7.12 vmstat_loadmon.ksh shell script listing. (continues)

Monitoring System Load 209

Free & Share & Open

F3=16

F4=1 # This “F4=1” is bogus and not used for Linux

echo “\nThe Operating System is $OS\n”

;;

SunOS) # SunOS has only three relative columns in the output

F1=20

F2=21

F3=22

F4=1 # This “F4=1” is bogus and not used for SunOS

echo “\nThe Operating System is $OS\n”

;;

*) echo “\nERROR: $OS is not a supported operating system\n”

echo “\n\t...EXITING...\n”

exit 1

;;

esac

###

######## BEGIN GATHERING STATISTICS HERE ##########

###

echo “Gathering CPU Statistics using vmstat...\n”

echo “There are $INTERVAL sampling periods with”

echo “each interval lasting $SECS seconds”

echo “\n...Please wait while gathering statistics...\n”

Use “vmstat” to monitor the CPU utilization and

remove all lines that contain alphabetic characters

and blank spaces. Then use the previously defined

field numbers, for example F1=20,to point directly

to the 20th position, for this example. The syntax

for this technique is ==> $’$F1’ and points directly

to the $20 positional parameter.

vmstat $SECS $INTERVAL | egrep -v ‘[a-zA-Z]|^$’ \

| awk ‘{print $’$F1’, $’$F2’, $’$F3’, $’$F4’}’ \

| while read FIRST SECOND THIRD FOURTH

do

if ((STATCOUNT == 1)) # Loop counter to get the second set

then # of data produced by “vmstat”

case $OS in # Show the results based on the Unix flavor

AIX)

echo “\nUser part is ${FIRST}%”

Listing 7.12 vmstat_loadmon.ksh shell script listing. (continued)

210 Chapter 7

echo “System part is ${SECOND}%”

echo “Idle part is ${THIRD}%”

echo “I/O wait state is ${FOURTH}%\n”

;;

HP-UX|Linux|SunOS)

echo “\nUser part is ${FIRST}%”

echo “System part is ${SECOND}%”

echo “Idle time is ${THIRD}%\n”

;;

esac

fi

((STATCOUNT = STATCOUNT + 1)) # Increment the loop counter

done

Listing 7.12 vmstat_loadmon.ksh shell script listing. (continued)

We use the same variables in Listing 7.12 as we did in Listing 7.10 with the iostat
script. The differences come when we define the “F” variables to indicate the fields to
extract from the output and the presentation of the data to the user. As I stated before,
only AIX produces a fourth field output.

In the first case statement, where we assign the F1, F2, F3, and F4 variables to the
field positions that we want to extract for each operating system, notice that only AIX
assigns F4 variable to a valid field. HP-UX, Linux, and SunOS all have the F4 variable
assigned the field #1, F4=1. I did it this way so that I would not have to rewrite the
vmstat command statement for a second time to extract just three fields. This method
helps to make the code shorter and less confusing—at least I hope it is less confusing!
There is a comment next to each F4 variable assignment that states that this field
assignment is bogus and not used in the shell script.

Other than these minor changes the shell script for the vmstat solution is the same
as the solution for the iostat command. The vmstat_loadmon.ksh shell script is in
action in Listing 7.13 on a Solaris machine.

./vmstat_loadmon.ksh

The Operating System is SunOS

Gathering CPU Statistics using vmstat...

There are 2 sampling periods with

Listing 7.13 vmstat_loadmon.ksh shell script in action. (continues)

Monitoring System Load 211

Free & Share & Open

each interval lasting 300 seconds

...Please wait while gathering statistics...

User part is 14%

System part is 54%

Idle time is 31%

Listing 7.13 vmstat_loadmon.ksh shell script in action. (continued)

Notice that the Solaris output shown in Listing 7.13 does not show the I/O wait
state. This information is available only on AIX for the vmstat shell script. The output
format is the same as the last few shell scripts. It is up to you how you want to use this
information. Let’s look at some other options that you may be interested in next.

Other Options to Consider

As with any shell script there is always room for improvement, and this set of shell
scripts is no exception. I have a few suggestions, but I’m sure that you can think of a
few more.

Stop Chasing the Floating uptime Field
In the uptime CPU load monitoring shell script we did not really have to trace down
the location of the latest CPU statistics. Another approach is to use what we know
always to be true. Specifically, we know that the field of interest is always in the third
position field from the end of the uptime command output. Using this knowledge we
can use this little function, get_max, to find the total number of fields in the output. If
we subtract 2 from the total number of positions, then we always have the correct field.
The next code segment is an example of using this technique.

function get_max

{

(($# == 0)) && return -1

echo $#

}

########### MAIN ##############

MAX=$(get_max $(uptime)) # Get the total number of fields in uptime

212 Chapter 7

output

((MAX == -1)) && echo “ERROR: Function Error...EXITING...” && exit 2

TARGET_FIELD=$(((MAX - 2))) # Subtract 2 from the total

CPU_LOAD=$(uptime | sed s/,//g | awk ‘{print $’$TARGET_FIELD’}’)

echo $CPU_LOAD

In the previous code segment the get_max function receives the output of the
uptime command. Using this input the function returns the total number of positional
parameters that the uptime command output contains. In the MAIN part we assign the
result received back from the get_max function to the MAX variable. If the returned
value is -1, then a scripting error has occurred and the script will show the user an
error and exit with a return code of 2. Otherwise, the MAX variable has 2 subtracted
from its value, and it is assigned to the TARGET_FIELD variable. The last step assigns
the most recent CPU run queue statistics to the variable CPU_LOAD.

Using a technique like this eliminates the need to track the position of the CPU sta-
tistics and reduces the code a bit. I wanted to use the method of tracking the position
in this chapter just to make a point: Glancing at a command’s output to find a field is
not always a good idea. I did not want to leave you hanging around, though, thinking
that you always have to track data. As you know, there is more than one way to get the
same result in Unix, and this is a perfect example.

Try to Detect Any Possible Problems for the User
One thing that would be valuable when looking at the CPU load statistics is to try to
detect any problems. For example, if the system percentage plus the user percentage is
consistently greater than 90 percent, then the system may be CPU bound. This is easy
to code into any of these shell scripts using the following statement:

((SYSTEM + USER > 90)) && echo “\nWarning: This system is CPU-bound\n”

Another possible problem happens when the I/O wait percentage is consistently
over 80 percent; then the system may be I/O bound. This, too, is easy to code into the
shell scripts. System problem thresholds vary widely depending on whom you are
talking to, so I will leave the details up to you. I’m sure you can come up with some
other problem detection techniques.

Show the User the Top CPU Hogs
Whenever the system is stressed under load, the cause of the problem may be a run-
away process or a developer trying out the fork() system call during the middle of the
day (same problem, different cause!). To show the user the top CPU hogs, you can use
the ps auxw command. Notice that there is not a hyphen before auxw! Something like
the following command syntax will work.

ps auxw | head -n 15

Monitoring System Load 213

Free & Share & Open

The output is sorted by CPU usage in descending order from the top. Also, most
Unix operating systems have a top like command. In AIX it is topas, in HP-UX and
Linux it is top, and in Solaris it is prstat. Any of these commands will show you real-
time process statistics.

Gathering a Large Amount of Data for Plotting
Another method is to get a lot of short intervals over a longer period of time. The sar
command is perfect for this type of data gathering. Using this method of short intervals
over a long period, maybe eight hours, gives you a detailed picture of how the load
fluctuates through the day. This is the perfect kind of detailed data for graphing on a
line chart. It is very easy to take the sar data and use a standard spreadsheet program
to create graphs of the system load versus time.

Summary

I enjoyed this chapter, but it turned out to be a lot longer than I first intended. With the
CPU load data floating based on the time since the system was last rebooted, and just
by the time of every day, it made the uptime shell script a challenge, but I love a good
challenge. This chapter did present some different concepts that are not in any other
chapter, and it is always intended that way throughout this book. Play around with
these shell scripts, and see how you can improve the usefulness of each script. It is
always fun to find a new use for a shell script by playing with the code.

In the next chapter, we are going to study some techniques to monitor a process and
wait for it to start up, stop execution, or both. We also allow for pre and post events to
be defined for the process. I hope you gained some knowledge in this chapter, and
every chapter! See you next time.

214 Chapter 7

215

C H A P T E R

8

All too often a program or script will die during execution or fail to start up. This type
of problem can be hard to nail down due to the unpredictable behavior and the timing
required to catch the event as it happens. We also sometimes want to execute some
commands before a process starts, as the process starts (or as the monitoring starts), or
as a post event when the process dies. Timing is everything! Instead of reentering the
same command over and over to monitor a process, we can write scripts to wait for a
process to start or end and record the time stamps, or we can perform some other func-
tion as a pre, startup, or post event. To monitor the process we are going to use grep to
grab one or more matched patterns from the process list output. Because we are going
to use grep, there is a need for the process to be unique in some way—for example, by
process name, user name, PID, PPID, or even a date/time.

In this chapter we cover four scripts:

■■ Monitor for a process (one or more!) to start execution.

■■ Monitor for a process (one or more!) to stop execution.

■■ Monitor as the process(es) stops and starts and log the events as they happen
with a timestamp.

■■ Monitor as the process(es) starts and stops while keeping track of the current
number of active processes, giving user notification with time stamp and listing
of all of the active PIDs. We also add pre, startup, and post event capabilities.

Process Monitoring and
Enabling Preprocess, Startup,

and Postprocess Events

Free & Share & Open

Two examples for using of one of these functions are waiting for a backup to
finish before rebooting the system and sending an email as a process starts up.

Syntax

As with all of our scripts, we start out by getting the correct command syntax. To look
at the system processes, we want to look at all of the processes, not a limited view for a
particular user. To list all of the processes, we use the ps command with the -ef switch.
Using grep with the ps -ef command requires us to filter the output. The grep com-
mand will produce two additional lines of output. One line will result from the grep
command, and the other will result from the script name, which is doing the grepping.
To remove both of these we can use either grep -v or egrep -v to exclude this output.
From this specification, and using variables, we came up with the following command
syntax:

ps -ef | grep $PROCESS | grep -v “grep $PROCESS” | grep -v $SCRIPT_NAME

The previous command will give a full process listing while excluding the shell
script’s name and the grepping for the target process. This will leave only the actual
processes that we are interested in monitoring. The return code for this command is 0,
zero, if at least one process is running, and it will return a nonzero value if no process,
specified by the $PROCESS variable, is currently executing. To monitor a process to
start or stop we need to remain in a tight loop until there is a transition from running
to end of execution, and vice versa.

Monitoring for a Process to Start

Now that we have the command syntax we can write the script to wait for a process to
start. This shell script is pretty simple because all it does is run in a loop until the
process starts. The first step is to check for the correct number of arguments, one—the
process to monitor. If the process is currently running, then we will just notify the user
and exit. Otherwise, we will loop until the target process starts and then display the
process name that started and exit. The loop is listed in Lisiting 8.1.

RC=1

until ((RC == 0)) # Loop until the return code is zero

do

Check for the $PROCESS on each loop iteration

ps -ef | grep $PROCESS | egrep -v “grep $PROCESS” \

Listing 8.1 Process startup loop.

216 Chapter 8

| grep -v $SCRIPT_NAME >/dev/null 2>&1

Check the Return Code!!!

if (($? == 0)) # Has it Started????

then

echo “$PROCESS has Started Execution...`date`\n\n”

Show the user what started!!

ps -ef | grep $PROCESS | egrep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME

`

echo “\n\n” # A Couple of Blank Lines Before Exit

exit 0 # Exit time...

fi

sleep $SLEEP_TIME # Needed to reduce CPU load!! 1 Second or more

done

Listing 8.1 Process startup loop. (continued)

There are a few things to point out in Listing 8.1. First, notice that we are using the
numeric tests, which are specified by the double parentheses ((numeric_
expression)). The numeric tests can be seen in the if and until control structures.
When using the double parentheses numeric testing method, we do not reference any
user-defined numeric variables with a dollar sign—that is, $RC. If you use a $, the test
may fail! This testing method knows the value is a numeric variable and does need to
go through the process of converting the character string to a numeric string before the
test. This convention saves time by saving CPU cycles. Just leave out the "$". We still
must use the $ reference for system variables—for example, $? and $#. Also notice
that we use double equal signs when making an equality test—for example, until ((
RC == 0)). If you use only one equal sign it is assumed to be an assignment, not an
equality test! Failure to use double equal signs is one of the most common mistakes,
and it is very hard to find during troubleshooting. Also notice in Listing 8.1 that we
sleep on each loop iteration. If we do not have a sleep interval, then the load on the
CPU can be tremendous. Try programming a loop with and without the sleep interval
and monitor the CPU load with either the uptime or vmstat commands. You can defi-
nitely see a big difference in the load on the system. What does this mean for our mon-
itoring? The process must remain running for at least the length of time that the sleep
is executing on each loop iteration. If you need an interval of less than one second, then
you can try setting the sleep interval to 0, zero, but watch out for the heavy CPU load.
Even with a 1-second interval the load can get to around 25 percent. An interval of
about 3 to 10 seconds is not bad, if you can stand the wait.

Now let’s study the loop. We initialize the return code variable, RC, to 1, one. Then
we start an until loop that tests for the target process on each loop iteration. If the

Process Monitoring 217

Free & Share & Open

process is not running, then the sleep is executed and then the loop is executed again.
If the target process is found to be running, then we give user notification that the
process has started, with the time stamp, and display to the user the process that actu-
ally started. We need to give the user this process information just in case the grep com-
mand got a pattern match on an unintended pattern. The entire script is on the Web site
with the name proc_wait.ksh. This is crude, but it works well. (See Listing 8.2.)

[root:yogi]@/scripts/WILEY/PROC_MON# ./proc_wait.ksh xcalc

WAITING for xcalc to start...Thu Sep 27 21:11:47 EDT 2001

xcalc has Started Execution...Thu Sep 27 21:11:55 EDT 2001

root 26772 17866 13 21:11:54 pts/6 0:00 xcalc

Listing 8.2 proc_wait.ksh script in action.

Monitoring for a Process to End

Monitoring for a process to end is also a simple procedure because it is really the oppo-
site of the previous shell script. In this new shell script we want to add some extra
options. First, we set a trap and inform the user if an interrupt occurred—for example,
CTRL-C is pressed. It would be nice to give the user the option of verbose mode. The
verbose mode enables the listing of the active process(es). We can use a -v switch as a
command-line argument to the shell script to turn on the verbose mode. To parse
through the command-line arguments we could use the getopts command; but for
only one or two arguments, we can easily use a nested case statement. We will show
how to use getopts later in the chapter. Again, we will use the double parentheses for
numeric tests wherever possible. For the proc_mon.ksh script we are going to list out
the entire script and review the process at the end. (See Listing 8.3.)

#!/usr/bin/ksh

#

SCRIPT: proc_mon.ksh

AUTHOR: Randy Michael

DATE: 02/14/2001

REV: 1.1.P

PLATFORM: Not Platform Dependent

#

PURPOSE: This script is used to monitor a process to end

Listing 8.3 proc_mon.ksh shell script listing.

218 Chapter 8

specified by ARG1 if a single command-line argument is

used. There is also a “verbose” mode where the monitored

process is displayed and ARG2 is monitored.

#

USAGE: proc_mon.ksh [-v] process-to-monitor

#

EXIT STATUS:

0 ==> Monitored process has terminated

1 ==> Script usage error

2 ==> Target process to monitor is not active

3 ==> This script exits on a trapped signal

#

REV. LIST:

#

02/22/2001 - Added code for a “verbose” mode to output the

results of the ‘ps -ef’ command. The verbose

mode is set using a “-v” switch.

#

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

SCRIPT_NAME=`basename $0`

##

############ DEFINE FUNCTIONS HERE #####################

##

function usage

{

echo “\n\n”

echo “USAGE: $SCRIPT_NAME [-v] {Process_to_monitor}”

echo “\nEXAMPLE: $SCRIPT_NAME my_backup\n”

echo “OR”

echo “\nEXAMPLE: $SCRIPT_NAME -v my_backup\n”

echo “Try again...EXITING...\n”

}

##

function exit_trap

{

echo “\n...EXITING on trapped signal...\n”

}

##

################ START OF MAIN##########################

##

################

Listing 8.3 proc_mon.ksh shell script listing. (continues)

Process Monitoring 219

Free & Share & Open

Set a trap...#

################

trap ‘exit_trap; exit 3’ 1 2 3 15

First Check for the Correct Number of Arguments

One or Two is acceptable

if (($# != 1 && $# != 2))

then

usage

exit 1

fi

Parse through the command-line arguments and see if verbose

mode has been specified. NOTICE that we assign the target

process to the PROCESS variable!!!

Embedded case statement...

case $# in

1) case $1 in

‘-v’) usage

exit 1

;;

*) PROCESS=$1

esac

;;

2) case $1 in

‘-v’) continue

;;

esac

case $2 in

‘-v’) usage

exit 1

;;

*) PROCESS=$2

;;

esac

;;

*) usage

exit 1

;;

Listing 8.3 proc_mon.ksh shell script listing. (continued)

220 Chapter 8

esac

Check if the process is running or exit!

ps -ef | grep “$PROCESS” | grep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME >/dev/null

if (($? != 0))

then

echo “\n\n$PROCESS is NOT an active process...EXITING...\n”

exit 2

fi

Show verbose mode if specified...

if (($# == 2)) && [[$1 = “-v”]]

then

Verbose mode has been specified!

echo “\n”

Extract the columns heading from the ps -ef output

ps -ef | head -n 1

ps -ef | grep “$PROCESS” | grep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME

fi

O.K. The process is running, start monitoring...

SLEEP_TIME=”1” # Seconds between monitoring

RC=”0” # RC is the Return Code

echo “\n\n” # Give a couple of blank lines

echo “$PROCESS is currently RUNNING...`date`\n”

####################################

Loop UNTIL the $PROCESS stops...

while ((RC == 0)) # Loop until the return code is not zero

do

ps -ef | grep $PROCESS | grep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME >/dev/null 2>&1

if (($? != 0)) # Check the Return Code!!!!!

then

echo “\n...$PROCESS has COMPLETED...`date`\n”

Listing 8.3 proc_mon.ksh shell script listing. (continues)

Process Monitoring 221

Free & Share & Open

exit 0

fi

sleep $SLEEP_TIME # Needed to reduce CPU Load!!!

done

End of Script

Listing 8.3 proc_mon.ksh shell script listing. (continued)

Did you catch all of the extra hoops we had to jump through? Adding command
switches can be problematic. We will see a much easier way to do this later using the
getopts command.

In Listing 8.3 we first defined two functions, which are both used for abnormal oper-
ation. We always need a usage function, and in this shell script we added a
trap_exit function that is to be executed only when a trapped signal is captured. The
trap definition specifies exit signals 1, 2, 3, and 15. Of course, you cannot trap exit sig-
nal 9. This trap_exit function will display "...EXITING on a trapped
signal...". Then the trap will execute the second command, exit 3. In the next
step we check for the correct number of command-line arguments, one or two, and use
an embedded case statement to assign the target process to a variable, PROCESS. If a -
v is specified in the first argument, $1, of two command-line arguments, then verbose
mode is used. Verbose mode will display the ps -ef output that the grep command did
the pattern match on. Otherwise, this information is not displayed. This is the first time
that we look to see if the target process is active. If the target process is not executing,
then we just notify the user and exit with a return code of 2. Next comes the use of ver-
bose mode if the -v switch is specified on the command line. Notice how we pull out
the ps command output columns header information before we display the process
using ps -ef | head -n 1. This helps the user confirm that this is the correct match with
the column header. Now we know the process is currently running so we start a loop.
This loop will continue until either the process ends or the program is interrupted—for
example, CTRL-C is pressed.

The proc_mon.ksh script did the job, but we have no logging and the monitoring
stops when the process stops. It would be really nice to track the process as it starts and
stops. If we can monitor the transition, we can keep a log file to review and see if we
can find a trend.

222 Chapter 8

[root:yogi]@/scripts/WILEY/PROC_MON# ./proc_mon.ksh xcalc

xcalc is NOT an active process...EXITING...

[root:yogi]@/scripts/WILEY/PROC_MON# ./proc_mon.ksh xcalc

xcalc is currently RUNNING...Thu Sep 27 21:14:08 EDT 2001

...xcalc has COMPLETED...Thu Sep 27 21:14:26 EDT 2001

Listing 8.4 proc_mon.ksh shell script in action.

Monitor and Log as a Process Starts and Stops

Catching process activity as it cycles on and off can be a useful tool in problem deter-
mination. In this section, we are going to expand on both of our previous scripts and
monitor for both startup and end time for a target process. We are also going to log
everything and time stamp the start and stop event. Because we are logging everything
we also want to see the same data as it happens on the screen. The log file can be
reviewed at any time; we want to see it in “real time” (at least close to real time). We are
going to make the startup and end time monitoring into functions this time, and as a
result we are going to need to capture the current tty device, which may be a pseudo-
terminal (pty), to use within these functions. The tty command will show the current
terminal, and we can save this in a variable. For concurrent display and logging within
the script we pipe our output to tee -a $LOGFILE. This tee command sends the output
to both standard output and to the file that $LOGFILE points to. But inside the func-
tions we will use the specific tty device to send our output to, which we assign to a
variable called TTY. Enough with the fluff; here is the script (in Listing 8.5), followed
by a short explanation.

Process Monitoring 223

Free & Share & Open

#!/bin/ksh

#

SCRIPT: proc_watch.ksh

AUTHOR: Randy Michael

DATE: 09-12-2001

REV: 1.0.P

PLATFORM: Not Platform Dependent

#

PURPOSE” This script is used to monitor and log

the status of a process as it starts and stops.

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without ANY execution

#

##

########## DEFINE FILES AND VARIABLES HERE #########

##

LOGFILE=”/tmp/proc_status.log”

[[! -s $LOGFILE]] && touch $LOGFILE

PROCESS=”$1” # Process to Monitor

SCRIPT_NAME=$(basename $0) # Script Name w/o the PATH

TTY=$(tty) # Current tty or pty

##

############# DEFINE FUNCTIONS HERE ################

##

usage ()

{

echo “\nUSAGE: $SCRIPT_NAME process_to_monitor\n”

}

##

trap_exit ()

{

Log an ending time for process monitoring

TIMESTAMP=$(date +%D@%T) # Get a new time stamp...

echo “MON_STOP: Monitoring for $PROCESS ended ==> $TIMESTAMP” \

| tee -a $LOGFILE

Kill all functions

Listing 8.5 proc_watch.ksh shell script listing.

224 Chapter 8

kill -9 $(jobs -p) 2>/dev/null

}

##

mon_proc_end ()

{

END_RC=”0”

until ((END_RC != 0))

do

ps -ef | grep -v “grep $PROCESS” | grep -v $SCRIPT_NAME \

| grep $PROCESS >/dev/null 2>&1

END_RC=$? # Check the Return Code!!

sleep 1 # Needed to reduce CPU load!

done

print ‘N’ # Turn the RUN flag off

Grab a TimeStamp

TIMESTAMP=$(date +%D@%T)

echo “END PROCESS: $PROCESS ended ==> $TIMESTAMP” >> $LOGFILE &

echo “END PROCESS: $PROCESS ended ==> $TIMESTAMP” > $TTY

}

##

mon_proc_start ()

{

START_RC=”-1” # Initialize to -1

until ((START_RC == 0))

do

ps -ef | grep -v “grep $PROCESS” | grep -v $SCRIPT_NAME \

| grep $PROCESS >/dev/null 2>&1

START_RC=$? # Check the Return Code!!!

sleep 1 # Needed to reduce CPU load!

done

print ‘Y’ # Turn the RUN flag on

Grab the Timestamp

TIMESTAMP=$(date +%D@%T)

echo “START PROCESS: $PROCESS began ==> $TIMESTAMP” >> $LOGFILE &

Listing 8.5 proc_watch.ksh shell script listing. (continues)

Process Monitoring 225

Free & Share & Open

echo “START PROCESS: $PROCESS began ==> $TIMESTAMP” > $TTY

}

##

############## START OF MAIN #######################

##

SET A TRAP

trap ‘trap_exit; exit 0’ 1 2 3 15

Check for the Correct Command Line Argument - Only 1

if (($# != 1))

then

usage

exit 1

fi

Get an Initial Process State and Set the RUN Flag

ps -ef | grep -v “grep $PROCESS” | grep -v $SCRIPT_NAME \

| grep $PROCESS >/dev/null

PROC_RC=$? # Check the Return Code!!

Give some initial feedback before starting the loop

if ((PROC_RC == 0))

then

echo “The $PROCESS process is currently running...Monitoring...”

RUN=”Y” # Set the RUN Flag to YES

else

echo “The $PROCESS process is not currently running...Monitoring...”

RUN=”N” # Set the RUN Flag to NO

fi

TIMESTAMP=$(date +%D@%T) # Grab a timestamp for the log

Use a “tee -a $#LOGFILE” to send output to both standard output

and to the file referenced by $LOGFILE

echo “MON_START: Monitoring for $PROCESS began ==> $TIMESTAMP” \

| tee -a $LOGFILE

Loop Forever!!

while :

Listing 8.5 proc_watch.ksh shell script listing. (continued)

226 Chapter 8

do

case $RUN in

‘Y’) # Loop Until the Process Ends

RUN=$(mon_proc_end)

;;

‘N’) # Loop Until the Process Starts

RUN=$(mon_proc_start)

;;

esac

done

End of Script

Listing 8.5 proc_watch.ksh shell script listing. (continued)

The shell script in Listing 8.5 is a nice, modular shell script. The actual monitoring
loop is the final while loop. The loop is short and tight, with all of the work being done
within the two functions, proc_mon_start and proc_mon_end. Notice that in both
functions we remain in the loop until there is a transition from run to stop or not run-
ning to process startup. On each transition we return updated run status information
back to the calling shell script with a print command, as opposed to a return code. For
the concurrent display to the screen and logging to the file we use tee -a $LOGFILE
within the shell script body, and in the functions we redirect output to the tty device
that we assigned to the $TTY variable. We use the tty device to ensure that the screen
output will go to the terminal, or pseudo-terminal, that we are currently looking at.
Otherwise we cannot be assured where standard output is pointing within the func-
tion. We again did all numeric tests with the double parentheses method. Notice that
we do not use a $ with a user-defined variable! For the while loop we are looping for-
ever. The No-Op character (while :) allows this to work (true would also work). The
proc_watch.ksh shell script will continue to run until it is interrupted—for exam-
ple, CTRL-C is pressed.

We have improved our script, but it does not let us know how many processes are
active. There is no timing mechanism for the shell script; it just runs until interrupted.
We are next going to expand on our script to do a few things differently. First, we want
to be able to time the monitoring to execute for a specific period of time. We also want
to let the user know how many processes are currently active and the PID of each
process. In addition, we want to time stamp each process startup and end time. To time
stamp each process we can count the number of processes that are running during each
loop iteration, and if the count changes we will grab a new time stamp and update the
PID list for the currently running processes. We also will give the option to run some
pre, startup, and/or post event before the process starts, as the process starts, or after
the process has ended.

Process Monitoring 227

Free & Share & Open

[root:yogi]@/scripts/WILEY/PROC_MON# ./proc_watch.ksh xcalc

The xcalc process is currently running...Monitoring...

MON_START: Monitoring for xcalc began ==> 09/27/01@21:09:41

END PROCESS: xcalc ended ==> 09/27/01@21:09:56

START PROCESS: xcalc began ==> 09/27/01@21:10:06

END PROCESS: xcalc ended ==> 09/27/01@21:10:25

^C

MON_STOP: Monitoring for xcalc ended ==> 09/27/01@21:10:31

Listing 8.6 proc_watch.ksh shell script in action.

Timed Execution for Process Monitoring,
Showing each PID, and Time Stamp with
Event and Timing Capability

Sound like a lot? After we get through this section, each step will be intuitively obvi-
ous. In all of the previous three scripts, we had no ability to monitor each process that
matched the grepped pattern or to execute the monitoring for a specific amount of
time. Because we are using the grep command we may get multiple matches to a pat-
tern. In case of multiple matches we need to know (1) how many matches we have and
(2) each process that was matched. This information can be very beneficial if you are
monitoring a specific user’s activities or anything where we are interested in the exact
process IDs that are running.

We also want a good timing mechanism that will allow for easy, flexible timing of
the duration of the monitoring activity. Because we have no way of knowing what user
requirements may be, we want to allow for as much flexibility as possible. Let’s go to
the far side and allow timing from seconds to days, and anything in between. The easi-
est way to handle timing, but not the most accurate, is to add up all of the seconds and
count down from the total seconds to zero while sleeping for one second between
counts. We could continuously check the date/time using the date command for a very
accurate time, or—even better—we can kick off an at job to kill the script at some spe-
cific time in the future. The Korn shell variable SECONDS is also useful. For this script
we are going to use getopts to parse the command line for seconds, minutes, hours,
days, and the process to monitor. Then we add up the seconds and count down to zero
and quit. Alternatively, if the total seconds and a process are the only arguments, the
user will be able to enter these directly—for only a process and total seconds getopts
will not be used. The usage function will list two ways to use our new script.

Another nice option is the capability to run pre, startup, and/or post events. By pre,
startup, and post events we are talking about running some command, script, or func-
tion before the process starts, as the process starts, or after the process stops, or in any

228 Chapter 8

combination. As an example, we may want to reboot the machine after a backup pro-
gram ends, or we may want to set up environment variables before some process starts
up. For the event options we also need to be as flexible as possible. For flexibility we
will just add a function for each event that contains only the no-op character, : (colon),
as a place holder. A colon does not execute anything; it does nothing and has a return
code of 0, zero. Anything that a user may want to run before startup, at startup, or after
the process has ended can be added into the appropriate function. We will use flags, or
variables, to enable and disable the pre, startup, and post events individually.

In this section we are going to do two things that may be new, using getopts to
process the command-line arguments and executing a function in the background as a
co-process. The getopts functionality is an easy and efficient way to parse through
mixed command-line arguments, and the command switches can be with or without
switch arguments. A co-process is an easy way to set up a communication link with a
background script or function and the foreground.

Let’s first look at how to use getopts to parse the command line. The getopts
command is built in to Korn shell. The command parses the command line for valid
options specified by a single character, following a - (minus sign) or a + (plus sign). To
specify that a command switch requires an argument, the switch character must be fol-
lowed by a : (colon). If the switch does not require any argument, then the : should be
omitted. All of the switch options put together are called the OptionString, and this
is followed by some variable name that we define. The argument for each switch is
stored in a variable called $OPTARG as the arguments are parsed in a loop one at a time.
If the entire OptionString is preceded by a : (colon), then any unmatched switch
option causes a ? to be loaded into the variable that we defined in the getopts com-
mand. The form of the command follows:

getopts OptionString Name [Argument ...]

The easiest way to explain the getopts command is with an example. For our script
we need seconds, minutes, hours, days, and a process to monitor. For each one we
want to supply an argument—for example, -s 5 -m10 -p my_backup. In this exam-
ple we are specifying 5 seconds, 10 minutes, and the process is my_backup. Notice that
there does not have to be a space between the switch and the argument. This is what
makes getopts so great! The code to set up our example looks like the following exam-
ple in Listing 8.7.

SECS=0 # Initialize all to zero

MINUTES=0

HOURS=0

DAYS=0

PROCESS= # Initialize to null

while getopts “:s:m:h:d:p:” TIMED 2>/dev/null

do

case $TIMED in

s) SECS=$OPTARG

Listing 8.7 Example getopts command usage. (continues)

Process Monitoring 229

Free & Share & Open

;;

m) ((MINUTES = $OPTARG * 60))

;;

h) ((HOURS = $OPTARG * 3600))

;;

d) ((DAYS = $OPTARG * 86400))

;;

p) PROCESS=$OPTARG

;;

\?) usage

exit 1

;;

esac

done

((TOTAL_SECONDS = SECS + MINUTES + HOURS + DAYS))

Listing 8.7 Example getopts command usage. (continued)

There are a few things to note in Listing 8.7. The getopts command needs to be
part of a while loop with a case statement within the loop. On each option we speci-
fied, -s,-m,-h,-d, and -p, and we added a : (colon) after each switch character. This
tells getopts that an argument is required for that particular switch character. The :
(colon) before the OptionString list tells getopts that if an unspecified option is given
on the command line, to set the $TIMED variable to the ? character. The ? allows us to
call the usage function and exit with a return code of 1 for an incorrect command-line
option. The only thing to be careful of is that getopts does not care what arguments it
receives so it is our responsibility to check each argument to ensure that it meets our
expectations; then we have to take action if we want to exit. The last thing to note in
Listing 8.7 is that the first line of the while loop has redirection of the standard error
(file descriptor 2) to the bit bucket. Any time an unexpected argument is encountered,
getopts sends a message to standard error, but it is not considered an error, just infor-
mational. Because we expect that incorrect command-line arguments may be entered,
we can just ignore the messages and discard them with redirection to /dev/null,
a.k.a. the bit bucket.

We also need to cover setting up a co-process. A co-process is a communications link
between a foreground and a background process. The most common question is, “Why
is this needed?” In our next script we are going to call a function that will handle all of
the monitoring for us while we do the timing control in the main script. The problem
arises because we need to run this function in the background. Within the background
process monitoring function there are two loops in which one loop is always executing.
Without the ability to tell the loop to break out of the internal loop, it will continue to
execute on its own after the main script, and function, have exited due to an interrupt.
We know what this causes—one or more defunct processes! From the main script we need

230 Chapter 8

a way to communicate with the loop in the background function to tell it to break out
of the loop or exit the function cleanly when the countdown is complete and if the
script is interrupted—for example, with CTRL-C. To solve this little problem we kick
off our background proc_watch function as a co-process. “How do we do this?” you
ask. “Pipe it to the background” is the simplest way to put it, and that is also what it looks
like. Look at the next example in Listing 8.8.

function proc_watch

{

This function is started as a co-process!!!

while : # Loop forever

do

Some Code Here

read BREAK_OUT # Do NOT need a “-p” to read!

if [[$BREAK_OUT = ‘Y’]]

then

return 0

fi

done

}

############################

Start of Main

############################

Set a Trap

trap ‘BREAK=’Y’; print -p $BREAK; exit 2’ 1 2 3 15

TOTAL_SECONDS=300

BREAK_OUT=’N’

proc_watch |& # Start proc_watch as a co-process!!!!

until ((TOTAL_SECONDS == 0))

do

((TOTAL_SECONDs = TOTAL_SECONDS - 1))

sleep 1

done

BREAK_OUT=’Y’

Use “print -p” to communicate with the co-process variable

print -p $BREAK_OUT

exit 0

Listing 8.8 Example using a co-process.

Process Monitoring 231

Free & Share & Open

In the code block in Listing 8.8 we defined the proc_watch function, which is
the function that we want to start as a background process. As you can see, the
proc_watch function has an infinite loop. If the main script, is interrupted, then with-
out a means to exit the loop within the proc_watch background function, the loop
alone will continue to execute! To solve this we start the proc_watch as a co-process
by “piping it to the background” using pipe ampersand, |&, as a suffix. Now when we
want to communicate with the function from the main script, we use print -p
$BREAK_OUT. Inside the function we just use the standard read command, read
BREAK_OUT. The co-process is the mechanism that we are going to use to break out of
the loop if the main script is interrupted on a trapped signal, and for normal count-
down termination at the end of the script. Of course, we can never catch kill -9 with
a trap.

Try setting up the scenario just described, without a co-process, with a background
function that has an infinite loop. Then press the CTRL-C key sequence to kill the main
script and do a ps -ef | more. You will see that the background loop is still executing!
Get the PID, and do a kill -9 to kill it. Of course, if the loop’s exit criteria is ever met,
the loop will exit on its own.

Now take a look at the entire script, and see how we handled all of these extra
requirements. Pay close attention to the highlighted code in Listing 8.9.

#!/bin/ksh

#

SCRIPT: proc_watch_timed.ksh

AUTHOR: Randy Michael

DATE: 09-14-2001

REV: 1.0.P

PLATFORM: Not Platform Dependent

#

PURPOSE: This script is used to monitor and log

the status of a process as it starts and stops.

Command line options are used to identify the target

process to monitor and the length of time to monitor.

Each event is logged to the file defined by the

$LOGFILE variable. This script also has the ability

to execute pre, startup, and post events. These are

controlled by the $RUN_PRE_EVENT, $RUN_STARTUP_EVENT, and

$RUN_POST_EVENT variables. These variables control execution

individually. Whatever is to be executed is to be placed in

either the “pre_event_script”, startup_event_script, or the

“post_event_script” functions, or in any combination. Timing

is controlled on the command line.

#

USAGE: $SCRIPT_NAME total_seconds target_process

#

Will monitor the specified process for the

Listing 8.9 proc_watch_timed.ksh shell script listing.

232 Chapter 8

specified number of seconds.

#

USAGE: $SCRIPT_NAME [-s|-S seconds] [-m|-M minutes]

[-h|-H hours] [-d|-D days]

[-p|-P process]

#

Will monitor the specified process for number of

seconds specified within -s seconds, -m minutes,

-h hours, and -d days. Any combination of command

switches can be used.

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without ANY execution

#

##

########## DEFINE FILES AND VARIABLES HERE #########

##

typeset -u RUN_PRE_EVENT # Force to UPPERCASE

typeset -u RUN_STARTUP_EVENT # Force to UPPERCASE

typeset -u RUN_POST_EVENT # force to UPPERCASE

RUN_PRE_EVENT=’N’ # A ‘Y’ will execute, anything else will not

RUN_STARTUP_EVENT=’Y’ # A ‘Y’ will execute, anything else will not

RUN_POST_EVENT=’Y’ # A ‘Y’ will execute, anything else will not

LOGFILE=”/tmp/proc_status.log”

[[! -s $LOGFILE]] && touch $LOGFILE

SCRIPT_NAME=$(basename $0)

TTY=$(tty)

INTERVAL=”1” # Seconds between sampling

JOBS=

##

############# DEFINE FUNCTIONS HERE ################

##

usage ()

{

echo “\n\n\t*****USAGE ERROR*****”

echo “\n\nUSAGE: $SCRIPT_NAME seconds process”

echo “\nWill monitor the specified process for the”

echo “specified number of seconds.”

echo “\nUSAGE: $SCRIPT_NAME [-s|-S seconds] [-m|-M minutes]”

echo “ [-h|-H hours] [-d|-D days] [-p|-P process]\n”

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

Process Monitoring 233

Free & Share & Open

echo “\nWill monitor the specified process for number of”

echo “seconds specified within -s seconds, -m minutes,”

echo “-h hours and -d days. Any combination of command”

echo “switches can be used.\n”

echo “\nEXAMPLE: $SCRIPT_NAME 300 dtcalc”

echo “\n\nEXAMPLE: $SCRIPT_NAME -m 5 -p dtcalc”

echo “\nBoth examples will monitor the dtcalc process”

echo “for 5 minutes. Can specify days, hours, minutes”

echo “and seconds, using -d, -h, -m and -s\n\n”

}

##

trap_exit ()

{

set -x # Uncommant to debug this function

Log an ending time for process monitoring

echo “INTERRUPT: Program Received an Interrupt...EXITING...” > $TTY

echo “INTERRUPT: Program Received an Interrupt...EXITING...” >> $LOGFILE

TIMESTAMP=$(date +%D@%T) # Get a new time stamp...

echo “MON_STOPPED: Monitoring for $PROCESS ended ==> $TIMESTAMP\n” \

>> $TTY

echo “MON_STOPPED: Monitoring for $PROCESS ended ==> $TIMESTAMP\n” \

>> $LOGFILE

echo “LOGFILE: All Events are Logged ==> $LOGFILE \n” > $TTY

Kill all functions

JOBS=$(jobs -p)

if [[! -z $JOBS && $JOBS != ‘’ && $JOBS != ‘0’]]

then

kill $(jobs -p) 2>/dev/null 1>&2

fi

return 2

}

##

pre_event_script ()

{

Put anything that you want to execute BEFORE the

monitored process STARTS in this function

: # No-OP - Needed as a place holder for an empty function

Comment Out the Above colon, ‘:’

PRE_RC=$?

return $PRE_RC

}

##

startup_event_script ()

{

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

234 Chapter 8

Put anything that you want to execute WHEN, or AS, the

monitored process STARTS in this function

: # No-OP - Needed as a place holder for an empty function

Comment Out the Above colon, ‘:’

STARTUP_RC=$?

return $STARTUP_RC

}

##

post_event_script ()

{

Put anything that you want to execute AFTER the

monitored process ENDS in this function

: # No-OP - Need as a place holder for an empty function

Comment Out the Above colon, ‘:’

POST_RC=$?

return $POST_RC

}

##

This function is used to test character strings

test_string ()

{

if (($# != 1))

then

echo ‘ERROR’

return

fi

C_STRING=$1

Test the character string for its composition

case $C_STRING in

+([0-9])) echo ‘POS_INT’ # Integer >= 0

;;

+([-0-9])) echo ‘NEG_INT’ # Integer < 0

;;

+([a-z])) echo ‘LOW_CASE’ # lower case text

;;

+([A-Z])) echo ‘UP_CASE’ # UPPER case text

;;

+([a-z]|[A-Z])) echo ‘MIX_CASE’ # MIxed CAse text

;;

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

Process Monitoring 235

Free & Share & Open

*) echo ‘UNKNOWN’ # Anything else

esac

}

##

proc_watch ()

{

set -x # Uncomment to debug this function

This function does all of the process monitoring!

while : # Loop Forever!!

do

case $RUN in

‘Y’)

This will run the startup_event_script, which is a function

if [[$RUN_STARTUP_EVENT = ‘Y’]]

then

echo “STARTUP EVENT: Executing Startup Event Script...”\

> $TTY

echo “STARTUP EVENT: Executing Startup Event Script...”\

>> $LOGFILE

startup_event_script # USER DEFINED FUNCTION!!!

RC=$? # Check the Return Code!!

if ((“RC” == 0))

then

echo “SUCCESS: Startup Event Script Completed RC -

${RC}” > $TTY

echo “SUCCESS: Startup Event Script Completed RC -

${RC}” >> $LOGFILE

else

echo “FAILURE: Startup Event Script FAILED RC -

${RC}” > $TTY

echo “FAILURE: Startup Event Script FAILED RC -

${RC}” >> $LOGFILE

fi

fi

integer PROC_COUNT=’-1’ # Reset the Counters

integer LAST_COUNT=’-1’

Loop until the process(es) end(s)

until ((“PROC_COUNT” == 0))

do

This function is a Co-Process. $BREAK checks to see if

“Program Interrupt” has taken place. If so BREAK will

be ‘Y’ and we exit both the loop and function.

read BREAK

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

236 Chapter 8

if [[$BREAK = ‘Y’]]

then

return 3

fi

PROC_COUNT=$(ps -ef | grep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME \

| grep $PROCESS | wc -l) >/dev/null 2>&1

if ((“LAST_COUNT” > 0 && “LAST_COUNT” != “PROC_COUNT”))

then

The Process Count has Changed...

TIMESTAMP=$(date +%D@%T)

Get a list of the PID of all of the processes

PID_LIST=$(ps -ef | grep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME \

| grep $PROCESS | awk ‘{print $2}’)

echo “PROCESS COUNT: $PROC_COUNT $PROCESS\

Processes Running ==> $TIMESTAMP” >> $LOGFILE &

echo “PROCESS COUNT: $PROC_COUNT $PROCESS\

Processes Running ==> $TIMESTAMP” > $TTY

echo ACTIVE PIDS: $PID_LIST >> $LOGFILE &

echo ACTIVE PIDS: $PID_LIST > $TTY

fi

LAST_COUNT=$PROC_COUNT

sleep $INTERVAL # Needed to reduce CPU load!

done

RUN=’N’ # Turn the RUN Flag Off

TIMESTAMP=$(date +%D@%T)

echo “ENDING PROCESS: $PROCESS END time ==>\

$TIMESTAMP” >> $LOGFILE &

echo “ENDING PROCESS: $PROCESS END time ==>\

$TIMESTAMP” > $TTY

This will run the post_event_script, which is a function

if [[$RUN_POST_EVENT = ‘Y’]]

then

echo “POST EVENT: Executing Post Event Script...”\

> $TTY

echo “POST EVENT: Executing Post Event Script...”\

>> $LOGFILE &

post_event_script # USER DEFINED FUNCTION!!!

integer RC=$?

if ((“RC” == 0))

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

Process Monitoring 237

Free & Share & Open

then

echo “SUCCESS: Post Event Script Completed RC -

${RC}” > $TTY

echo “SUCCESS: Post Event Script Completed RC -

${RC}” >> $LOGFILE

else

echo “FAILURE: Post Event Script FAILED RC - ${RC}”\

> $TTY

echo “FAILURE: Post Event Script FAILED RC - ${RC}”\

>> $LOGFILE

fi

fi

;;

‘N’)

This will run the pre_event_script, which is a function

if [[$RUN_PRE_EVENT = ‘Y’]]

then

echo “PRE EVENT: Executing Pre Event Script...” > $TTY

echo “PRE EVENT: Executing Pre Event Script...” >> $LOGFILE

pre_event_script # USER DEFINED FUNCTION!!!

RC=$? # Check the Return Code!!!

if ((“RC” == 0))

then

echo “SUCCESS: Pre Event Script Completed RC - ${RC}”\

> $TTY

echo “SUCCESS: Pre Event Script Completed RC - ${RC}”\

>> $LOGFILE

else

echo “FAILURE: Pre Event Script FAILED RC - ${RC}”\

> $TTY

echo “FAILURE: Pre Event Script FAILED RC - ${RC}”\

>> $LOGFILE

fi

fi

echo “WAITING: Waiting for $PROCESS to

startup...Monitoring...”

integer PROC_COUNT=’-1’ # Initialize to a fake value

Loop until at least one process starts

until ((“PROC_COUNT” > 0))

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

238 Chapter 8

do

This is a Co-Process. This checks to see if a “Program

Interrupt” has taken place. If so BREAK will be ‘Y’ and

we exit both the loop and function

read BREAK

if [[$BREAK = ‘Y’]]

then

return 3

fi

PROC_COUNT=$(ps -ef | grep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME | grep $PROCESS | wc -l) \

>/dev/null 2>&1

sleep $INTERVAL # Needed to reduce CPU load!

done

RUN=’Y’ # Turn the RUN Flag On

TIMESTAMP=$(date +%D@%T)

PID_LIST=$(ps -ef | grep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME \

| grep $PROCESS | awk ‘{print $2}’)

if ((“PROC_COUNT” == 1))

then

echo “START PROCESS: $PROCESS START time ==>

$TIMESTAMP” >> $LOGFILE &

echo ACTIVE PIDS: $PID_LIST >> $LOGFILE &

echo “START PROCESS: $PROCESS START time ==>

$TIMESTAMP” > $TTY

echo ACTIVE PIDS: $PID_LIST > $TTY

elif ((“PROC_COUNT” > 1))

then

echo “START PROCESS: $PROC_COUNT $PROCESS

Processes Started: START time ==> $TIMESTAMP” >> $LOGFILE &

echo ACTIVE PIDS: $PID_LIST >> $LOGFILE &

echo “START PROCESS: $PROC_COUNT $PROCESS

Processes Started: START time ==> $TIMESTAMP” > $TTY

echo ACTIVE PIDS: $PID_LIST > $TTY

fi

;;

esac

done

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

Process Monitoring 239

Free & Share & Open

}

##

############## START OF MAIN #######################

##

SET A TRAP

trap ‘BREAK=’Y’;print -p $BREAK 2>/dev/null;trap_exit\

2>/dev/null;exit 0’ 1 2 3 15

BREAK=’N’ # The BREAK variable is used in the co-process proc_watch

PROCESS= # Initialize to null

integer TOTAL_SECONDS=0

Check commnand line arguments

if (($# > 10 || $# < 2))

then

usage

exit 1

fi

Check to see if only the seconds and a process are

the only arguments

if [[($# -eq 2) && ($1 != -*) && ($2 != -*)]]

then

NUM_TEST=$(test_string $1) # Is this an Integer?

if [[“$NUM_TEST” = ‘POS_INT’]]

then

TOTAL_SECONDS=$1 # Yep - It’s an Integer

PROCESS=$2 # Can be anything

else

usage

exit 1

fi

else

Since getopts does not care what arguments it gets lets

do a quick sanity check to make sure that we only have

between 2 and 10 arguments and the first one must start

with a -* (hyphen and anything), else usage error

case “$#” in

[2-10]) if [[$1 != -*]]; then

usage; exit 1

fi

;;

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

240 Chapter 8

esac

HOURS=0 # Initialize all to zero

MINUTES=0

SECS=0

DAYS=0

Use getopts to parse the command line arguments

For each $OPTARG for DAYS, HOURS, MINUTES and DAYS check to see

that each one is an integer by using the check_string function

while getopts “:h:H:m:M:s:S:d:D:P:p:” OPT_LIST 2>/dev/null

do

case $OPT_LIST in

h|H) [[$(test_string $OPTARG) != ‘POS_INT’]] && usage && exit 1

((HOURS = $OPTARG * 3600)) # 3600 seconds per hour

;;

m|H) [[$(test_string $OPTARG) != ‘POS_INT’]] && usage && exit 1

((MINUTES = $OPTARG * 60)) # 60 seconds per minute

;;

s|S) [[$(test_string $OPTARG) != ‘POS_INT’]] && usage && exit 1

SECS=”$OPTARG” # seconds are seconds

;;

d|D) [[$(test_string $OPTARG) != ‘POS_INT’]] && usage && exit 1

((DAYS = $OPTARG * 86400)) # 86400 seconds per day

;;

p|P) PROCESS=$OPTARG # process can be anything

;;

\?) usage # USAGE ERROR

exit 1

;;

:) usage

exit 1

;;

*) usage

exit 1

;;

esac

done

fi

We need to make sure that we have a process that

is NOT null or empty! - sanity check - The double quotes are required!

if [[-z “$PROCESS” || “$PROCESS” = ‘’]]

then

usage

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

Process Monitoring 241

Free & Share & Open

exit 1

fi

Check to see that TOTAL_SECONDS was not previously set

if ((TOTAL_SECONDS == 0))

then

Add everything together if anything is > 0

if [[$SECS -gt 0 || $MINUTES -gt 0 || $HOURS -gt 0 \

|| $DAYS -gt 0]]

then

((TOTAL_SECONDS = SECS + MINUTES + HOURS + DAYS))

fi

fi

Last Sanity Check!

if ((TOTAL_SECONDS <= 0)) || [-z $PROCESS]

then

Either There are No Seconds to Count or the

$PROCESS Variable is Null...USAGE ERROR...

usage

exit 1

fi

########### START MONITORING HERE!###########

echo “\nCurrently running $PROCESS processes:\n” > $TTY

ps -ef | grep -v “grep $PROCESS” | grep -v $SCRIPT_NAME \

| grep $PROCESS > $TTY

PROC_RC=$? # Get the initial state of the monitored function

echo >$TTY # Send a blank line to the screen

((PROC_RC != 0)) && echo “\nThere are no $PROCESS processes running\n”

if ((PROC_RC == 0)) # The Target Process(es) is/are running...

then

RUN=’Y’ # Set the RUN flag to true, or yes.

integer PROC_COUNT # Strips out the “padding” for display

PROC_COUNT=$(ps -ef | grep -v “grep $PROCESS” | grep -v \

$SCRIPT_NAME | grep $PROCESS | wc -l) >/dev/null 2>&1

if ((PROC_COUNT == 1))

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

242 Chapter 8

then

echo “The $PROCESS process is currently

running...Monitoring...\n”

elif ((PROC_COUNT > 1))

then

print “There are $PROC_COUNT $PROCESS processes currently

running...Monitoring...\n”

fi

else

echo “The $PROCESS process is not currently running...monitoring...”

RUN=’N’ # Set the RUN flag to false, or no.

fi

TIMESTAMP=$(date +%D@%T) # Time that this script started monitoring

Get a list of the currently active process IDs

PID_LIST=$(ps -ef | grep -v “grep $PROCESS” \

| grep -v $SCRIPT_NAME \

| grep $PROCESS | awk ‘{print $2}’)

echo “MON_STARTED: Monitoring for $PROCESS began ==> $TIMESTAMP” \

| tee -a $LOGFILE

echo ACTIVE PIDS: $PID_LIST | tee -a $LOGFILE

NOTICE

We kick off the “proc_watch” function below as a “Co-Process”

This sets up a two way communications link between the

“proc_watch” background function and this “MAIN BODY” of

the script. This is needed because the function has two

“infinite loops”, with one always executing at any given time.

Therefore we need a way to break out of the loop in case of

an interrupt, i.e. CTRL-C, and when the countdown is complete.

The “pipe appersand”, |&, creates the background Co-Process

and we use “print -p $VARIABLE” to transfer the variable’s

value back to the background co-process.

###################################

proc_watch |& # Create a Background Co-Process!!

WATCH_PID=$! # Get the process ID of the last background job!

Start the Count Down!

integer SECONDS_LEFT=$TOTAL_SECONDS

while ((SECONDS_LEFT > 0))

do

Listing 8.9 proc_watch_timed.ksh shell script listing. (continues)

Process Monitoring 243

Free & Share & Open

Next send the current value of $BREAK to the Co-Process

proc_watch, which was piped to the background...

print -p $BREAK 2>/dev/null

((SECONDS_LEFT = SECONDS_LEFT - 1))

sleep 1 # 1 Second Between Counts

done

Finished - Normal Timeout Exit...

TIMESTAMP=$(date +%D@%T) # Get a new time stamp...

echo “MON_STOPPED: Monitoring for $PROCESS ended ==> $TIMESTAMP\n” \

| tee -a $LOGFILE

echo “LOGFILE: All Events are Logged ==> $LOGFILE \n”

Tell the proc_watch function to break out of the loop and die

BREAK=’Y’

print -p $BREAK 2>/dev/null

kill $WATCH_PID 2>/dev/null

exit 0

End of Script

Listing 8.9 proc_watch_timed.ksh shell script listing. (continued)

The most important things to note in Listing 8.9 are the communication link used
between the foreground main script and the background co-process function,
proc_watch, and the use of getopts to parse the command-line arguments. Some
other things to look at are the integer tests using the string_test function and the
way that the user is notified of a new process either starting or stopping by time stamp.
The updated process count and the listing of all of the PIDs and how text is sent to the
tty display within the function. As usual, we use the double parentheses numerical
test method in the control structures. (Notice again that the $ is not used to reference
the user defined variables!) This shell script is also full of good practices for using dif-
ferent control structures and the use of the logical AND and logical OR (&& and ||),
which reduces the need for if..then..else.. and case structures. One very important test
needs to be pointed out—the “null/empty” test for the PROCESS variable just after
getopts parses the command line. This test is so important because the getopts com-
mand does not care what arguments it is parsing;, nothing will “error out.” For this
reason, we need to verify all of the variables ourselves. The only thing getopts is doing is

244 Chapter 8

matching the command switches to the appropriate arguments, not the validity of the
command-line argument! If this test is left out and invalid command line arguments are
present, then grep command errors will cover the screen during the script’s execution—
bad, very bad!

A good review of Listing 8.9 is needed to point out some other interesting aspects.
Let’s start at the top:

In the definitions of the files and variables there are three variables that control the
execution of the pre, startup, and post events. The variables are RUN_PRE_EVENT,
RUN_STARTUP_EVENT, and RUN_POST_EVENT, and for ease of testing, the variables
are typeset to UPPERCASE. A 'Y' will enable the execution of the function, in which
a user can put anything that he or she wants to run. The functions are called
pre_event_script, startup_event_script, and post_event_script, but
don’t let the names fool you. We also identify the LOGFILE variable and test to see if a
log file exists. If the file does not exist, we touch the $LOGFILE variable, which creates
an empty file with the filename that the $LOGFILE variable points to. This script sec-
tion also grabs the SCRIPT_NAME using the basename $0 command, and we define the
current tty device for display purposes. An important variable is INTERVAL. This
variable defines the number of seconds between sampling the process list. It is very
important that this value is greater than 0, zero! If the INTERVAL value is set to 0, zero,
then the CPU load will be extreme and will produce a noticeable load, to say the least.

The next section in Listing 8.9 defines all of the functions used in this script. We have
a usage function that is displayed for usage errors. Then there is the trap_exit func-
tion. The trap_exit function will execute on exit codes 1, 2, 3, and 15, which we
will see in the trap statement later at “Start of Main” in the script. Next are the
pre_event_script, startup_event_script, and post_event_script func-
tions. You may ask why a function would have a name indicating it is a script. It is
done this way to encourage the use of an external script, or program, for any pre,
startup, or post event activity, rather than editing this script and debugging an internal
function. The next function is used to test character strings, thus the name
test_string. If you have ever wondered how to test a string (the entire string!) for
its composition, test_string will do the trick. We just use a regular expression test
for a range of characters. The preceding + (plus sign) is required in this regular expres-
sion to specify that all characters are of the specified type.

Then comes the main function in the script that does all of the work, proc_watch.
This function is also the one that is executed as the co-process that we have been talk-
ing so much about. The proc_watch function is an infinite loop that contains two
internal loops, where one internal loop is always executing at any given time. During
both of these internal loops we check the variable BREAK to see if the value is 'Y'. The
'Y' value indicates that the function should exit immediately. The BREAK variable is
updated, or changed, from the main script and is “transferred” to this co-process back-
ground function using the print -p $BREAK command within the main script. This
variable is reread, in the function, on each loop iteration using the standard read
BREAK command. This is what enables the clean exit from the background function’s
loop. The word background is key to understanding the need for the co-process. If the
main script is interrupted, then the innermost loop will continue to execute even after
both the function and script end execution. It will exit on its own when the loop’s exit

Process Monitoring 245

Free & Share & Open

parameters are met, but if they are never met we end up with a defunct process. To get
around this problem we start the proc_watch function as a background co-process
using |& as a suffix to the function—for example, proc_watch |&. An easy way to
think of a co-process is a pipe to the background, and through this pipe we have a com-
munications link.

For the main part of the shell script, at the START OF MAIN, we first set a trap. In
the trap command we set the BREAK variable to 'Y', to indicate that the proc_watch
co-process should exit, and we make the new BREAK value known to the co-process
with the print -p $BREAK 2>/dev/null command. This command sometimes sends
error notification to the standard error, file descriptor 2, but we want all error notifica-
tion suppressed. Otherwise, the error messages would go to the screen during the
script’s execution, which is highly undesirable.

Next are the standard things of initializing a few variables and checking for the cor-
rect number of arguments. There are two ways to run this script: (1) only specifying the
total seconds and the process to monitor or (2) using the command-line switches to
specify the seconds, minutes, hours, days, and process to monitor. The latter method
will use the getopts command to parse the arguments, but we do not need getopts for
the first method. We first check to see if we are given only seconds and a process. We use
the test_string function to ensure that the $1 argument is a positive integer. The sec-
ond argument could be anything except a string that begins with a - (hyphen) or a null
string. Otherwise, we will use the getopts command to parse the command line.

Using the getopts command makes life much easier when we need to process com-
mand-line arguments; however, getopts does have its limitations. The command is
parsing the command-line arguments, but it really does not care what the arguments
are. Therefore, we need to do a sanity check on each and every argument to ensure that
it meets the criteria that is expected. If the argument fails, then we just run the usage
function and exit with a return code of 1, one. Two tests are conducted on each argu-
ment. We test the PROCESS variable to make sure that it is not null, or empty, and we
check all of the numeric variables used for timing to make sure they are positive inte-
gers, or 0, zero. The positive integer test is to ensure that at least one of the numeric
variables, SECS, MINUTES, HOURS, and DAYS, has an integer value greater than 0,
zero. If we get past this stage we assume we have creditable data to start monitoring.

The monitoring starts by getting an initial state of the process, either currently run-
ning or not running. With this information we initialize the RUN variable, which is used
as a control mechanism for the rest of the script. Once the initialization text is both
logged and sent to the screen, the proc_watch function is started as a background co-
process, again using proc_watch |&. The main script just does a countdown to 0,
zero, and exits. To make the proc_watch function exit cleanly we assign 'Y' to the
BREAK variable and make this new value known to the co-process with the print -p
$BREAK command. Then we kill the background PID that we saved in the WATCH_PID
variable and then exit the script with a return code of 0, zero. If the script is inter-
rupted, then the trap will handle stopping the co-process and exiting. See Listing 8.10.

246 Chapter 8

[root:yogi]@/scripts/WILEY/PROC_MON# ./proc_watch_timed.ksh -m 5 -pxcalc

Currently running xcalc processes:

There are no xcalc processes running

The xcalc process is not currently running...monitoring...

MON_STARTED: Monitoring for xcalc began ==> 09/27/01@21:15:02

ACTIVE PIDS:

START PROCESS: xcalc START time ==> 09/27/01@21:15:19

ACTIVE PIDS: 26190

STARTUP EVENT: Executing Startup Event Script...

SUCCESS: Startup Event Script Completed RC - 0

PROCESS COUNT: 2 xcalc Processes Running ==> 09/27/01@21:15:46

ACTIVE PIDS: 13060 26190

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:16:04

ACTIVE PIDS: 13060 18462 26190

PROCESS COUNT: 4 xcalc Processes Running ==> 09/27/01@21:16:27

ACTIVE PIDS: 13060 18462 22996 26190

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:16:39

ACTIVE PIDS: 18462 22996 26190

PROCESS COUNT: 4 xcalc Processes Running ==> 09/27/01@21:16:56

ACTIVE PIDS: 18462 22996 24134 26190

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:17:31

ACTIVE PIDS: 22996 24134 26190

PROCESS COUNT: 2 xcalc Processes Running ==> 09/27/01@21:17:41

ACTIVE PIDS: 22996 24134

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:18:39

ACTIVE PIDS: 21622 22996 24134

PROCESS COUNT: 2 xcalc Processes Running ==> 09/27/01@21:18:58

ACTIVE PIDS: 21622 22996

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:19:04

ACTIVE PIDS: 18180 21622 22996

PROCESS COUNT: 4 xcalc Processes Running ==> 09/27/01@21:19:10

ACTIVE PIDS: 18180 21622 22758 22996

PROCESS COUNT: 6 xcalc Processes Running ==> 09/27/01@21:19:17

ACTIVE PIDS: 18180 21622 22758 22996 23164 26244

PROCESS COUNT: 5 xcalc Processes Running ==> 09/27/01@21:19:37

ACTIVE PIDS: 18180 22758 22996 23164 26244

PROCESS COUNT: 4 xcalc Processes Running ==> 09/27/01@21:19:47

ACTIVE PIDS: 18180 22996 23164 26244

PROCESS COUNT: 3 xcalc Processes Running ==> 09/27/01@21:19:53

ACTIVE PIDS: 18180 22996 26244

Listing 8.10 proc_watch_times.ksh shell script in action. (continues)

Process Monitoring 247

Free & Share & Open

PROCESS COUNT: 2 xcalc Processes Running ==> 09/27/01@21:19:55

ACTIVE PIDS: 18180 26244

PROCESS COUNT: 1 xcalc Processes Running ==> 09/27/01@21:20:05

ACTIVE PIDS: 18180

PROCESS COUNT: 0 xcalc Processes Running ==> 09/27/01@21:20:09

ACTIVE PIDS:

ENDING PROCESS: xcalc END time ==> 09/27/01@21:20:11

POST EVENT: Executing Post Event Script...

SUCCESS: Post Event Script Completed RC - 0

MON_STOPPED: Monitoring for xcalc ended ==> 09/27/01@21:20:23

LOGFILE: All Events are Logged ==> /tmp/proc_status.log

Listing 8.10 proc_watch_times.ksh shell script in action. (continued)

Other Options to Consider

The proc_watch_timed.ksh shell script is thorough, but it may need to be tailored
to a more specific need. Some additional considerations are listed next.

Common Uses
These scripts are suited for things like monitoring how long a process runs, logging a
process as it starts and stops, restarting a process that has terminated prematurely, and
monitoring a problem user or contractor. We can also monitor activity on a particular
tty port and send an email as a process starts execution. Use your imagination.

We can start the monitoring script on the command line, or as a cron or at job, and
run it during the work day. A cron table entry might look like the following:

0 7 * * 1-5 /usr/local/bin/proc_watch_timed.ksh -h9 -p fred >/dev/null

This cron table entry would monitor any process in the process table that contained
“fred” from 7:00 A.M. Monday through Friday for nine hours. Note: The nine hours
may be much longer due to the system’s load during the day as the script counts down
to zero.

Anything in the system’s process list can be monitored from seconds to days.

Modifications to Consider
These scripts are generic, and you may want to make modifications. One option to con-
sider is to list the actual lines in the process list instead of only the PID and a process

248 Chapter 8

count with a time stamp. You may have a different ps command that is preferred—for
example, ps aux. For a more accurate timing you may want to check the date/time at
longer intervals (as opposed to counting down); checking the time would also reduce
the CPU load. Another good idea is to get the timing data and run an at command to
kill the script at the specified time. Also, consider using the Korn shell built-in variable
SECONDS. First initialize the SECONDS variable to 0, zero and it will automatically
increment each second as long as the parent process is executing. The pre, startup, and
post events are something else to look at, the startup in particular. The startup_
event_script currently executes only when (1) the monitoring starts and the target
process is running and (2) when the very first, if more than one, process starts, not as
each process starts. You may want to modify this function’s execution to run only as
each individual process starts and not to execute when monitoring starts and the tar-
get process is already running. Additionally, depending on what is to be executed for
any of these events, some sleep time might be needed to allow for things to settle
down. As we can see, there are many ways to do all of this, and everyone has different
expectations and requirements. Just remember that we never have a final script; we just
try to be flexible!

Summary

In this chapter we started with a very basic idea of monitoring for a process to start or
stop. We quickly built on user options to monitor the process state for a specified
period of time and added time stamps. We also allowed the user to specify pre, startup,
and post events to execute as an option. Never try to do everything at once. Build a
short shell script that does the basic steps of your target goal and expand on the base
shell script to build in the nice-to-have things. I use the proc_mon.ksh and
proc_wait.ksh shell scripts almost daily for monitoring system events and they sure do
save a lot of time reentering the same command over-and-over again.

In the next chapter we are going to expand on our monitoring to include applica-
tions. We always want to know if an application or database has gone down during the
day. As you watch the heads popping up above all of the cubicles it is always nice to be
proactively informed and not be surprised by the application group.

Process Monitoring 249

Free & Share & Open

251

The most critical part of any business is ensuring that applications continue to run
without error. In this chapter, we are going to look at several techniques for monitoring
applications and critical processes that the applications rely on. The problem with try-
ing to write this chapter is that there are so many applications in the corporate world
that the techniques to monitor them vary widely.

From the lowest level we can ping the machine to see if it is up. A ping, though, is
not an operating system response, but rather a machine response to confirm that the
network adapter is configured. At a higher level, we can look at the processes that are
required for the application to run properly, but this too does not completely confirm,
100 percent, that the application is working properly. The only way to ensure the appli-
cation is working properly is to interact with the application. As an example, if we have
a database that the application requires we can do a simple SQL query to ensure that
the database is working properly. For interactive applications we can try to use a here
document to log in to the application and maybe even perform a small task. Applica-
tions work differently, so the solution to ensure that the application is up and running
properly will vary widely.

We are going to look at monitoring local processes, remote monitoring using Secure
Shell (SSH), checking for active Oracle databases, and checking an application URL
and HTTP server status in this chapter.

Monitoring Processes
and Applications

C H A P T E R

9

Free & Share & Open

Monitoring Local Processes

Above pinging a host machine, the most common application monitoring technique is
to look for the critical processes that are required for the application to work properly.
This is also a good practice when we have a flaky application that has a process that
dies intermittently. The basic technique is to use the ps -ef | grep target_process | grep
-v grep command syntax. If you have more than one required process, then this com-
mand statement needs to be executed for each of the processes individually. We do not
want to use egrep in place of grep in this case. If egrep is used, then we get a positive
result if any of the processes are currently running.

The key to making this technique work is to find a unique string pattern that repre-
sents the target process. The PID is no good because the process may have a child or
parent process that has the same PID somewhere in the ps -ef output. Finding a unique
string pattern that works with the grep command is key. This is easily tested by using
the following command syntax on the command line.

ps -ef | grep Appserver | grep -v grep

This command statement assumes that we are looking for a process called
Appserver. Notice that we always pipe (|) the last pipe’s output to | grep -v grep. This
last grep on grep is needed so that the system will not report on the grep Appserver
process. In the process table each part of the command statement that has a pipe will
have a separate PID.

Then there is another thing to consider if this command is executed in a shell script.
The shell script name may show up in the grep output, depending on how the shell
script is written. To get around this little problem we need to query the system to cap-
ture the shell script’s filename and add a third grep to the ps -ef command statement
using the following syntax:

SCRIPT_NAME=$(basename $0)

ps -ef | grep target_process | grep -v grep | grep -v $SCRIPT_NAME

Now we have a command that will work if, and only if, a unique character string can
be found that separates the target process from all other processes. This usually takes a
few tries for each application that we want to monitor.

In Listing 9.1 we have a code segment from a shell script that monitors an applica-
tion service, using a unique character string. This particular application service is
defined by the APPSVC variable. If this service is not currently running, there is an
attempt to restart the application service and an email is sent to my text pager and my
regular email account. Follow the code segment in Listing 9.1.

252 Chapter 9

##

############# DEFINE VARIABLES HERE ##################

##

APPSVC=”/usr/local/sbin/appstrt_u1”

MAILLIST=”1234567890@mypage.provider.abc randy@my.domain.com”

MAILFILE=”/tmp/mailfile.out”

TIMESTAMP=$(date +%m%d%y%H%M%S)

APPS_LOG=”/usr/local/log/appsvc.log

[-s $APP_LOG] || touch $APP_LOG

##

################# START OF MAIN ######################

##

Check to see if the APPSVC process(es) is/are running

APPSVC_COUNT=$(ps -ef | grep $APPSVC | grep -v grep \

| grep -v $SCRIPT_NAME | wc -l)

If the count is zero then we need to attempt to restart the service

if (($APPSVC_COUNT == 0))

then

Need to attempt an Application server restart.

echo “SVC-A1 - APPSVC: Attempting Restart” > $MAILFILE

Send email notification

sendmail -f rmichael@my.domain.com $MAILLIST < $MAILFILE

Make a log entry

echo “ERROR: $TIMESTAMP - Appsvc DOWN - Attempting Restart”>>

$APP_LOG

Make another log entry

echo “STARTING APPLICATION SERVER - $TIMESTAMP” >>$APPS_LOG

Attempt the restart!!!

su - appsvc -c ‘/usr/local/sbin/appsvc start 2>&1’ >> $APP_LOG

fi

Listing 9.1 Code segment to monitor an application process.

In the code segment in Listing 9.1 notice that we defined a unique string for the
process, which in this case is the fully qualified pathname, to the APPSVC variable.
Because this application server can have multiple instances running at the same time,

Monitoring Processes and Applications 253

Free & Share & Open

we need to get a count of how many of these processes are running. If the process count
is 0, zero, a restart of the application server is attempted.

During the restart effort an email notification is sent to reflect that the application
service is down and the script is attempting a restart. This information is also logged in
the $APP_LOG file before the restart command. Notice the restart command at the end
of the script segment. This monitoring script is executed from the root crontab every
10 minutes. Because the script is running as root it is easy to use the su (switch user)
command to execute a single command as the appsvc user for the restart. If you are not
familiar with this technique, then study the syntax in Listing 9.1 and study the man
page for the su command.

Remote Monitoring with Secure Shell

In the previous section we studied a “local” shell script. No one said, though, that you
could not run this same script from a remote machine. This is where Open Secure Shell
(OpenSSH) comes into play.

Open Secure Shell is a freeware encryption replacement for telnet, ftp, and rsh, for
the most part. When we use the ssh command we establish a connection between two
machines, and a secure tunnel allows encrypted communication between two trusted
machines. Using ssh we can log in to another trusted machine in the network, we can
copy files between the machines in an encrypted state, and we can run commands on
a remote trusted machine. OpenSSH can be downloaded at the following URL:

http://www.openssh.com

To establish password-free encrypted connections, an encryption key pair must be
created on both machines. This encryption key is located on both machines in the
user’s $HOME/.ssh directory. All of the details to set up the password-free encrypted
connections are shown in great detail in the ssh man page (man ssh).

Let’s look at a couple of examples of using ssh. The first example shown in Listing
9.2 shows a simple login without the key pair created.

ssh randy@dino

The authenticity of host ‘dino (10.10.10.6)’ can’t be established.

RSA key fingerprint is c5:19:37:b9:59:ad:3a:18:6b:45:57:2d:ab:b8:df:bb.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘dino (10.10.10.6)’ (RSA) to the list of

known

hosts.

randy@dino’s password:

Last unsuccessful login: Tue Jul 2 13:58:18 EDT 2002 on /dev/pts/24 from

bambam

Listing 9.2 Sample secure shell login.

254 Chapter 9

Last login: Wed Aug 7 10:28:00 EDT 2002 on /dev/pts/18 from bambam

**

*

*

* Welcome to dino!

*

*

* Please see the README file in /usr/lpp/bos for information pertinent

* to this release of the AIX Operating System.

*

*

*

**

[YOU HAVE NEW MAIL]

[randy@dino] $

Listing 9.2 Sample secure shell login. (continued)

Notice in Listing 9.2 that the login to dino required a password, which indicates that
the systems do not have the encryption key pairs set up. This does get a bit annoying
when you are trying to run a command on a remote machine using an ssh tunnel. With
the key pairs created on both machines we can monitor remote machines using encryp-
tion, and no password is required. As an example, suppose I need to check the filesys-
tem usage on dino and I am logged into yogi. By adding the command that we want
to execute on dino to the end of the ssh login statement, we establish a trusted connec-
tion between the two machines, and the command executes on the remote machine
with the output going to the local machine. Of course, this is equivalent to a remote
shell, rsh, except that the information is encrypted using ssh in place of rsh. A simple
example of this technique is shown in Listing 9.3.

[randy@yogi] ssh randy@dino df -k

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 196608 66180 67% 2330 3% /

/dev/hd2 1441792 488152 67% 29024 9% /usr

/dev/hd9var 2162688 1508508 31% 868 1% /var

/dev/hd3 131072 106508 19% 361 2% /tmp

Listing 9.3 Example of running a remote command. (continues)

Monitoring Processes and Applications 255

Free & Share & Open

/dev/hd1 589824 235556 61% 15123 11% /home

/dev/local_lv 393216 81384 80% 2971 4% /usr/local

/dev/oracle_lvx 1507328 307388 80% 5008 2% /oracle

/dev/arch_lvx 13631488 8983464 35% 44 1% /oradata

Listing 9.3 Example of running a remote command. (continued)

Notice in the output in Listing 9.3 that there was no prompt for a password and that
the result was presented back to the local terminal. Once the key pairs are set up you
can do remote monitoring with ease, as long as your security staff does not find any
bugs in the ssh code. Let’s move on to Oracle now.

Checking for Active Oracle Databases
I wanted to have at least one example of interacting with an application in this chapter,
and I picked an Oracle database as the example using a SQL+ database query. We will
look at three steps to check the Oracle database status. The first step is to list all of the
Oracle instances defined in the /etc/oratab file. This file is colon-separated (:) with
the Oracle instance name(s) in the first field, $1. The function shown in Listing 9.4 first
checks to see if a /etc/oratab file exists. If the file is not found, then a notification
message is displayed on the user’s terminal and the function returns a 3 for a return
code. Otherwise, the /etc/oratab file is parsed to find the Oracle instance name(s).
Removing all of the lines that begin with comments, specified by beginning with a
hash mark (#), in the file is done using a sed statement in combination with the ^#
notation. Removing the comment lines is easy using the sed statement, as shown here
with a /etc/hosts file as an example.

cat /etc/hosts | sed /^#/b > /etc/hosts.without_beginning_comments

The output of the previous command shows all of the IP address and hostname
entries, except that the commented-out lines have been removed. The ^# is the key to
finding the commented lines, which translates to begins with a #.

Check out the function in Listing 9.4 to see how we use this technique to parse the
Oracle instances from the /etc/oratab file.

function show_oratab_instances

{

if [! -f “$ORATAB”]

then

echo “\nOracle instance file $ORATAB does not exist\n”

return 3

else

cat $ORATAB | sed /^#/b | awk -F: ‘{print $1}’

fi

}

Listing 9.4 show_oratab_instances function listing.

256 Chapter 9

The output of the show_oratab_instances function in Listing 9.4 is a list of all
of the Oracle instances defined on the system. We have already removed the lines that
are comments; next comes the awk statement that extracts the first field, specified by
awk -F: ‘{print $1}’. In this awk statement the -F: specifies that the line is field
separated by colons (:). Once we know the field separator we just extract the first field
($1), which is the Oracle instance name.

Now we are going to use the same function shown in Listing 9.4 to get the status of
all of the defined Oracle instances by checking for the process for each instance. This
technique is shown in Listing 9.5.

function show_all_instances_status

{

for INSTANCE in $(show_oratab_instances)

do

ps -ef | grep ora | grep $INSTANCE | grep -v grep >/dev/null 2>&1

if (($? != 0))

then

echo “\n$INSTANCE is NOT currently running $(date)\n”

else

echo “\n$INSTANCE is currently running OK $(date)\n”

fi

done

}

Listing 9.5 show_all_instances_status function listing.

Notice in Listing 9.5 that we use the function from Listing 9.4 to get the list of Ora-
cle instances to query the system for. In this case, all we are doing is using the ps -ef
command again. This time we narrow the list down with a grep on the string ora. This
output is piped (|) to another grep statement, where we are looking for the instance
name for the current loop iteration, specified by $INSTANCE. Of course, we need to
strip out any grep processes from the output so we add one more grep -v grep. If the
return code of the entire ps -ef statement is 0, zero, then the instance is running; if the
return is anything other than 0, zero, then the instance is not running.

We are still looking at the process level. I have seen cases when the instance
processes are running, but I still could not log in to the database. For a final test we
need to do an actual SQL query of the database to interact with Oracle. This just needs
to be a very simple query to prove that we can interact with the database and get data
back.

To actually query the Oracle database we can use a simple SQL+ statement, as
shown in Listing 9.6. This two-line SQL script is used in the function simple_
SQL_query, shown in Listing 9.6 using the sqlplus command.

select * from user_users;

exit

Listing 9.6 my_sql_query.sql SQL script listing.

Monitoring Processes and Applications 257

Free & Share & Open

As you can see in Listing 9.6, this is not much of a query, but it is all that we need.
This SQL script, my_sql_query.sql, is used in the sqlplus function in Listing 9.7.
Notice in this function, simple_SQL_query, that the sqlplus command statement
requires a username, password, and an Oracle SID name to work. See the function
code in Listing 9.7.

function simple_SQL_query

{

USER=oracle

PASSWD=oracle

SID=yogidb

sqlplus ${USER}/${PASSWD}@$SID @my_sql_query.sql

}

Listing 9.7 simple_SQL_query function listing.

The function shown in Listing 9.7 can be shortened further, if you are logged in to
the system as the oracle user or executing a script as the oracle user. If these conditions
are met then you can run a simpler version of the previous sqlplus, as shown in List-
ing 9.8, with the output of the query; however, the Oracle Listener is not tested as in the
previous sqlplus statement in Listing 9.7. The sqlplus command in Listing 9.8 should
be run on the local machine.

[oracle@yogi] sqlplus / @/usr/local/bin/mysql_query.sql

SQL*Plus: Release 8.1.7.0.0 - Production on Wed Aug 7 16:07:30 2002

(c) Copyright 2000 Oracle Corporation. All rights reserved.

Connected to:

Oracle8i Enterprise Edition Release 8.1.7.4.0 - Production

With the Partitioning option

JServer Release 8.1.7.4.0 - Production

USERNAME USER_ID ACCOUNT_STATUS

----------------------------- ---------- --------------------------------

LOCK_DATE EXPIRY_DATE DEFAULT_TABLESPACE

----------- ----------- ------------------------------

TEMPORARY_TABLESPACE CREATED INITIAL_RSRC_CONSUMER_GROUP

Listing 9.8 Example of an SQL+ Oracle query.

258 Chapter 9

------------------------------ ----------- ------------------------------

EXTERNAL_NAME

OPS$ORACLE 940 OPEN

USERS

TEMP 18-APR-2002

Disconnected from Oracle8i Enterprise Edition Release 8.1.7.4.0 -

Production

With the Partitioning option

JServer Release 8.1.7.4.0 - Production

Listing 9.8 Example of an SQL+ Oracle query. (continued)

This is about as simple as it gets! You can check the return code from the sqlplus
command shown in Listing 9.8. If it is zero, then the query worked. If the return code
is nonzero, then the query failed and the database should be considered down. In any
case, the Database Administrator needs to be notified of this condition.

Checking If the HTTP Server/Application Is Working
Some applications use a Web browser interface. For this type of application we can use
a command-line browser, such as linx, to attempt to reach a specific URL, which in
turn should bring up the specified application Web page. The function shown in List-
ing 9.9 utilizes the linx command-line browser to check both the HTTP server and the
Web page presented by the specified URL, which is passed to the function in the $1
argument.

check_HTTP_server ()

{

LINX=”/usr/local/bin/lynx” # Define the location of the linx program

URL=$1 # Capture the target URL in the $1 position

URLFILE=/tmp/HTTP.$$ # Define a file to hold the URL output

###

$LINX “$URL” > $URLFILE # Attempt to reach the target URL

if (($? != 0)) # If the URL is unreachable - No Connection

Listing 9.9 check_HTTP_server function listing. (continues)

Monitoring Processes and Applications 259

Free & Share & Open

then

echo “\n$URL - Unable to connect\n”

cat $URLFILE

else # Else the URL was found

while read VER RC STATUS # This while loop is fed from the bottom

after the “done” using input

redirection

do

case $RC in # Check the return code in the $URLFILE

200|401|301|302) # These are valid return codes!

echo “\nHTTP Server is OK\n”

;;

*) # Anything else is not a valid return code

echo “\nERROR: HTTP Server Error\n”

;;

esac

done < $URLFILE

fi

rm -f $URLFILE

}

Listing 9.9 check_HTTP_server function listing. (continued)

This is a nice function in Listing 9.9 for checking the status of a Web server and also
to see if an application URL is accessible. You should test this function against doing
the same task manually using a graphical browser. This has been tested on an applica-
tion front-end, and it works as expected; however, a good test is recommended before
implementing this, or any other code, in this book. You know all about the disclaimer
stuff. (I am really not even here writing this book, or so the disclaimer says.)

Other Things to Consider

As with any code that is written, it can always be improved. Each of the functions and
code segments presented in this chapter are just that, code segments. When you are
monitoring applications, code like this is only one part of a much bigger shell script, at
least it should be. The monitoring should start at the lowest level, which is sending a
ping to the application host to ensure that the machine is powered on and booted.
Then we apply more layers as we try to build a script that will allow us to debug the
problem. I have presented only a few ideas; it is your job to work out the details for
your environment.

260 Chapter 9

Application APIs and SNMP Traps
Most enterprise management tools come with application program interfaces (APIs)
for the more common commercial applications; however, we sometimes must write
shell scripts to fill in the gaps. This is where SNMP traps come in. Because the enter-
prise management tool should support SNMP traps, the APIs allow the application to
be monitored using the SNMP MIB definitions on both the management server and the
client system.

When an enterprise management tool supports SNMP traps, you can usually write
your own shell scripts that can use the tool’s MIB and SNMP definitions to get the mes-
sage out from your own shell scripts. As an example, the command shown here utilizes
a well-known monitoring tool’s SNMP and MIB data to allow a trap to be sent.

/usr/local/bin/trapclient $MON_HOST $MIB_NUM $TRAP_NUM $TRAP_TEXT

In the previous command the MON_HOST variable represents the enterprise man-
agement workstation. The MIB_NUM variable represents the specific code for the MIB
parameter. The TRAP_NUM variable represents the specific trap code to send, and the
TRAP_TEXT is the text that is sent with the trap. This type of usage varies depending
on the monitoring tool that you are using. At any rate, there are techniques that allow
you to write shell scripts to send traps. The methods vary, but the basic syntax remains
the same for SNMP.

Summary

This is one of those chapters where it is useless to write a bunch of shell scripts. I tried
to show some of the techniques of monitoring applications and application processes,
but the details are too varied to cover in a single chapter. I have laid down a specific
process that you can utilize to build a very nice tool to monitor your systems and appli-
cations. Always start with a ping! If the box is unpingable, then your first job is to get
the machine booted or to call hardware support.

In the next steps you have several options, including interacting with the applica-
tion, as we did with a SQL+ query of an Oracle database. We also covered monitoring
specific processes that are a little flaky and die every once in a while. I have two appli-
cations that I have to monitor this way, and I have not had even one phone call since I
put this tool in place. The key is to keep the business in business, and the best way to
do that is to be very proactive. This is where good monitoring and control shell scripts
make you look like gold.

Remember, no one ever notices an application except when it is down!
In the next chapter, we move on to study creating pseudo-random passwords. The

scripts include the use of arrays in shell scripts and a practical use for computer-
generated pseudo-random numbers in a shell script. See you in the next chapter!

Monitoring Processes and Applications 261

Free & Share & Open

263

Got security? Most of the user community does not know how to create secure pass-
words that are not easy to guess. Users tend to have several passwords that they rotate.
The problem with these “rotating” passwords is that they are usually easy to guess. For
example, users find that birth dates, social security numbers, addresses, department
names/numbers, and so on make good passwords that are easy to remember. Some-
times they even use words found in any dictionary, which is a starting point for any
cracker. In this chapter we are going to create a shell script that creates pseudo-random
passwords.

Randomness

If you look at Chapter 21, “ Pseudo-Random Number Generator,” you can see the exercise
that we used to create pseudo-random numbers. These numbers are not true random
numbers because of the cyclical nature of how “random numbers” are created on a
computer system. For example, if you always start a random number sequence with
the same seed, or first number, you will always have the same sequence of numbers. In
Chapter 21 we used the process ID (PID) of the current process, which was the shell
script, as the seed for creating pseudo-random numbers. This use of the PID is good
because PIDs are created by the system in a somewhat random nature. Now that I have
lost you in random numbers you are asking, “What does a random number have to do
with a password?” As we proceed, the answer will be intuitively obvious.

Creating Pseudo-Random
Passwords

C H A P T E R

10

Free & Share & Open

Creating Pseudo-Random Passwords

We started this chapter with a discussion on randomness because we are going to use
computer-generated pseudo-random numbers, then use these generated numbers as
pointers to specific array elements of keyboard characters, which are stored in the
array KEYS. In this chapter you get a practical use for generating random numbers,
and you thought Chapter 21 was a waste of time!

The script idea goes like this: We use an external file that contains keyboard characters,
one character per line. You can put any keyboard characters in this file that you want. I
just went down the rows on the keyboard from left to right, starting on the top row of
keys with numbers. As I went through all of the keyboard keys I then added a second set
of numbers from the number keypad, as well as all of the uppercase and lowercase
characters. The nice thing about this strategy is that you have the ability to specify the
exact group of characters that make a valid password in your shop. Country-specific
keyboards, which use characters other than those of the U.S. keyboards, also benefit from
this strategy.

Once we have the keyboard file created, we load the keyboard data into an array.
Don’t panic! Korn shell arrays are easy to work with, as you will see in the scripting
section as well as in the array introduction section. When we have all of the array ele-
ments loaded, then we know how many total elements we have to work with. Using
techniques described in Chapter 21, we create pseudo-random numbers between one
and the total number of array elements, n. With an array pointer, which is nothing more
than a pseudo-random number, pointing to an individual character, we add the spe-
cific character to build a text string. The default length of this character string, which is
the password we are creating, is eight characters; however, this can be changed on the
command line to make the password longer or shorter by adding an integer value
specifying the new password length.

The final step is to print the password to the screen. We also add two command-line
switch options, -n and -m. The -n switch specifies that the user wants to create a new
keyboard data file. The -m switch specifies that the user wants to print a password page.
In our shop we are required to put some passwords, such as root, in multiple security
envelopes to be locked in a safe, just in case. To remove the risk of typos, I print the
password page, which has three copies of the password data on the same page, and cut
the sheet up into three pieces. I then fold each of the three slips of paper and seal each
one in a security envelope and give them to my Admin Manager.

As you can see, creating passwords is not something that I take lightly! Weak pass-
words make for a real security risk, and as a Systems Administrator you need to take a
proactive approach to create secure passwords that are as random as you can make them.
This chapter is a valuable asset to any security team as well as for the common user.

Syntax

As with any of our scripting sessions we first need the correct syntax for the primary
commands that we are going to use in the shell script. In this case we need to introduce

264 Chapter 10

arrays and the commands that are used to work with the array and the array elements.
There is a lot more than loading an array to creating this shell script. When we get to
the scripting section you will see the other tasks that I have in mind, and you can pick
up a pointer or two from the chapter.

Arrays
In a Korn shell we can create one-dimensional arrays. A one-dimensional array con-
tains a sequence of array elements, which are like the boxcars connected together on a
train track. An array element can be just about anything, except for another array.
I know, you’re thinking that you can use an array to access an array to create two- and
three-dimensional arrays. If this can be done, it is beyond the scope of this book.

For our task we are going to load our array with single-character array elements that
are loaded into the array from an external file. An array element can be a text string,
number, line of text, print queue name, or just about anything you can list.

Loading an Array

An array can be loaded in two ways. You can define and load the array in one step with
the set -A command, or you can load the array one element at a time. Both techniques
are shown here.

Defining and Loading Array “KEYS” in One Step

set -A KEYS q w e r t y u i o p \[\] a s d f g h j k l \$

Notice in this preceding list that the characters [,], and $ have been escaped to
remove their special function by adding a backslash character. If we had not escaped
these characters, then errors, and strange behavior, may occur as you tried to load or
display the array elements. You will see this on a larger scale in the shell script. Also
remember that if you enclose a list in double quotes or single tic marks it is treated as
a single array element, not as individual array elements.

Loading Array “KEYS” One Array Element at a Time

The second option for loading the array KEYS is to use a while read loop and use a file
as input to the while loop. In this example we load the array elements one at a time
using a counter to index the KEYS array.

X=0

while read ARRAY_ELEMENT

do

((X = X + 1))

KEYS[$X]=$ARRAY_ELEMENT

done < $ARRAY_ELEMENT_FILE

Creating Pseudo-Random Passwords 265

Free & Share & Open

The first loading option, which uses the set -A command, requires that you hard-
code the keyboard layout into the shell script, which removes much of the flexibility
that you want when restricting or expanding password content. Using the while loop
method we can use an external file and load this file with any characters that we want,
and we can have as many or as few characters defined for passwords as we like. We
can also duplicate characters and change the order of the characters any way we wish.

As the counter is incremented on each while loop iteration, we load the array ele-
ments in sequential order, starting with array elements 1, KEYS[1]. When we get to
the end of the file, we know how many elements we have loaded in the array by the
value of the array counter, $X. To see the specific value of array element 22, you can
use the following syntax:

echo ${KEYS[22]}

;

As you can see from the response, the 22nd array element that was loaded is a semi-
colon character (;). We can also display the number of array elements using either of
the following two options:

echo ${#KEYS[*])

echo ${#KEYS[@])

Notice that we started with array element 1, one. The Korn shell also supports array
element 0, zero, but the pseudo-random numbers we create start with one, not zero. We
will look at arrays more closely as we write our shell script.

Building the Password Creation Script

I want to explain this shell script one step at a time, and we have a lot to cover, so let’s
get started. First, you need to understand the order of execution and each task that is
involved in this script.

Order of Appearance
As usual, we start out by defining the variables that are required for this script. The fol-
lowing section shows the variables that are defined for this shell script.

Define Variables

LENGTH=8 # Default password length.

NOTIFICATION_LIST=<Manager notification list> # Persons to notify
if the password is revealed or the “glass has been broken.”

DEFAULT_PRINTER=<printer or queue name> # Default printer to print
the password report.

266 Chapter 10

SCRIPT=$(basename $0) # The name of this shell script with the directory
path removed.

OUTFILE=/tmp/tmppwd.out # Temporary hold file for the printer report.

KEYBOARD_FILE=/scripts/keyboard.keys # File containing keyboard
characters.

PRINT_PASSWORD_MANAGER_REPORT=<TRUE or Anything else> # Print
report flag.

RANDOM=$$ # Initializes the random seed to the PID of the shell script, which is
pretty random.

The purpose of each of these variables is shown after the pound sign (#) on each line.

Define Functions

We have six functions to go through in this section. The functions described here are
listed in their order of appearance in the shell script, mk_passwd.ksh. In each of the
function descriptions there is a function listing for you to follow through.

in_range_random_number Function Description

The Korn shell provides an environment variable called—you guessed it—RANDOM.
This pseudo-random number generator uses a seed as a starting point to create all
future numbers in the sequence. The initial seed is used to create a pseudo-random
number. This resulting number is used for the next seed to create the next random
number, and so on. As you would expect, if you always start generating your numbers
with the same seed each time, you will get the exact same number sequence each time.
To change the repeatability we need to have a mechanism to vary the initial seed each
time we start generating numbers. I like to use the current process ID (PID) of the shell
script because this number will vary widely and is an easy way to change the seed
value each time we start generating numbers.

We often want to limit the range of numbers not to exceed a user-defined maximum.
An example is creating lottery numbers between 1 and the maximum number, which
might be 36. We are going to use the modulo arithmetic operator to reduce all numbers
to a fixed set of numbers between [0..N-1], which is called modulo N arithmetic. We are
going to use this pseudo-random number to index array elements in the KEYS array.

For our number range we need a script-defined maximum value, which we will
assign to a variable called UPPER_LIMIT. This UPPER_LIMIT variable is defined
when the KEYS array has been loaded because it represents the total number of ele-
ments that are contained in the KEYS array. The modulo operator is the percent sign
(%), and we use this operator the same way that you use the forward slash (/) in divi-
sion. We still use the RANDOM Korn shell variable to get a new pseudo-random number.
This time, though, we are going to use the following equation to limit the number to
not exceed the script-defined maximum.

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

Creating Pseudo-Random Passwords 267

Free & Share & Open

Notice that we added one to the result. Using the preceding equation will produce a
pseudo-random number between 1 and the script-defined $UPPER_LIMIT, which is
the total number of elements in the KEYS array. The function using this equation is
in_range_random_number and is shown in Listing 10.1.

function in_range_random_number

{

Create a pseudo-random number less than or equal

to the $UPPER_LIMIT value, which is defined in the

main body of the shell script.

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

echo “$RANDOM_NUMBER”

}

Listing 10.1 in_range_random_number function listing.

The function in Listing 10.1 assumes that the RANDOM variable seed has been initial-
ized in the main body of the shell script and that a script-defined UPPER_LIMIT variable
has been set. This function will produce numbers between 1 and the script-defined
maximum value.

load_default_keyboard Function Description

As it turns out, you can add as many, or as few, characters to the $KEYBOARD_FILE
file. What if the user wants a quick startup and an easy way to create this required file?
This is the reason why I added this function to the mk_passwd.ksh shell script.

There are two mechanisms for loading a default keyboard layout. The first way is
when the shell script is unable to locate the $KEYBOARD_FILE on the system. In this
case the user is prompted to load the default keyboard layout. The second option is to
add -n as a command-line switch. We will get to parsing command-line switches later
in this chapter. In either of the two situations the user is still prompted before the
$KEYBOARD_FILE is loaded with default keyboard layout.

Other than prompting the user to load the default keyboard layout, we need to sup-
ply a list of keyboard characters to load into the file. At this point let’s look at the func-
tion code in Listing 10.2 and cover the details at the end.

function load_default_keyboard

{

If a keyboard data file does not exist then the user

is prompted to load the standard keyboard data into the

$KEYBOARD_FILE, which is defined in the main body of

Listing 10.2 load_default_keyboard function listing.

268 Chapter 10

the shell script.

clear # Clear the screen

echo “\nLoad the default keyboard data file? (Y/N): \c”

read REPLY

case $REPLY in

y|Y) :

;;

*) echo “\nSkipping the load of the default keyboard file...\n”

return

;;

esac

cat /dev/null > $KEYBOARD_FILE

echo “\nLoading the Standard Keyboard File...\c”

Loop through each character in the following list and

append each character to the $KEYBOARD_FILE file. This

produces a file with one character on each line.

for CHAR in \` 1 2 3 4 5 6 7 8 9 0 \- \= \\ q w e r t y u i o \

p \[\] a s d f g h j k l \; \’ z x c v b n m \, \

\. \/ \\ \~ \! \@ \# \$ \% \^ \& * \(\) _ \+ \| \

Q W E R T Y U I O P \{ \} A S D F G H J K L \: \” \

Z X C V B N M \< \> \? \| \. 0 1 2 3 4 5 6 7 8 9 \/ \

* \- \+

do

echo “$CHAR” >> $KEYBOARD_FILE

done

echo “\n\n\t...Done...\n”

sleep 1

Listing 10.2 load_default_keyboard function listing. (continued)

Now I want to direct your attention to the for loop in Listing 10.2, which is in bold-
face text. The idea is to loop through each character one at a time and append the char-
acter to the $KEYBOARD_FILE. The result is a file that contains the keyboard layout,
listed one character per line. The file shows one character per line to make it easier to
load the file and the KEYS array.

In the list of characters please notice that most of the nonalphanumeric characters are
preceded by a backslash (\), not just the Korn shell special characters. As we discussed
previously, this backslash is used to escape the special meaning of these characters.

Creating Pseudo-Random Passwords 269

Free & Share & Open

When you precede a special character with the backslash, you are able to use the char-
acter as a literal character, just like the alphanumeric characters, and if a backslash pre-
cedes the other non-alphanumeric characters, it is ignored. The list of characters that
are escaped is shown here:

` ! @ # $ % ^ & * () _ - = + [] { }

On each loop iteration one character is appended to the $KEYBOARD_FILE using
the following command:

echo “$CHAR” >> $KEYBOARD_FILE

When the file is loaded, which happens extremely fast, we notify the user that the
load is complete and then sleep for one second. I added this sleep 1 at the end of this
function because the load happened so fast that the user needed a second to see the
message.

check_for_and_create_keyboard_file Function Description

Is this function name descriptive enough? I like to know exactly what a function is
used for by reading the name of the function.

The purpose of this function is to check for the existence of the $KEYBOARD_FILE
and to prompt the user to load the default keyboard layout into the
$KEYBOARD_FILE. The user has the option to load the default data or not to load it. If
the user declines to load the keyboard data file, then this script will not work. To get
around this little problem, we just notify the user of this ERROR and exit the shell
script.

When the user gets the error message, he or she is also informed of the name of the
missing file and a description of what the script expects in the file—specifically, one
keyboard character per line. The full function is shown in Listing 10.3.

function check_for_and_create_keyboard_file

{

If the $KEYBOARD_FILE does not exist then

ask the user to load the “standard” keyboard

layout, which is done with the load_default_keyboard

function.

if [! -s $KEYBOARD_FILE]

then

echo “\n\nERROR: Missing Keyboard File”

echo “\n\nWould You Like to Load the”

echo “Default Keyboard Layout?”

echo “\n\t(Y/N): \c”

typeset -u REPLY=FALSE

read REPLY

if [[$REPLY != Y]]

then

Listing 10.3 check_for_and_create_keyboard_file function listing.

270 Chapter 10

echo “\n\nERROR: This shell script cannot operate”

echo “without a keyboard data file located in”

echo “\n==> $KEYBOARD_FILE\n”

echo “\nThis file expects one character per line.”

echo “\n\t...EXITING...\n”

exit 3

else

load_default_keyboard

echo “\nPress ENTER when you are you ready to continue: \c”

read REPLY

clear

fi

fi

}

Listing 10.3 check_for_and_create_keyboard_file function listing. (continued)

To check for the existence of the $KEYBOARD_FILE, we use the -s test in an if state-
ment, an shown here:

if [! -s $KEYBOARD_FILE]

then

...

fi

Notice that we negated the test by adding an exclamation point (! -s). This is
actually a test to see if the file is not greater than zero bytes in size or that the
$KEYBOARD_FILE does not exist. If either of these conditions is met, then we display
some messages to the user and ask the user if the default keyboard layout should be
loaded.

If the user acknowledges the question with a “Y” or a “y,” then we execute the
load_default_keyboard function, which we studied in the last section,
“load_default_keyboard Function Description.” After the keyboard data is loaded into
the $KEYBOARD_FILE, we stop and ask the user to press ENTER to continue. Once the
user presses ENTER, the script creates a pseudo-random password, which we will
cover in a later section.

build_manager_password_report Function Description

You may be asking, “Why do you want to print a password?” There are a lot of reasons
to print a password, but only one of the answers is valid! For security reasons. Now, I
really lost you! How can a printed password be good for security? It’s simple: The root
password needs to be protected at all costs. Our machines do not have direct login
access to root, but we use an auditing script that captures every keystroke of the root
user. If a machine has failed and you need to log on to the system on the console, you
are definitely going to need access to the root password. For this reason we keep three
copies of the root password in secure envelopes, and they get locked up for safe keeping.

Creating Pseudo-Random Passwords 271

Free & Share & Open

The build_manager_password_report function creates a file, pointed to by the
$OUTFILE variable, that has three copies of the same information on a single page.
Look at the function shown in Listing 10.4 to see the message.

function build_manager_password_report

{

Build a file to print for the secure envelope

(

echo “\n RESTRICTED USE!!!”

echo “\n\n\tImmediately send an e-mail to:\n”

echo “ $NOTIFICATION_LIST”

echo “\n\tif this password is revealed!”

echo “\n\tAIX root password: $PW\n”

echo “\n\n”

echo “\n RESTRICTED USE!!!”

echo “\n\n\tImmediately send an e-mail to:\n”

echo “ $NOTIFICATION_LIST”

echo “\n\tif this password is revealed!”

echo “\n\tAIX root password: $PW\n”

echo “\n\n”

echo “\n RESTRICTED USE!!!”

echo “\n\n\tImmediately send an e-mail to:\n”

echo “ $NOTIFICATION_LIST”

echo “\n\tif this password is revealed!”

echo “\n\tAIX root password: $PW\n”

) > $OUTFILE

}

Listing 10.4 build_manager_password_report function listing.

Notice that the entire message is enclosed in parentheses, with the final output redi-
rected to the $OUTFILE file using the following syntax:

(echo statements....) > $OUTFILE

272 Chapter 10

This method runs all of the echo commands as a separate shell and sends the result-
ing output to the $OUTFILE using output redirection.

Also notice the $NOTIFICATION_LIST variable. This variable is set in the main
body of the script. This variable contains the list of people who must be notified if the
password is ever released, as stated in the message in the function.

When I get one of these printouts, I always run to get it as soon as the page comes
out of the printer. This is an extremely important piece of paper! I take it to my desk
and cut the page into three pieces and seal each one in a secure envelope and have it
locked up for safe keeping.

A sample manager’s password report is shown in Listing 10.5.

RESTRICTED USE!!!

Immediately send an e-mail to:

Donald Duck, Yogi Bear, and Mr. Ranger

if this password is revealed!

AIX root password: E-,6Kc11

RESTRICTED USE!!!

Immediately send an e-mail to:

Donald Duck, Yogi Bear, and Mr. Ranger

Immediately send an e-mail to:

Donald Duck, Yogi Bear, and Mr. Ranger

if this password is revealed!

AIX root password: E-,6Kc11

RESTRICTED USE!!!

Listing 10.5 Password report printout. (continues)

Creating Pseudo-Random Passwords 273

Free & Share & Open

Immediately send an e-mail to:

Donald Duck, Yogi Bear, and Mr. Ranger

if this password is revealed!

AIX root password: E-,6Kc11

Listing 10.5 Password report printout. (continued)

You need to edit this function and change the message to suit your environment.
If you do not need this functionality, then never use the -m switch, or reply “No” when
asked to confirm the printing.

usage Function Description

It is always a good idea to show the user a USAGE: statement when incorrect or insuf-
ficient input is detected (we will get to detecting input errors later in this chapter). For
our mk_passwd.ksh shell script we have four options and several combinations.

We can execute the mk_passwd.ksh script with no arguments, and you can execute
the mk_passwd.ksh shell script with the -n and -m command-line switches. The -n
switch loads the default keyboard layout into the $KEYBOARD_FILE file. We can also
change the length of the password, which is defined as eight characters by default. Any
combination of these command options can be executed. Please look closely at the
USAGE: statement shown in Listing 10.6.

function usage

{

echo “\nUSAGE: $SCRIPT [-m] [-n] [password_length]\n”

echo “ Where:

-m Creates a password printout for Security

-n Loads the default keyboard data keys file

password_length Integer value that overrides

the default 8 character

password length.\n”

}

Listing 10.6 usage function listing.

274 Chapter 10

When a usage error is detected, the script executes the usage function that displays
the following message:

USAGE: $SCRIPT [-m] [-n] [password_length]

Where:

-m Creates a password printout for Security

-n Loads the default keyboard data keys file

password_length Integer value that overrides

the default 8 character

password length.\n”

trap_exit Function Description

This function, trap_exit, is executed only when an exit signal is trapped. You will see
how to set a trap a little later. The purpose of this function is to execute any com-
mand(s) that are listed in the function. In our case, we want to remove the $OUTFILE
before exiting the shell script. Additionally, we do not want to see any messages sent to
stderr if the file does not exist. The statement is shown in the following code.

function trap_exit

{

rm -f $OUTFILE >/dev/null 2>&1

}

Notice that we redirect the stderr output to stdout, which is specified by the
2>&1 notation, but not before we send everything to the bit bucket, specified by
>/dev/null.

That is it for the functions. The next section covers the testing and parsing required
for the command arguments.

Testing and Parsing Command-Line Arguments

Because this shell script has command-line options to control execution, we need to
test the validity of each command-line argument and then parse through each one to
set up how the script is to be executed. We have four tests that need to be performed to
validate each argument.

Validating the Number of Command-Line Arguments

The first step is to ensure that the number of command-line arguments is what we are
expecting. For this script we are expecting no more than three arguments. To test the
number of arguments, we use the echo $# command to display the number of
command-line arguments. The result is greater than or equal to 0, zero. This test code
is shown here.

Creating Pseudo-Random Passwords 275

Free & Share & Open

Check command line arguments - $# < 3

if (($# > 3))

then

usage

exit 1

fi

Notice that we used the mathematical test here. One thing to note about the syntax
of this test is that for user-, or script-defined variables we do not use the dollar sign ($)
in front of the variable. For shell variables you must use the shell notation here, too. If
the number of arguments on the command line exceeds three, then we display the
usage function and exit the shell script with a return code of 1, one.

Test for Valid Command-Line Arguments

We really have only three valid command-line arguments. Because -n and -m are
lowercase alphabetic characters, we may as well add their uppercase counterparts for
people who love to type uppercase characters. Now we have only five valid command-
line arguments:

■■ Any Integer

■■ -n and -N to indicate creating a new $KEYBOARD_FILE

■■ -m and -M to indicate that the manager’s password report is to be printed

This seems easy enough to test for using a case statement to parse through the
command-line arguments using the $@ values, which is a list of the command-line
arguments separated by a single space. Look at the block of code in Listing 10.7 for
details.

Test for valid command line arguments -

Valid auguments are “-n, -N, -m, -M, and any integer

if (($# != 0))

then

for CMD_ARG in $@

do

case $CMD_ARG in

+([-0-9]))

The ‘+([-0-9]))’ test notation is looking for

an integer. Any integer is assigned to the

length of password variable, LENGTH

LENGTH=$CMD_ARG

;;

-n|-N) : # The colon (:) is a no-op, which does nothing

;;

Listing 10.7 Code for testing for command-line arguments.

276 Chapter 10

-m|-M) : # The colon (:) is a no-op, which does nothing

;;

*) # Invalid Command-Line Argument, show usage and

exit

usage

exit 1

;;

esac

done

fi

Listing 10.7 Code for testing for command-line arguments. (continued)

Before we test the validity of each argument, we ensure that there is at least one
command-line argument to test. If we have some arguments to test, we start a case
statement to parse through each argument on the command line. As the arguments are
parsed, the value is assigned to the CMD_ARG variable.

Notice the very first test, +([0-9]). This regular expression is testing for an integer
value. When we add this integer test to the case statement, we need to add the last
close parentheses ,), for the case statement. If the test is true, we know that an integer
has been supplied that overrides the default eight-character password length, speci-
fied by the LENGTH variable.

The tests for -n, -N, -m, and -M are do nothings, or no-ops in this case. A no-op is
specified by the colon character (:). The no-op does not do anything, but it always has
a 0, zero, return code. When our valid command options are found, the case statement
goes to the next argument on the command line.

When an invalid command-line option is detected, the function displays the usage
message and exits the script with a return code of 1, one, which is defined as a usage
error.

Ensuring the $LENGTH Variable Is an Integer

As a final sanity check of the $LENGTH variable, I added this extra step to ensure that
it is assigned an integer value. This test is similar to the test in the previous section, but
it is restricted to testing the LENGTH variable assignment. This test code is shown in
Listing 10.8.

#

Ensure that the $LENGTH variable is an integer

#

case $LENGTH in

+([0-9])) : # The ‘+([0-9]))’ test notation is looking for

an integer. If it is an integer then the

Listing 10.8 Testing $LENGTH for an integer value. (continues)

Creating Pseudo-Random Passwords 277

Free & Share & Open

no-op, specified by a colon, (Do Nothing)

command is executed, otherwise this script

exits with a return code of 1, one, after

displaying the usage message

;;

*) usage

exit 1

;;

esac

Listing 10.8 Testing $LENGTH for an integer value. (continued)

If the LENGTH variable does not have an integer assignment, then the usage mes-
sage function is shown, and the script exits with a return code of 1, which is defined as
a usage error.

Parsing Command-Line Arguments with getopts

The getopts function is the best tool for parsing through command-line arguments.
With the getopts function we can take direct action or set variables as a valid
command-line arguments is found. We can also find invalid command-line arguments,
if they are preceded with a minus sign (-).

The getopts function is used with a while loop that contains a case statement. The
basic syntax is shown in Listing 10.9.

while getopts “:n N V: m M” AUGEMENT 2>/dev/null 2>&1

do

case $ARGUMENT in

n|N) # Do stuff for -n and -N

;;

m|M) # Do stuff for -m and -M

;;

V) # The colon (:) after the V, V:, specifies

that -V must have an option attached on the command line.

;;

\?) # The very first colon (:n) specifies that any unknown

argument (-A, for example) produces a question mark (?) as

output. For these unknown arguments we show the usage

message and exit with a return code of 1, one.

;;

esac

done

Listing 10.9 Basic syntax for using the getopts function.

278 Chapter 10

As you can see, using getopts to parse command-line arguments is an easy way to
catch invalid command-line arguments and also to assign values or tasks to specific
arguments. The nice thing about this method is that we do not have to worry about the
order of the arguments on the command line.

Let’s look at the code for parsing the command line for this shell script, as shown in
Listing 10.10.

Use the getopts function to parse the command-

line arguments.

while getopts “:n N m M” ARGUMENT 2>/dev/null

do

case $ARGUMENT in

n|N)

Create a new Keyboard Data file

load_default_keyboard

echo “\nPress ENTER when you are you ready to continue: \c”

read REPLY

clear

;;

m|M)

Print the Manager Password Report

PRINT_PASSWORD_MANAGER_REPORT=TRUE

;;

\?) # Show the usage message

usage

exit 1

esac

done

Listing 10.10 getops command line parsing.

In our getopts statement, located on the line with the while loop, notice that there is
only one colon (:) in the listing. This specifies that any invalid option is to be assigned
the question mark (?), specifying an unknown option. We do not have any colons after
any options so we are not expecting any values to be assigned to any arguments.

In the case of the -n and -N options the load_default_keyboard function is exe-
cuted. For the -m and -M options the printer variable is set to TRUE. Any other options
result in the script exiting with a return code of 1, one.

Beginning of Main
Now that we have defined all of the variables and functions and verified all of the
command-line arguments, we are ready to start the main part of the mk_passwd.ksh
shell script.

Creating Pseudo-Random Passwords 279

Free & Share & Open

Setting a Trap

The first thing to do is to set a trap. A trap allows us to take action before the shell script
or function exits, if an exit signal is trappable and defined. We can never trap a kill -9
exit. This kill option does not do anything graceful; it just removes the process from
the system process table, and it no longer exists. The more common exit signals are 1,
2, 3, and 15. For a complete list of exit signals see Chapter 1, or enter kill -l (that’s ell)
on the command line.

Our trap is shown here:

trap ‘trap_exit; exit 2’ 1 2 3 15

When a trapped exit signal is detected, in this case signals 1, 2, 3, or 15, the trap exe-
cutes the two commands enclosed within the single tic marks, (‘ commands ‘). The
commands include running the trap_exit function that removes the $OUTFILE file;
then the script exits with a return code of 2, which has been defined as a trap exit for
this shell script.

Checking for the Keyboard File

This shell script is useless without a keyboard data file and cannot execute anything.
To check for the existence of the $KEYBOARD_FILE, we execute the check_for_
and_create_keyboard_file function. As we previously saw, this function checks
to see if a keyboard data file is on the system. If the file is not found, then the user is
prompted to automatically load the default keyboard layout, which is a standard 109
key QWERT keyboard. This functionality allows for a quick start for new users and an
easy recovery if the file is deleted. When we want to load a custom keyboard layout, all
that is needed is to replace the default keyboard file with a new keyboard layout file.

Loading the “KEYS” Array

Once we have a $KEYBOARD_FILE we are ready to load the KEYS array with the key-
board characters. For this shell script we are loading the KEYS array with file data. The
easiest way to do this is to use a while loop to read each line of the file, which in this
case is a single character, while feeding the loop from the bottom, as shown in Listing
10.11.

X=0 # Initialize the array counter to zero

Load the array called “KEYS” with keyboard elements

located in the $KEYBOARD_FILE.

while read ARRAY_ELEMENT

do

Listing 10.11 Code to load the KEYS array.

280 Chapter 10

((X = X + 1)) # Increment the counter by 1

Load an array element in the array

KEYS[$X]=$ARRAY_ELEMENT

done < $KEYBOARD_FILE

UPPER_LIMIT=$X # Random Number Upper Limit

Listing 10.11 Code to load the KEYS array. (continued)

In Listing 10.11 we initialize a loop counter, X, to zero. This counter is used to index
each array element in sequential order. Next we start the while loop to read each line
of data, a single character, and assign the value to the ARRAY_ELEMENT variable on
each loop iteration.

Inside of the while loop the counter is incremented as the loop progresses, and the
KEYS array is assigned a new array element on each loop iteration until all of the file
data is loaded into the KEYS array. Notice the command syntax we use to load an array
element.

KEYS[$X]=$ARRAY_ELEMENT

At the bottom of the while loop after done, notice the input redirection into the
loop. This is one of the fastest ways to parse a file line by line. For more information on
this and other file parsing methods, see Chapter 2. The last task is to define the
UPPER_LIMIT variable. This variable is used to create the pseudo-random numbers
that are used to point to the KEYS array elements when creating a new pseudo-random
password.

Using the LENGTH Variable to Build a Loop List

A for loop needs a list of something to loop through, which is defined on the for loop
declaration line. This next section of code uses the $LENGTH value to create a list of
numbers to loop through. This list of numbers represents the length of the password.
The default list is 1 2 3 4 5 6 7 8. The code to build this list is shown in Listing 10.12.

Produce the “for” loop list of elements that represent

the length of the password: ‘1 2 3 4 5 6 7 8’ is

the default “for” loop list.

FOR_COUNT=$(

Listing 10.12 Code to build a for loop list of numbers. (continues)

Creating Pseudo-Random Passwords 281

Free & Share & Open

X=0

while ((X < LENGTH))

do

Build the list here

((X = X + 1))

echo “$X “

done

)

Listing 10.12 Code to build a for loop list of numbers. (continued)

Notice how the command substitution is used in Listing 10.12. The entire while loop
is enclosed within a command substitution, specified by the MY_LIST=$(all of my
commands) syntax.

The while loop is interesting. This is a good way to build a list. The process consists
of incrementing a counter and then using an echo or print command to print the char-
acter, followed by a blank space. The result is a list of characters separated by a single
space.

Building a New Pseudo-Random Password

The code to build a new password is short and relatively easy to understand. The code
is shown in Listing 10.13. After the code listing, we will cover the details.

Create the pseudo-random password in this section

clear # Clear the screen

PW= # Initialize the password to NULL

Build the password using random numbers to grab array

elements from the KEYS array.

for i in $FOR_COUNT

do

PW=${PW}${KEYS[$(in_range_random_number $UPPER_LIMIT)]}

done

Done building the password

Listing 10.13 Building a new pseudo-random password code.

282 Chapter 10

We first initialize the password variable (PW) to a null value, specified by PW= , when
you make a variable assign to nothing, then you set the variable to NULL. Next we use
a for loop to loop through the numbers we previously created and assigned to the
FOR_COUNT variable. The default value for this variable is 1 2 3 4 5 6 7 8.

Inside the for loop we use a single command to build the password by adding a new
pseudo-random character as we go through each loop iteration. Building the password
works like this. We start with a NULL variable, PW. On each loop iteration we assign
the PW variable the previous PW assignment, which it had from the last loop iteration.
Then we add to this current character string a new character, which we generate using
the in_range_random_number function inside the KEYS array element assignment
using command substitution. The in_range_random_number function expects as
input the $UPPER_LIMIT value, which is 109 keys for the default keyboard layout in
this script. Using this method we use the function directly in the KEY array element
assignment. This is a good way to build a list.

Printing the Manager’s Password Report for Safe Keeping

This last section of code will create a temporary report file for printing purposes. The
only time this section of code is executed is when the -m or -M command-line arguments
are present. In the getops command-line parsing section, the PRINT_PASSWORD_
MANAGER_REPORT variable is assigned the value TRUE. Any other value disables the
printing option.

This section of code, shown in Listing 10.14, tests the printing variable and if TRUE,
executed the build_manager_password_report function. The user is then
prompted to print to the default printer, which is listed in the text. The user has a
chance to change the printer/queue at this point or to cancel the printing completely.
If the $OUTFILE is printed, the lp command adds the -c switch to make a copy of the
file in the spooler. This method allows us to immediately delete the password report
file from the system. We just do not want this report file sitting on the system for very
long.

Print the Manager’s password report, if specified

on the command with the -m command switch.

if [$PRINT_PASSWORD_MANAGER_REPORT = TRUE]

then

typeset -u REPLY=N

echo “\nPrint Password Sheet for the Secure Envelope? (Y/N)? \c”

Listing 10.14 Code to create and print the password report. (continues)

Creating Pseudo-Random Passwords 283

Free & Share & Open

read REPLY

if [[$REPLY = ‘Y’]]

then

build_manager_password_report

REPLY= # Set REPLY to NULL

echo “\nPrint to the Default Printer ${DEFAULT_PRINTER} (Y/N)? \c”

read REPLY

if [[$REPLY = ‘Y’]]

then

echo “\nPrinting to $DEFAULT_PRINTER\n”

lp -c -d $DEFAULT_PRINTER $OUTFILE

else

echo “\nNEW PRINT QUEUE: \c”

read DEFAULT_PRINTER

echo “\nPrinting to $DEFAULT_PRINTER\n”

lp -c -d $DEFAULT_PRINTER $OUTFILE

fi

else

echo “\n\n\tO.K. - Printing Skipped...”

fi

fi

##

#

Remove the $OUTFILE, if it exists and has a size

greater than zero bytes.

[-s $OUTFILE] && rm -f $OUTFILE

Listing 10.14 Code to create and print the password report. (continued)

The last two things that are done at the end of this shell script are to remove the
$OUTFILE, if it exists, and then prompt the user to press ENTER to clear the screen and
exit. We do not want to leave a password on the screen for anyone to read.

That is it for the steps involved to create the mk_passwd.ksh shell script. The entire
shell script is shown in Listing 10.15. Pay particular attention to the boldface text
throughout the mk_passwd.ksh shell script.

#!/usr/bin/ksh

#

AUTHOR: Randy Micahel

SCRIPT: mk_passwd.ksh

Listing 10.15 mk_passwd.ksh shell script listing.

284 Chapter 10

DATE: 11/12/2001

REV: 1.2.P

#

PLATFORM: Not Platform Dependent

#

PURPOSE: This script is used to create pseudo-random passwords.

An external keyboard data file is utilized, which is

defined by the KEYBOARD_FILE variable. This keyboard

file is expected to have one character on each line.

These characters are loaded into an array, and using

pseudo-random numbers generated, the characters are

“randomly” put together to form a string of characters.

By default, this script produces eight-character passwords,

but this length can be changed on the command line by

adding an integer value after the script name. There are

two command-line options, -n, which creates the default

KEYBOARD_FILE, and -m, which prints the manager’s

password report. This password report is intended

to be locked in a safe for safe keeping.

#

EXIT CODES:

0 - Normal script execution

1 - Usage error

2 - Trap exit

3 - Missing Keyboard data file

#

REV LIST:

6/26/2002: Added two command-line options, -n, which

creates a new $KEYBOARD_FILE, and -m, which prints

the manager’s password report.

#

set -x # Uncomment to debug

set -n # Uncomment to check syntax without any command execution

#

##

########### DEFINE SOME VARIABLES HERE #############

##

LENGTH=8 # Default Password Length

Notification List for Printing the Manager’s

Password Report for Locking Away Passwords

Just in Case You Are Unavaliable.

NOTIFICATION_LIST=”Donald Duck, Yogi Bear, and Mr. Ranger”

Define the Default Printer for Printing the Manager’s

Password Report. The user has a chance to change this

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

Creating Pseudo-Random Passwords 285

Free & Share & Open

printer at execution time.

DEFAULT_PRINTER=”hp4@yogi”

SCRIPT=$(basename $0)

OUTFILE=”/tmp/tmppdw.file”

KEYBOARD_FILE=/scripts/keyboard.keys

PRINT_PASSWORD_MANAGER_REPORT=”TO_BE_SET”

RANDOM=$$ # Initialize the random number seed to the

process ID (PID) of this shell script.

##

########## DEFINE FUNCTIONS HERE ###################

##

function in_range_random_number

{

Create a pseudo-random number less than or equal

to the $UPPER_LIMIT value, which is defined in the

main body of the shell script.

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

echo “$RANDOM_NUMBER”

}

#

##

#

function load_default_keyboard

{

If a keyboard data file does not exist then the user

prompted to load the standard keyboard data into the

$KEYBOARD_FILE, which is defined in the main body of

the shell script.

clear # Clear the screen

echo “\nLoad the default keyboard data file? (Y/N): \c”

read REPLY

case $REPLY in

y|Y) :

;;

*) echo “\nSkipping the load of the default keyboard file...\n”

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

286 Chapter 10

return

;;

esac

cat /dev/null > $KEYBOARD_FILE

echo “\nLoading the Standard Keyboard File...\c”

Loop through each character in the following list and

append each character to the $KEYBOARD_FILE file. This

produces a file with one character on each line.

for CHAR in \` 1 2 3 4 5 6 7 8 9 0 - = \\ q w e r t y u i o \

p \[\] a s d f g h j k l \; \’ z x c v b n m \, \

\. \/ \\ \~ \! \@ \# \$ \% \^ \& * \(\) _ \+ \| \

Q W E R T Y U I O P \{ \} A S D F G H J K L \: \” \

Z X C V B N M \< \> \? \| \. 0 1 2 3 4 5 6 7 8 9 \/ \

* \- \+

do

echo “$CHAR” >> $KEYBOARD_FILE

done

echo “\n\n\t...Done...\n”

sleep 1

}

#

##

#

function check_for_and_create_keyboard_file

{

If the $KEYBOARD_FILE does not exist then

ask the user to load the “standard” keyboard

layout, which is done with the load_default_keyboard

function.

if [! -s $KEYBOARD_FILE]

then

echo “\n\nERROR: Missing Keyboard File”

echo “\n\nWould You Like to Load the”

echo “Default Keyboard Layout?”

echo “\n\t(Y/N): \c”

typeset -u REPLY=FALSE

read REPLY

if [$REPLY != Y]

then

echo “\n\nERROR: This shell script cannot operate”

echo “without a keyboard data file located in”

echo “\n==> $KEYBOARD_FILE\n”

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

Creating Pseudo-Random Passwords 287

Free & Share & Open

echo “\nThis file expects one character per line.”

echo “\n\t...EXITING...\n”

exit 3

else

load_default_keyboard

echo “\nPress ENTER when you are you ready to continue: \c”

read REPLY

clear

fi

fi

}

#

##

#

function build_manager_password_report

{

Build a file to print for the secure envelope

(

echo “\n RESTRICTED USE!!!”

echo “\n\n\tImmediately send an e-mail to:\n”

echo “ $NOTIFICATION_LIST”

echo “\n\tif this password is revealed!”

echo “\n\tAIX root password: $PW\n”

echo “\n\n”

echo “\n RESTRICTED USE!!!”

echo “\n\n\tImmediately send an e-mail to:\n”

echo “ $NOTIFICATION_LIST”

echo “\n\tif this password is revealed!”

echo “\n\tAIX root password: $PW\n”

echo “\n\n”

echo “\n RESTRICTED USE!!!”

echo “\n\n\tImmediately send an e-mail to:\n”

echo “ $NOTIFICATION_LIST”

echo “\n\tif this password is revealed!”

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

288 Chapter 10

echo “\n\tAIX root password: $PW\n”

) > $OUTFILE

}

#

##

#

function usage

{

echo “\nUSAGE: $SCRIPT [-m] [-n] [password_length]\n”

echo “ Where:

-m Creates a password printout for Security

-n Loads the default keyboard data keys file

password_length - Interger value that overrides

the default 8 character

password length.\n”

}

#

##

#

function trap_exit

{

rm -f $OUTFILE >/dev/null 2>&1

}

##

########## END OF FUNCTION DEFINITIONS #############

##

##

####### VALIDATE EACH COMMAND LINE ARGUMENT ########

##

Check command line arguments - $# < 3

if (($# > 3))

then

usage

exit 1

fi

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

Creating Pseudo-Random Passwords 289

Free & Share & Open

##

#

Test for valid command line arguments -

Valid auguments are “-n, -N, -m, -M, and any integer

if (($# != 0))

then

for CMD_ARG in $@

do

case $CMD_ARG in

+([-0-9]))

The ‘+([-0-9]))’ test notation is looking for

an integer. Any integer is assigned to the

length of password variable, LENGTH

LENGTH=$CMD_ARG

;;

-n) :

;;

-N) :

;;

-m) :

;;

-M) :

;;

*)

usage

exit 1

;;

esac

done

fi

##

#

Ensure that the $LENGTH variable is an integer

case $LENGTH in

+([0-9])) : # The ‘+([-0]))’ test notation is looking for

an integer. If an integer then the

no-op, specified by a colon, (Do Nothing)

command is executed, otherwise this script

exits with a return code of 1, one.

;;

*) usage

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

290 Chapter 10

exit 1

;;

esac

##

#

Use the getopts function to parse the command-

line arguments.

while getopts “:n N m M” ARGUMENT 2>/dev/null

do

case $ARGUMENT in

n|N)

Create a new Keyboard Data file

load_default_keyboard

echo “\nPress ENTER when you are you ready to continue: \c”

read REPLY

clear

;;

m|M)

Print the Manager Password Report

PRINT_PASSWORD_MANAGER_REPORT=TRUE

;;

\?) # Show the usage message

usage

exit 1

esac

done

##

################ START OF MAIN #####################

##

Set a trap

trap ‘trap_exit;exit 2’ 1 2 3 15

##

#

Check for a keyboard data file

check_for_and_create_keyboard_file

##

############### LOAD THE ARRAY #####################

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

Creating Pseudo-Random Passwords 291

Free & Share & Open

##

X=0 # Initialize the array counter to zero

Load the array called “KEYS” with keyboard elements

located in the $KEYBOARD_FILE.

while read ARRAY_ELEMENT

do

((X = X + 1)) # Increment the counter by 1

Load an array element in the the array

KEYS[$X]=$ARRAY_ELEMENT

done < $KEYBOARD_FILE

UPPER_LIMIT=$X # Random Number Upper Limit

##

#

Produce the “for” loop list of elements that represent

the length of the password: ‘1 2 3 4 5 6 7 8’ is

the default “for” loop list.

FOR_COUNT=$(

X=0

while ((X < LENGTH))

do

Build the list here

((X = X + 1))

echo “$X “

done

)

##

#

Create the pseudo-random password in this section

clear # Clear the screen

PW= # Initialize the password to NULL

Build the password using random numbers to grab array

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

292 Chapter 10

elements from the KEYS array.

for i in $FOR_COUNT

do

PW=${PW}${KEYS[$(in_range_random_number $UPPER_LIMIT)]}

done

Done building the password

##

#

Display the new pseudo-random password to the screen

echo “\n\n The new $LENGTH character password is:\n”

echo “\n ${PW}\n”

##

#

Print the Manager’s password report, if specified

on the command with the -m command switch.

if [$PRINT_PASSWORD_MANAGER_REPORT = TRUE]

then

typeset -u REPLY=N

echo “\nPrint Password Sheet for the Secure Envelope? (Y/N)? \c”

read REPLY

if [[$REPLY = ‘Y’]]

then

build_manager_password_report

REPLY= # Set REPLY to NULL

echo “\nPrint to the Default Printer ${DEFAULT_PRINTER} (Y/N)? \c”

read REPLY

if [[$REPLY = ‘Y’]]

then

echo “\nPrinting to $DEFAULT_PRINTER\n”

lp -c -d $DEFAULT_PRINTER $OUTFILE

else

echo “\nNEW PRINT QUEUE: \c”

read DEFAULT_PRINTER

echo “\nPrinting to $DEFAULT_PRINTER\n”

Listing 10.15 mk_passwd.ksh shell script listing. (continues)

Creating Pseudo-Random Passwords 293

Free & Share & Open

lp -c -d $DEFAULT_PRINTER $OUTFILE

fi

else

echo “\n\n\tO.K. - Printing Skipped...”

fi

fi

##

#

Remove the $OUTFILE, if it exists and has a size

greater than zero bytes.

[-s $OUTFILE] && rm -f $OUTFILE

##

#

Clear the screen and exit

echo “\n\nPress ENTER to Clear the Screen and EXIT: \c”

read X

clear

End of mk_passwd.ksh shell script

Listing 10.15 mk_passwd.ksh shell script listing. (continued)

This was an interesting shell script to create. I hope you picked up some pointers in
this chapter. I tried to add as many script options to this script as desirable but not
make the script too difficult to understand.

Other Options to Consider

As with any script, improvements can be made. I cannot think of anything to add to the
script, but you may want to remove some of the functionality for the common user
community.

Password Reports?
Do you need to create password reports for your Manager and Directors? If not, you
should disable the ability to create any file that contains any password and disable
printing any passwords. This is easy to disable by commenting out the getopts parsing
for the -m and -M command-line options.

294 Chapter 10

Which Password?
You certainly do not have to accept the first password that is produced by this script. It
usually takes me 5 to 10 tries to get a password that I may be able to remember. Don’t
stop at the first one—keep going until you get a password that you like but is not
guessable.

Other Uses?
Sure, there are other uses for this shell script. Any time that you need a pseudo-random
list of keyboard characters, you can use this shell script to create the list. License key is
the first thing that comes to mind. If you are selling software and you need to create
some unguessable keys, run the script and specify the length of the key as an integer
value.

Summary

This was an excellent exercise in creating pseudo-random numbers and using a func-
tion directly in a command assignment. We used arrays to store our keyboard data so
that any element is directly accessible. This chapter goes a long way in making any task
intuitively obvious to solve. We love a good challenge.

In the next chapter we are going to study how to monitor for stale disk partitions on
an AIX system. I’ll see you in the next chapter!

Creating Pseudo-Random Passwords 295

Free & Share & Open

297

Monitoring for stale disk partitions is an AIX thing. To understand this chapter you
need to be familiar with the Logical Volume Manager (LVM) that is at the heart of the
AIX operating system. We will get to the LVM in the next section. At the high level a
stale disk partition means that the mirrored disks are not in sync. Sometimes when you
find stale disks partitions you can resync the mirrors, and all is well. If the mirrors will
not sync up, you may be seeing the first signs of a failing disk.

In this chapter we are going to look at three methods of monitoring for stale partitions:

■■ Monitoring at the Logical Volume (LV) level

■■ Monitoring at the Physical Volume (PV), or disk, level

■■ Monitoring at the Volume Group (VG), PV, and LV levels to get the full picture

All three methods will report the number of stale disk partitions, but it is nice to
know the VG, PV, and the LV that are involved in the unsynced mirrors. We are going
to step through the entire process of building these shell scripts, starting with the com-
mand syntax required to query the system. Before we start our scripting effort, I want to
give you a high-level overview of the AIX LVM and the commands we are going to use.

Monitor for Stale
Disk Partitions

C H A P T E R

11

Free & Share & Open

AIX Logical Volume Manager (LVM)

Unlike most Unix operating systems, IBM manages disk resources using a program
called the Logical Volume Manager (LVM). The LVM consists of the following compo-
nents, starting with the smallest.

Each Physical Volume (PV), or disk, in the system is broken down into small parti-
tions called Physical Partitions (PP). The default size of a PP is 4MB, but it can be larger
depending on the size of the disk.

The LVM uses groups of these PPs to create a logical map to point to the actual PPs on
the disk. These mapped partitions are called Logical Partitions (LP). The sizes of an LP
and PP are exactly the same because an LP is just a pointer to a PP.

At the next level we have the Logical Volume (LV). An LV consists of one or more
LPs. The LV can span multiple PVs, and this is what differentiates AIX from other fla-
vors of Unix. This is the level at which the Systems Administrator creates the mirrors.
When an LV is first created, the LV is considered raw, meaning that it does not have a
Filesystem mount point. Raw LVs are commonly used for databases.

On top of an LV we can create a Filesystem, which has a mount point—for example,
/scripts. The LV does not require a Filesystem if you want the LV to remain raw, but
you can create one.

Volume Group (VG) is a collection of one or more Physical Volumes (PV), or disks.
A PV is listed on the system as an hdisk#, where # is an integer value. A VG is the
largest component of the LMV. The VG contains one or more LVs, so this is the mecha-
nism that allows an LV to span multiple PVs.

That is the high-level overview of the LVM and its components. For this chapter we
are going to focus our attention at the VG, PV, LV, and PP levels, and we are concerned
only with disks in a mirrored configuration. If you want more information on the AIX
LVM there are plenty of books that go into great detail about AIX system management.

The Commands and Methods

As usual, we need the command syntax before we can write a shell script. We will
work with three LVM commands in this chapter. Each of these commands queries the
system for specific information on the components and status of the disk subsystem.
Before we proceed, it is important to know what each of these commands is used for
and what type of information can be gathered from the system.

Disk Subsystem Commands
The lsvg command queries the system for VG information. To see which VGs are
varied-on, or active, we add the -o switch to the lsvg command. We also have the -l flag
that allows the lsvg command to query the system for the contents of a specific VG. We
are interested in one of the fields in the lsvg <VG_name> command output called
STALE_PPs:, which has a value representing the number of stale PVs in the target VG.
Ideally we want this number to be zero.

298 Chapter 11

Then we move to the LV command, lslv. The lslv command will query the system
for the status information of a specific LV, which is entered as a command parameter.
One of the fields in the output of the lslv <LV_name> command is STALE PP:. This
output shows the number of stale PPs for the LV specified on the command line. Ideally,
we want this number to be 0, zero. If we add the -l flag to the lslv command, we can
see which PVs are associated with the LV in the first column of the command output.

Next we can move down to the PV, or disk, level. The lspv command queries the
system for information on a specific PV, which is passed as a command parameter to
the lspv command. Like lslv, the lspv command also reports the number of STALE
PARTITIONS: as a field in the output.

You will see the output of each of these commands as we write the scripts for this
chapter. We have the commands defined so we are now ready to start creating our first
shell script to monitor for stale disk partitions.

Method 1: Monitoring for Stale PPs at the LV Level
The easiest, but not always the quickest, method of checking for stale disk partitions is
to work at the LV level of the LVM structure. Querying the system for LV stale partition
information gives the high-level overview for each LV. If however, the LV spans more
than one PV, or disk, then another step must be taken to find the actual mirrored disks
that are not in sync. We will get to this finer granularity of monitoring in the next sec-
tion of this chapter.

We start our monitoring by issuing an LVM query to find each of the active VGs on
the system, or the VGs that are varied online. For this step we use the lsvg -o command.
The -o flag tells the lsvg command to list only the volume groups that are currently var-
ied online. Many more VGs may exist on the system, but if they are not varied online
we cannot check the status of any of the logical volumes that reside within the
VG because the entire VG is inactive. Let’s assign the VG list to a variable called
ACTIVE_VG_LIST.

ACTIVE_VG_LIST=$(lsvg -o)

My test machine has two VGs, and both are active:

rootvg

appvg2

The previous command saves the active Volume Groups in a variable. Using the
ACTIVE_VG_LIST variable contents we next create a list of active LVs on the system.
Each VG will have one or more LVs that may or may not be active, or open. Using the
$ACTIVE_VG_LIST data we can query the system to list each active LV within each
active VG. The lsvg -l $VG command queries the system at the VG level to display the
contents. Listing 11.1 shows the output of lsvg -l appvg2 rootvg command on my test
machine.

Monitor for Stale Disk Partitions 299

Free & Share & Open

appvg2:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

tel_lv jfs 2 2 1 open/syncd /usr/telalert

oracle_lv jfs 128 128 1 open/syncd /oracle

oradata_lv jfs 128 128 1 open/syncd /oradata

ar_lv jfs 16 16 1 open/syncd /usr/ar

remp_tmp01 jfs 128 128 1 open/syncd /remd_tmp01

export_lv jfs 100 100 1 open/syncd /export

loglv00 jfslog 1 1 1 open/syncd N/A

remp2_ctl01 jfs 1 1 1 open/syncd /remd_ctl01

remp2_ctl02 jfs 1 1 1 open/syncd /remd_ctl02

remp2_ctl03 jfs 1 1 1 open/syncd /remd_ctl03

rempR2_dat01 jfs 192 192 1 open/syncd /remd_dat01

R2remedy_lv jfs 10 10 1 open/syncd /usr/remedy

remp2_log1a jfs 1 1 1 open/syncd /remd_log1a

remp2_log1b jfs 1 1 1 open/syncd /remd_log1b

remp2_log2a jfs 1 1 1 open/syncd /remd_log2a

remp2_log2b jfs 1 1 1 open/syncd /remd_log2b

remp2_log3a jfs 1 1 1 open/syncd /remd_log3a

remp2_log3b jfs 1 1 1 open/syncd /remd_log3b

remp2_log4a jfs 1 1 1 open/syncd /remd_log4a

remp2_log4b jfs 1 1 1 open/syncd /remd_log4b

remp2_log5a jfs 1 1 1 open/syncd /remd_log5a

remp2_log5b jfs 1 1 1 open/syncd /remd_log5b

remp2_rbs01 jfs 47 47 1 open/syncd /remd_rbs01

remp2_sys01 jfs 4 4 1 open/syncd /remd_sys01

arlogs_lv jfs 35 35 1 open/syncd /usr/ar/logs

remp2_usr01 jfs 6 6 1 open/syncd /remd_usr01

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd5 boot 1 2 2 closed/syncd N/A

hd6 paging 80 160 2 open/syncd N/A

hd8 jfslog 1 2 2 open/syncd N/A

hd4 jfs 4 8 2 open/syncd /

hd2 jfs 40 80 2 open/syncd /usr

hd9var jfs 10 20 2 open/syncd /var

hd3 jfs 10 20 2 open/syncd /tmp

hd1 jfs 3 6 2 open/syncd /home

local_lv jfs 9 18 2 open/syncd /usr/local

Listing 11.1 Output of the lsvg -l appvg2 rootvg command.

The list of LVs is shown in column one. Notice the sixth column in the output in List-
ing 11.1, LV STATE. Most of the LVs are open/synced, but one LV, hd5, is closed/
synced. The hd5 LV that is closed is the boot logical volume and is active only when the
system is booting up. Because we want only active LVs all we need to do is to grep on

300 Chapter 11

the string open and then awk out the first column. The next command saves the list of
currently active LVs in a variable called ACTIVE_LV_LIST.

ACTIVE_LV_LIST=$(lsvg -l $ACTIVE_VG_LIST | grep open | awk ‘{print $1}’)

In the previous command, we use our $ACTIVE_VG_LIST as a command parame-
ter for the lsvg -l command. Then we pipe (|) to grep the lsvg output for only the
rows that contain the string open. Next, another pipe is used to awk out the first col-
umn, specified by awk '{print $1}'. The result is a list of currently active LV names. If
you think about an array, the grep command works on the rows and the awk command
works on the columns.

The only thing left to do is to query each LV for the number of stale PPs, specified by
the STALE PP: field. To check every LV we need to set up a for loop to run the same
command on each LV in the active list. The command we use to query the LV is lslv -L
$LV_NAME. The output for a single LV is shown in Listing 11.2.

LOGICAL VOLUME: remp_tmp01 VOLUME GROUP: appvg2

LV IDENTIFIER: 00011151b819f83a.5 PERMISSION: read/write

VG STATE: active/complete LV STATE: opened/syncd

TYPE: jfs WRITE VERIFY: off

MAX LPs: 512 PP SIZE: 32

megabyte(s)

COPIES: 1 SCHED POLICY: parallel

LPs: 128 PPs: 128

STALE PPs: 0 BB POLICY: relocatable

INTER-POLICY: minimum RELOCATABLE: yes

INTRA-POLICY: middle UPPER BOUND: 32

MOUNT POINT: /remd_tmp01 LABEL: /remd_tmp01

MIRROR WRITE CONSISTENCY: on

EACH LP COPY ON A SEPARATE PV ?: yes

Listing 11.2 LV statistics for the remp_tmp01 logical volume.

Notice in the command output in Listing 11.2 the ninth row, where the field STALE
PP: is listed. The second column of this row contains the number of stale partitions in
the logical volume. Ideally, we want this value to be zero, 0. If the value is greater than
zero we have a problem. Specifically, the mirrored disks associated with this LV are not
in sync, which translates to a worthless mirror. Looking at this output, how are we sup-
posed to get the number of stale disk partitions? It turns out that this is a very simple
combination of grep and awk. Take a look at the following command statement.

NUM_STALE_PP=$(lslv -L $LV | grep “STALE PP” | awk ‘{print $3}’

The previous statement saves the number of stale PPs into the NUM_STALE_PP
variable. We accomplish this feat by command substitution, specified by the
VARIABLE=$(commands) notation. The way to make this task easy is to do the

Monitor for Stale Disk Partitions 301

Free & Share & Open

parsing one step at a time. First, the row containing the STALE PP string is extracted
and is provided as input to the next command in the pipe. The next command in the
pipe is an awk statement that extracts only the third field, specified by '{print $3}'.
At this point you may be asking why we used the third field instead of the second. By
default, awk uses white space as a field separator, and because STALE PPs: 0 con-
tains two areas of white space, we need the third field instead of the second.

Now that we have all of the commands, all we need to do is set up a loop to run the
previous command against each logical volume stored in the $ACTIVE_LV_LIST vari-
able. A little for loop will work just fine for this script. The loop is shown in Listing 11.3.

THIS_HOST=$(hostname)

for LV in $(echo $ACTIVE_LV_LIST)

do

NUM_STALE_PP=$(lslv -L $LV | grep “STALE PP” | awk ‘{print $3}’

if ((NUM_STALE_PP > 0))

then

echo “\n${THIS_HOST}: $LV has $NUM_STALE_PP stale PPs”

fi

done

Listing 11.3 Loop to show the number of stale PPs from each LV.

I want to point out several things in Listing 11.3. First, notice that we save the host-
name of the machine in a variable called THIS_HOST. When creating any type of report
we need to know which machine we are reporting on. When you have more than 100
machines, things can get a little confusing if you do not have a hostname to go with the
report.

A for loop needs a list of items to loop through. To get the list of active LVs, we use
command substitution to echo the contents of the $ACTIVE_LV_LIST to provide our
for loop with a list. Actually, the echo is not necessary, but I wanted to show you a var-
ied approach. The next step is to run the lslv -L command for each LV listed and extract
the field that shows the number of stale PPs. For this command we again use command
substitution to assign the value to a variable called NUM_STALE_PP. Using this saved
value we do a numeric test in the if statement. Notice that we did not add a dollar sign
($) in front of the NUM_STALE_PP variable. Because we used the double parentheses
numeric test method, the command assumes that every nonnumeric string is a variable
so the dollar sign ($) is not needed; in fact, the test may give an error if the $was added.

If we find that the number of stale PPs is greater than zero, then we use an echo
statement to show the hostname of the machine followed by the LV name that has stale
partitions and, last, the number of stale partitions that were found. These steps are fol-
lowed for every active LV in every active VG on the entire system. The full shell script
is shown in Listing 11.4.

302 Chapter 11

#!/bin/ksh

#

SCRIPT: stale_LV_mon.ksh

#

AUTHOR: Randy Michael

DATE: 01/22/2002

REV: 1.1.P

PLATFORM: AIX only

#

PURPOSE: This shell script is used to query the system

for stale PPs in every active LV within every active

VG.

#

REVISION LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

THIS_HOST=`hostname` # Hostname of this machine

STALE_PP_COUNT=0 # Initialize to zero

Find all active VGs

echo “\nGathering a list of active Volume Groups”

ACTIVE_VG_LIST=$(lsvg -o)

Find all active LVs in every active VG.

echo “\nCreating a list of all active Logical Volume”

ACTIVE_LV_LIST=$(lsvg -l $ACTIVE_VG_LIST | grep open | awk ‘{print $1}’)

Loop through each active LV and query for stale disk partitions

echo “\nLooping through each Logical Volume searching for stale PPs”

echo “...Please be patient; this may take several minutes to

complete...”

for LV in $(echo $ACTIVE_LV_LIST)

do

Extract the number of STALE PPs for each active LV

NUM_STALE_PP=`lslv -L $LV | grep “STALE PP” | awk ‘{print $3}’`

Check for a value greater than zero

if ((NUM_STALE_PP > 0))

then

Increment the stale PP counter

((STALE_PP_COUNT = $STALE_PP_COUNT + 1))

Report on all LVs containing stale disk partitions

echo “\n${THIS_HOST}: $LV has $NUM_STALE_PP PPs”

Listing 11.4 stale_LV_mon.ksh shell script listing. (continues)

Monitor for Stale Disk Partitions 303

Free & Share & Open

fi

done

Give some feedback if no stale disk partitions were found

if ((STALE_PP_COUNT == 0))

then

echo “\nNo stale PPs were found in any active LV...EXITING...\n”

fi

Listing 11.4 stale_LV_mon.ksh shell script listing. (continued)

Notice in the script in Listing 11.4 that we added notification at each step in the
process. As always, we need to let the user know what is going on. Before each com-
mand I added an echo statement to show the user how we progress through the shell
script. I also added a STALE_PP_COUNT variable to give feedback if no stale PPs were
found. Now let’s move on to searching for stale PPs at the PV level instead of the LV
level.

Method 2: Monitoring for Stale PPs at the PV Level
Checking for stale disk partitions at the LV level will let you know that one or more LVs
have stale PPs. To get a better picture of where the unsynced mirrors reside we need to
look at the hdisk level. In this section we are going to change the query point for
searching for stale Physical Partitions, or PPs, from the Logical Volume to the Physical
Volume, or disk level. The time saving in execution time between these two methods is
threefold in favor of working directly with the disks by my measurements. On my test
machine, an H-80 RS/6000, the LV query took 40.77 seconds in real time, 0.36 seconds
of system time, and 0.02 seconds of user time. Using the PV query method I reduced
the execution time to 12.77 seconds in real time and 0.17 seconds of system time, and I
had the same 0.02 seconds for user time. To understand the LV and PV configuration
I have 18 mirrored disks, which are 9 mirror pairs of 9.1GB disk drives, and a total of
32 LVs. Because an LV query takes longer to execute than a PV query, it is understand-
able that the PV query won. Depending on the system configuration, this timing
advantage may not always hold.

In the PV monitoring method we still are concerned only with the hdisks that are in
currently varied-on Volume Groups (VGs), as we did in the LV method using the lsvg -o
command. Using this active VG list we can query each active VG and extract all of the
hdisks that belong to each VG. Once we have a complete list of all of the hdisks we can
start a loop and query each of the PVs independently. The output of a PV query is sim-
ilar to the LV query statistics in Listing 11.2. Take a look at the PV query of hdisk5
using the lspv -l hdisk5 command in Listing 11.5.

304 Chapter 11

PHYSICAL VOLUME: hdisk5 VOLUME GROUP: appvg2

PV IDENTIFIER: 00011150e33c3f14 VG IDENTIFIER 00011150e33ce9bb

PV STATE: active

STALE PARTITIONS: 0 ALLOCATABLE: yes

PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 2

TOTAL PPs: 542 (8672 megabytes) VG DESCRIPTORS: 1

FREE PPs: 397 (6352 megabytes)

USED PPs: 145 (2320 megabytes)

FREE DISTRIBUTION: 89..00..91..108..109

USED DISTRIBUTION: 20..108..17..00..00

Listing 11.5 PV statistics for the hdisk5 physical volume.

In the output in Listing 11.5 the STALE PARTITIONS: field in row four and its value
are the third field in the row. If the stale partition value ever exceeds zero, then we use
the same type of reporting technique that we used in the LV query in Method 1. If no
stale partitions are found, then we can give the “all is well” message and exit the script.

Because we have the basic idea of the process, let’s take a look at the shell script in
Listing 11.6. We will explain the technique in further detail at the end of the code listing.

#!/usr/bin/ksh

#

SCRIPT: stale_PP_mon.ksh

#

AUTHOR: Randy Michael

DATE: 01/29/02

REV: 1.2.P

PLATFORM: AIX only

#

PURPOSE: This shell script is used to query the system for stale PPs.

The method queries the system for all of the currently

varied-on volume groups and then builds a list

of the PVs to query. If a PV query detects any stale

partitions notification is sent to the screen. Each step in

the process has user notification

#

REVISION LIST:

#

#

Listing 11.6 stale_PP_mon.ksh shell script listing. (continues)

Monitor for Stale Disk Partitions 305

Free & Share & Open

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

THIS_HOST=$(hostname) # Hostname of this machine

HDISK_LIST= # Initialize to NULL

STALE_PP_COUNT=0 # Initialize to zero

Inform the user at each step

echo “\nGathering a list of hdisks to query\n”

Loop through each currently varied-on VG

for VG in $(lsvg -o)

do

Build a list of hdisks that belong to currently varied-on VGs

echo “Querying $VG for a list of disks”

HDISK_LIST=”$HDISK_LIST $(lsvg -p $VG |grep disk \

| awk ‘{print $1}’)”

done

echo “\nStarting the hdisk query on individual disks\n”

Loop through each of the hdisks found in the previous loop

for HDISK in $(echo $HDISK_LIST)

do

Query a new hdisk on each loop iteration

echo “Querying $HDISK for stale partitions”

NUM_STALE_PP=$(lspv -L $HDISK | grep “STALE PARTITIONS:” \

| awk ‘{print $3}’)

Check to see if the stale partition count is greater than zero

if ((NUM_STALE_PP > 0))

then

This hdisk has at least one stale partition - Report it!

echo “\n${THIS_HOST}: $HDISK has $NUM_STALE_PP Stale

Partitions”

Build a list of hdisks that have stale disk partitions

STALE_HDISK_LIST=$(echo $STALE_HDISK_LIST; echo $HDISK)

fi

done

If no stale partitions were found send an “all is good” message

((NUM_STALE_PP > 0)) \

|| echo “\n${THIS_HOST}: No Stale PPs have been found...EXITING...\n”

Listing 11.6 stale_PP_mon.ksh shell script listing. (continued)

306 Chapter 11

We totally changed our viewpoint in our search for stale disk partitions. Instead of
working at each LV we are scanning each disk, or PV, independently. The search time
on my test machine was three times faster, but my machine configuration does not
mean that your system query will be as fast. I want to start at the top of our
stale_PP_mon.ksh shell script in Listing 11.6 and work to the bottom.

We start off the script by initializing three variables, THIS_HOST (the hostname of
the reporting machine), HDISK_LIST (the list of PVs to query, which we initialize to
NULL), and STALE_PP_COUNT (the total number of stale disk partitions on all disks,
which is initialized to zero). We will show how each of these variables is used as we
progress through the script.

The next step is to use the list of currently varied-on VGs (using the lsvg -o com-
mand) to create a list of currently available hdisks—at least they should be available.
We do this in a for loop by appending to the HDISK_LIST variable during each loop
iteration. Once we have a list of available system disks, we start a for loop to query
each hdisk individually. During the query statement:

NUM_STALE_PP=$(lspv -L $HDISK | grep “STALE PARTITIONS:” \

| awk ‘{print $3}’)

we capture the number of stale disk partitions by using grep and awk together in the
same statement. Just remember that the grep command acts on the rows and the awk
statement acts on the columns. On each loop iteration we check the value of the
$NUM_STALE_PP variable. If the count is greater than zero we do two things: report
the disk to the screen, and append to the STALE_HDISK_LIST variable. Notice how
we append to a variable that currently has data in it. By initializing the variable to
NULL (specified by VARIABLE=), by creating an assignment to nothing, we can
always append to the variable using the following syntax:

VARIABLE=”$VARIABLE $NEW_VALUE”

Because the $VARIABLE has an initial value of nothing, NULL, then the first value
assigned is a new value, and all subsequent values are appended to the VARIABLE
variable on each loop iteration.

At the end of the script we test the $NUM_STALE_PP variable, which has a running
count of all stale disk partitions. If the value is zero, then we let the end user know that
everything is OK. Notice how we do the test. We do a numerical test on the
$NUM_STALE_PP variable to see if it is greater than zero. If the value is one or more,
then the statement is true. On a true statement the logical OR (||) passes control to
the second part of the statement, which states “No stale PPs have been found.” The
logical OR saves an if statement and is faster to execute than an if statement.

Now that was a fun little script. We can improve on both scripts that have been pre-
sented thus far. There is a procedure to attempt to resync the disks containing stale par-
titions. In the next section we are going to combine the LV and PP query methods and
add in a VG query as the top-level query to search for stale disk partitions. We will also
attempt to resync all of the stale LVs that we find, if the ATTEMPT_RESYNC variable is
set to TRUE.

Monitor for Stale Disk Partitions 307

Free & Share & Open

Method 3: VG, LV, and PV Monitoring with a resync
We have looked at stale disk mirrors from two angles, but we can look for stale disk
partitions at a higher level, the VG level. By using the lsvg command we can find
which VG has disks that have stale PPs. Using the lsvg <VG_name> command we can
shorten our queries to a limited number of disks, although with Murphy’s Law work-
ing, it just might be the largest VG on the planet!

The strategy that we want to follow is first to query each active VG for stale PVs,
which we find using the lsvg <VG_name> command. Then, for each VG that has the
STALE PV: field greater than zero, we query the current VG in the loop to get a list of
associated PV, or disks. Using a list of all of the PVs that we found, we conduct a query
of each disk to find both the list of LVs the PV is associated with and the value of the
STALE PARTITIONS: field. For each PV found to have at least one stale partition, we
query the PV for a list of LVs that reside on the current PV. Please don’t get confused
now! The steps involved are a natural progression through the food chain to the
source. The final result of all of these queries is that we know which VG, PV, and LV
have unsynced mirrors, which is the complete picture that we want.

The process that we follow in this section is faster to execute and easier to follow, so
let’s start. The commands we are going to use are shown in Listing 11.7.

lsvg -o Produces a list of active VGs

lsvg $VG_NAME Queries the target VG for status information

lsvg -p $VG_NAME Produces a list of hdisks that belong to the VG

lspv $PV_NAME Queries the hdisk specified by $PV_NAME

lspv -l $PV_NAME Produces a list of LVs on the target hdisk

lslv $LV_NAME Queries the target LV for status information

syncvg $HDISK_LIST Synchronizes the mirrors at the hdisk level

syncvg -l $LV_LIST Synchronizes the mirrors at the LV level

varyonvg Synchronizes only the stale partitions

Listing 11.7 Command summary for the Method 3 shell script.

Using the nine commands in Listing 11.7 we can produce a fast-executing shell
script that produces the full picture of exactly where all of the unsynced mirrors reside,
and we can even attempt to fix the problem!

For this shell script I want to present you with the entire script; then we will step
through and explain the philosophy behind the techniques used. In studying Listing
11.8 pay close attention to the bold text.

#!/usr/bin/ksh

#

SCRIPT: stale_VG_PV_LV_PP_mon.ksh

#

AUTHOR: Randy Michael

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing.

308 Chapter 11

DATE: 01/29/02

REV: 1.2.P

PLATFORM: AIX only

#

PURPOSE: This shell script is used to query the system for stale PPs.

The method queries the system for all of the currently

varied-on volume groups and then builds a list of the PVs to

query. If a PV query detects any stale partitions notification

is sent to the screen. Each step in the process has user

notification.

#

REVISION LIST:

#

#

set -x # Uncomment to debug this shell script

set -n # Uncomment to check command syntax without any execution

#

EXIT CODES: 0 ==> Normal execution or no stale PP were found

1 ==> Trap EXIT

2 ==> Auto resyncing failed

#

##

######### DEFINE VARIABLES HERE ####################

ATTEMPT_RESYNC=FALSE # Flag to enable auto resync, “TRUE” will resync

LOGFILE=”/tmp/stale_PP_log” # Stale PP logfile

THIS_HOST=$(hostname) # Hostname of this machine

STALE_PP_COUNT=0 # Initialize to zero

STALE_PV_COUNT=0 # Initialize to zero

HDISK_LIST= # Initialize to NULL

INACTIVE_PP_LIST= # Initialize to NULL

STALE_PV_LIST= # Initialize to NULL

STALE_LV_LIST= # Initialize to NULL

STALE_VG_LIST= # Initialize to NULL

RESYNC_LV_LIST= # Initialize to NULL

PV_LIST= # Initialize to NULL

#######################################

INITIALIZE THE LOG FILE

>$LOGFILE # Initialize the log file to empty

date >> $LOGFILE # Date the log file was created

echo “\n$THIS_HOST \n” >> $LOGFILE # Hostname for this report

DEFINE FUNCTIONS HERE

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing. (continues)

Monitor for Stale Disk Partitions 309

Free & Share & Open

Trap Exit function

function trap_exit

{

echo “\n\t...EXITING on a TRAPPED signal...\n”

}

#######################################

Set a trap...

trap ‘trap_exit; exit 1’ 1 2 3 5 15

#######################################

######### BEGINNING OF MAIN ###########

#######################################

Inform the user at each step

Loop through each currently varied-on VG and query VG for stale PVs.

For any VG that has at least one stale PV we then query the VG

for the list of associated PV and build the $PV_LIST

echo “\nSearching each Volume Group for stale Physical Volumes...\c” \

| tee -a $LOGFILE

Search each VG for stale PVs, then build a list of VGs and PVs

that have stale disk partitions

for VG in $(lsvg -o)

do

NUM_STALE_PV=$(lsvg $VG | grep ‘STALE PVs:’ | awk ‘{print $3}’)

if ((NUM_STALE_PV > 0))

then

STALE_VG_LIST=”$STALE_VG_LIST $VG”

PV_LIST=”$PV_LIST $(lsvg -p $VG | tail +3 | awk ‘{print $1}’)”

((STALE_PV_COUNT = STALE_PV_COUNT + 1))

fi

done

Test to see if any stale PVs were found, if not then

exit with return code 0

if ((STALE_PV_COUNT == 0))

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing. (continued)

310 Chapter 11

then

echo “\nNo Stale Disk Mirrors Found...EXITING...\n” | tee -a

$LOGFILE

exit 0

else

echo “\nStale Disk Mirrors Found!...Searching each hdisk for stale

PPs...\c” \

| tee -a $LOGFILE

fi

Now we have a list of PVs from every VG that reported stale PVs

The next step is to query each PV to make sure each PV is in

an “active” state and then query each PV for stale PPs.

If a PV is found to be inactive then we will not query

the PV for stale partitions, but move on to the next PV in

the $PV_LIST.

for HDISK in $(echo $PV_LIST)

do

PV_STATE=$(lspv $HDISK | grep ‘PV STATE:’ | awk ‘{print $3}’)

if [[$PV_STATE != ‘active’]]

then

INACTIVE_PV_LIST=”$INACTIVE_PV_LIST $HDISK”

fi

if ! $(echo $INACTIVE_PV_LIST | grep $HDISK) >/dev/null 2>&1

then

NUM_STALE_PP=$(lspv $HDISK | grep ‘STALE PARTITIONS:’ \

| awk ‘{print $3}’)

if ((NUM_STALE_PP > 0))

then

STALE_PV_LIST=”$STALE_PV_LIST $HDISK”

((STALE_PP_COUNT = $STALE_PP_COUNT + 1))

fi

fi

done

Now we have the list of PVs that contain the stale PPs.

Next we want to get a list of all of the LVs affected.

echo “\nSearching each disk with stale PPs for associated LVs\c” \

| tee -a $LOGFILE

for PV in $(echo $STALE_PV_LIST)

do

STALE_LV_LIST=”$STALE_LV_LIST $(lspv -l $PV | tail +3 \

| awk ‘{print $1}’)”

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing. (continues)

Monitor for Stale Disk Partitions 311

Free & Share & Open

done

Using the STALE_LV_LIST variable list we want to query

each LV to find which ones need to be resynced

echo “\nSearch each LV for stale partitions to build a resync LV list\c”

\

| tee -a $LOGFILE

for LV in $(echo $STALE_LV_LIST)

do

LV_NUM_STALE_PP=$(lslv $LV | grep “STALE PPs:” | awk ‘{print $3}’)

(($LV_NUM_STALE_PP == 0)) & RESYNC_LV_LIST=”$RESYNC_LV_LIST $LV”

done

If any inactive PVs were found we need to inform the user

of each inactive PV

Check for a NULL variable

if [[-n “$INACTIVE_PV_LIST” && “$INACTIVE_PV_LIST” != ‘’]]

then

for PV in $(echo $INACTIVE_PV_LIST)

do

echo “\nWARNING: Inactive Physical Volume Found:” | tee -a

$LOGFILE

echo “\n$PV is currently inactive:\n” | tee -a $LOGFILE

echo “\nThis script is not suitable to to correct this

problem...” \

| tee -a $LOGFILE

echo “ ...CALL IBM SUPPORT ABOUT ${PV}...” | tee -a

$LOGFILE

done

fi

echo “\nStale Partitions have been found on at least one disk!” \

| tee -a $LOGFILE

echo “\nThe following Volume Group(s) have stale PVs:\n” \

| tee -a $LOGFILE

echo $STALE_VG_LIST | tee -a $LOGFILE

echo “\nThe stale disk(s) involved include the following:\n” \

| tee -a $LOGFILE

echo $STALE_PV_LIST | tee -a $LOGFILE

echo “\nThe following Logical Volumes need to be resynced:\n” \

| tee -a $LOGFILE

echo $RESYNC_LV_LIST | tee -a $LOGFILE

if [[$ATTEMPT_RESYNC = “TRUE”]]

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing. (continued)

312 Chapter 11

then

echo “\nAttempting to resync the LVs on $RESYNC_PV_LIST ...\n” \

| tee -a $LOGFILE

syncvg -l $RESYNC_LV_LIST | tee -a $LOGFILE 2>&1

if (($? == 0))

then

echo “\nResyncing all of the LVs SUCCESSFUL...EXITING...” \

| tee -a $LOGFILE

else

echo “\nResyncing FAILED...EXITING...\n” | tee -a $LOGFILE

exit 2

fi

else

echo “\nAuto resync is not enabled...set to TRUE to automatically

resync\n” \

| tee -a $LOGFILE

echo “\n\t...EXITING...\n” | tee -a $LOGFILE

fi

echo “\nThe log file is: $LOGFILE\n”

Listing 11.8 stale_VG_PV_LV_PP_mon.ksh shell script listing. (continued)

The shell script in Listing 11.8 is interesting because of the techniques used. As we
start at the top of the shell script, notice the first variable definition, ATTEMPT_
RESYNC. I initialize this variable to FALSE because resyncing at the LV level can cause
a significant system load. A better method is to run the varyonvg command without
any arguments. This method will only resync the stale partitions. Because of the possi-
bility of loading the system down and slowing production response time, I initialize
this variable to FALSE. If I am working on a test/development or sandbox machine, I
usually set the ATTEMPT_RESYNC variable to TRUE, in uppercase. The TRUE setting
will attempt to resync, at the LV level, of every stale LV.

The remaining variables initialize the LOGFILE and THIS_HOST variables to the log
filename and hostname, respectively. A couple of counters are initialized to zero, and
seven other variables are initialized to NULL. In the next section we initialize the
$LOGFILE with header information.

The only function in this script is the trap_exit function. The trap_exit func-
tion displays only to the screen ...EXITING on a TRAPPED signal... when a trap is
captured. The trap is set for exit codes 1, 2, 3, 5, and 15 and then the script exits with
return code 1. This functionality is just a notification measure for the user. Now we are
at BEGINNING OF MAIN in our script.

At each step through this shell script we want to give the user feedback so that he or
she will know what is going on. When writing shell scripts you need to do two things:
Comment everything and give your users feedback so that they know what is going on.
In our first query we inform the users that we are searching each VG for stale PVs. For
this step we use the lsvg -o command to get a list of currently varied-on volume

Monitor for Stale Disk Partitions 313

Free & Share & Open

groups. Using this active VG list, we use a for loop to loop through each active VG and
query for the STALE PVs: field using the lsvg $VG command to extract the number
of stale PVs in each VG using both grep and awk. When any stale PVs are detected, the
VG is added to the STALE_VG_LIST variable, all of the PVs in the VG are then added
to the PV_LIST variable, specified by the lsvg -p $VG command. Next the STALE_
PV_COUNT variable is incremented by one for each PV using the math notation
((STALE_PV_COUNT = STALE_PV_COUNT + 1)). At this point we have a list of all
of the volume groups that have stale physical volumes and a list of all of the PVs in
all of the VGs that have stale PVs identified.

If the STALE_PV_COUNT variable is zero, there are no stale disk partitions to report
in the system for the currently varied-on volume groups. If the count is zero, we inform
the user that no stale disk mirrors were found, and we exit the script with a return code
of 0, zero. If no stale disk partitions exist, this shell script executes in seconds. If the
count is greater than zero, then we inform the user that stale disk mirrors were found,
and we continue to the next step, which is to query each PV in the $PV_LIST search-
ing for stale disk partitions.

To query each PV that is part of a VG that has stale PVs identified, we use a for loop
to loop through each hdisk assigned to the $PV_LIST variable. Before we can query
the disk, we need to ensure that the PV is in an active state. If the disk is inactive, then
we cannot query that disk. In this section of the shell script we use the lspv $HDISK
command within the for loop twice. The first time we are ensuring that the disk is
active, and in the second step we query the disk for value of the STALE PARTITIONS:
field. If the disk is found to be inactive, then we just add the disk to the
INACTIVE_PV_LIST variable. If the disk is in an active state and the query detects any
stale partitions, we add the hdisk to the STALE_PV_LIST variable. Notice in this sec-
tion the if statement syntax that is used to check for inactive PVs before the disk query
is initiated:

if ! $(echo $INACTIVE_PV_LIST | grep $HDISK) >/dev/null 2>&1

The previous test ensures that the disk is not listed in the $INACTIVE_PV_LIST
variable. The nice thing about using this syntax is that we use the if statement to check
the return code of the enclosed command. We also negate the response so that we are
testing for the disk not being listed in the variable by using the ! operator. To stop any
screen output, the command is redirected to the bit bucket, and standard error is redi-
rected to standard output, specified by the 2>&1 notation. Through the process of this
for loop we populate the STALE_PV_LIST variable, which is a list of each of the active
disks on the system that have stale disk partitions. We also keep a running count of the
stale PPs found.

In the next section we use the populated $STALE_PV_LIST variable to get a list of
all of the logical volumes that are part of each disk in the stale disk list. In this step we
use another for loop to loop through each stale PV and populate the STALE_LV_LIST
variable using the lspv -l $PV command. Then we use this newly populated
$STALE_LV_LIST to query each LV to find which ones have stale PPs. For this section
we query each LV using the lslv $LV command and extract the value of the STALE

314 Chapter 11

PP: field using a combination of grep and awk commands in a pipe. Each LV found to
have at least one stale PP is added to the RESYNC_LV_LIST variable, which is used
later to resync each of the LVs, if enabled, and in the log report.

Now we use the list of inactive PVs, using the $INACTIVE_PV_LIST variable, to
produce notification to the user of each inactive PV found on the system. We start with
an if statement and test for the $INACTIVE_PV_LIST variable being NULL, or empty.
If the variable is not NULL, then we loop through each PV in the list and issue a warn-
ing message to the user for each inactive PV. This information is also logged in the
$LOGFILE using a pipe to the tee -a command to append to the $LOGFILE and display
the information to the screen at the same time.

In the next step, we give the user a list of each VG, PV, and LV that is affected by the
stale disk partitions. After this notification is both logged and displayed we attempt to
resync the mirrors at the LV level. Sometimes there are just one or two LVs on a PV that
have stale disk partitions, so the LV is where we want to attempt to resync. We will
attempt a resync only if the $ATTEMPT_RESYNC variable is initialized to TRUE. Any
other value will cause this step to be skipped, but the user is notified that the resync
option is disabled. If a resync is enabled, the syncvg -l $RESYNC_LV_LIST command
is executed. The return code is checked for a zero value, indicating a successful resync
operation. If the return code is not zero, you need to call IBM support and replace the
disk before it goes dead on you. The steps involved in replacing a disk are beyond
the scope of this book. We can also use the varyonvg command to resync only the stale
partitions.

Other Options to Consider

As usual, any shell script can be improved, and this set of shell scripts is no exception.

SSA Disks
The ssaxlate command is used with a type of disk developed by IBM known as Serial
Storage Architecture (SSA). The SSA disks not only use the hdisk# but also have an
associated pdisk#. Normally the hdisk# and the pdisk# differ on the system. The
ssaxlate command gives a cross-reference between the two disk representations. It is
always a good idea to have this extra information if we are dealing with SSA disks,
especially if you are replacing an SSA disk. To use the ssaxlate command, you need to
know the specific hdisk# to translate to the corresponding pdisk#, or vice versa. As an
example, we want to know what pdisk# translates to hdisk36. The command syntax to
do the translation is shown here:

ssaxlate -l hdisk36

pdisk32

In this example, hdisk36 translates to pdisk32. From this you can imply that hdisk0
through hdisk3 are not SSA disks. Usually the first few disks on an AIX system are

Monitor for Stale Disk Partitions 315

Free & Share & Open

SCSI disk drives. You can also translate a pdisk# into the corresponding hdisk# by
running the ssaxlate command against the pdisk#.

Log Files
In the first two shell scripts in this chapter we did not use a log file as we did in Method 3.
It is always nice to have a log file to look at after the fact when you are running any
type of system query. Creating a log file is a simple process of defining a variable to
point to a filename that you want to use for a log file and appending output to the log
file variable. If your system tends to fill up the /tmp filesystem, then I recommend cre-
ating a log directory, maybe in /usr/local/logs, or creating a separate filesystem just for
log files. You can still have the mount point /usr/local/logs, or anything you want. If
/tmp fills up, then you will not be able to write anything to the log file. You may also
want to keep a month’s worth of log files to review in case of system problems. To do
this you can add a date stamp as a filename extension and remove all files older than
30 days with the find command.

Automated Execution
You can make a cron entry in the root cron table to execute this shell script to automate
running the script daily. A sample cron table entry is shown here:

05 23 * * * /usr/local/bin/stale_PP_mon.ksh >/dev/null 2>&1

The previous cron table entry will execute the stale_PP_mon.ksh shell script
every day at 11:05 P.M., 365 days a year. The output is redirected to the bit bucket, but
the log file will be created for review the next day.

Event Notification
If you use the previous cron table entry to execute the shell script every day, you may
want to get some kind of notification by way of an email or a page. The easiest way is
to email the log file to yourself every day. You can also modify the shell script to pro-
duce a very short message as a page. As an example, you could send one of the fol-
lowing text messages to an alphanumeric pager:

$THIS_HOST: stale PP check OK

$THIS_HOST: stale PP check FAILED

These are short messages to get the point across, and you will know which machine
the page came from.

316 Chapter 11

Summary

In this chapter we looked at a logical progression of creating a shell script by starting
at the basics. I hope you have gained at least some knowledge of the AIX Logical Vol-
ume Manager (LVM) through this experience. As you can see in this chapter, the first
attempt to solve a challenge may not always be the best, or fastest, method; but this is
how we learn. If we take these small steps and work up a full-blown shell script with
all of the bells and whistles, we have learned a great deal. I know a lot of you do not
work on AIX systems but this is still a valuable exercise.

In the next chapter we look at some techniques of automating the ping process to
ensure that the machines can communicate, at least at the lowest level of a ping. This
is just another step toward being proactive and looking like gold. See you in the next
chapter!

Monitor for Stale Disk Partitions 317

Free & Share & Open

319

In every shop there is a critical need to keep the servers serving. For system availability,
the quicker you know that a system is unreachable, the quicker you can act to resolve
the problem and reduce company losses. At the lowest level of system access we can
ping each machine in the “critical machine” list. If the ping works it will tell you if the
network adapter is working, but it does not guarantee that the machine and applica-
tions are working. For this level of checks you need to actually access the application
or operating system.

In this chapter we are going to create a shell script that will ping hosts using a list of
machines, which is stored in a separate file that is easily edited. Other options to this
scenario include pinging all of the machines in the /etc/hosts file, using ftp to trans-
fer a file, and querying the database, to name a few. Our interest in this chapter is to
work at the lowest level and use the ping command to ensure that the machines are
reachable from the network. When a machine is found unreachable we send notifica-
tion to alert staff that the machine is down. Due to the fact that in some shops the net-
work can become saturated with network traffic, we are going to add an extra level of
testing on a failed ping test, which we will get into later in this chapter. But before we
go any further let’s look at the command syntax for each of our operating systems
(AIX, HP-UX, Linux, and Solaris) to see if we can find a command syntax that will pro-
duce the same output for all of the operating systems that we are working with.

Automated Hosts Pinging
with Notification

C H A P T E R

12

Free & Share & Open

Syntax

As always, we need the correct command syntax before we can write a shell script. Our
goal is to find the command syntax for each operating system that produces the same
output. For this shell script we want to ping each host multiple times to ensure that the
node is reachable; the default is three pings. The standard output we want to produce
on each OS is shown here.

ping -c3 dino

PING dino: (10.10.10.4): 56 data bytes

64 bytes from 10.10.10.4: icmp_seq=0 ttl=255 time=2 ms

64 bytes from 10.10.10.4: icmp_seq=1 ttl=255 time=1 ms

64 bytes from 10.10.10.4: icmp_seq=2 ttl=255 time=1 ms

----dino PING Statistics----

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 1/1/2 ms

This is the command, and the output is from an AIX machine. Notice the PING
Statistics at the bottom of the command output, where I have highlighted 3
packets received. This is the output line that we are interested in for every oper-
ating system. Now, how do we produce the same output for each OS? Instead of leav-
ing you in the dark I am just going to list each one in Table 12.1, showing you how to
ping the host dino.

In Table 12.1, notice that AIX and Linux have the same command syntax. For HP-UX
and Solaris notice the two numbers, 56 and 3. The 56 specifies the packet size to send
on each ping, and the 3 is the number of times to try to reach the host. For a packet size
56 is a standard packet, and we are not going to change from this standard. It is impor-
tant to know the differences in command structure for each operating system because
we are creating one shell script and we will ping each node using a function, which
selects the correct command to execute based on the Unix flavor. To find the OS we use
the uname command. Using the output of the uname command in a case statement we
are assured that the correct command is executed on any of the four operating systems.
This is really all we have for the syntax, but we need to do some checks and create
some variables, so we are going to build the shell script around these commands listed
in Table 12.1.

Table 12.1 Ping Command for Each Operating System

OPERATING SYSTEM PING COMMAND

AIX # ping -c3 dino

HP-UX # ping dino 56 3

Linux # ping -c3 dino

Solaris # ping -s dino 56 3

320 Chapter 12

Creating the Shell Script

In scripting this solution we want to add a couple of options for convenience. The first
option is to have a means of stopping the pinging without interrupting the scheduled
script execution, which is usually executed through a cron table entry. The second
option is to have a means of stopping the notification for nodes that are unreachable.
For each of these we can use a flag variable that must have a value of TRUE to enable
the option. There are many times where you want to disable these two options, but the
main reason is during a maintenance window when many of the machines are
unreachable at the same time. If you have only one or two machines that are down,
then commenting out the node name(s) in the ping.list file, which contains a list of
nodes to ping, is preferable. You can also comment out the cron table entry to disable
the test alogether.

Now we need to define the pinging technique that we want to use. I like to use a
two-level approach in checking for a system’s reachability. In a two-level testing sce-
nario, when a node is unreachable we go to sleep for a few seconds and try the test
again. We do this to eliminate “false positives” due to a heavy network load. This is a
major concern at some shops where I have worked, and finger pointing back and forth
between the network team and the Systems Administrators always happens, and I try
to stay out of this argument. This second-level test adds just a few seconds to the test-
ing window for each unreachable node. This is a relatively simple shell script to create,
so keep reading!

Define the Variables
The first thing that we want to do in almost any shell script is to define the variables
and files that are used in the script. We have already discussed two variables, which
enable pinging and notification. For pinging we use the PINGHOSTS variable and
MAILOUT as the variable to permit or disable notification. Additionally, for ease of test-
ing we are going to typeset both of these variables to force all text assignments to these
variables to uppercase, as shown here.

typeset -u PINGHOSTS

typeset -u MAILOUT

PINGHOSTS=TRUE

MAILOUT=TRUE

We can also typeset the variables and assign the values in the same step, as shown
here.

typeset -u PINGHOSTS=true

typeset -u MAILOUT=true

Notice that I assign a lowercase “true” to both variables, but when you print or
test the variables you will see that the assignments have been changed to uppercase
characters.

Automated Hosts Pinging with Notification 321

Free & Share & Open

echo $MAILOUT

TRUE

There are a few more variables that we also need to define, including PING_COUNT
and PACKET_SIZE that specify the number of times to ping the target host and the
packet size for each packet, which we discussed earlier.

integer PING_COUNT=3

integer PACKET_SIZE=56

Notice the integer notation used to define these variables as integers. This notation
produces the exact same results that the typeset -i command produces.

Next we need the Unix flavor that this shell script is running. This shell script rec-
ognizes AIX, HP-UX, Linux, and Solaris. For this step we use the uname command, as
shown here.

UNAME=$(uname)

In this UNAME assignment we used command substitution to assign the result of the
uname command to the variable UNAME.

The next two steps in this definition section involve defining the PINGFILE and
MAILFILE file assignments. The PINGFILE contains a list of nodes that we want to
ping. The shell script is expecting one node, or hostname, per line. If you no longer
want to ping a node in the list file, then you can comment the node out using a pound
sign (#). For this shell script I specified that the ping list is located in /usr/local/
bin/ping.list. Similarly, the MAILFILE has a list of email addresses that are to be
notified when a node is not reachable. This email list is located in /usr/local/
bin/mail.list. The variable assignments are shown here.

PINGFILE=”/usr/local/bin/ping.list” # List of nodes to ping

MAILFILE=”/usr/local/bin/mail.list” # List of persons to notify

For these two files we are going to check for a nonzero length file, which implies the
file exists and its size is greater than zero bytes. If the $PINGFILE does not exist, then
we need to send an ERROR message to the user and exit the shell script because we do
not have a list of nodes to ping. If the $MAILFILE does not exist we are just going to
notify the user that there will not be any email notification sent for unreachable nodes.

We also need a file to hold the data that is emailed out when a node is unreachable.
The file is located in /tmp/pingfile.out and is assigned to the PING_OUTFILE
variable.

PING_OUTFILE=”/tmp/pingfile.out” # File for e-mailed notification

>$PING_OUTFILE # Initialize to an empty file

Notice how we created an empty file by redirecting nothing to the file, which is
pointed to by the $PING_OUTFILE variable. You could also use cat /dev/null to
accomplish the same task, as shown here.

322 Chapter 12

cat /dev/null > $PING_OUTFILE

Next we need three variables that are to hold numeric values—at least we hope they
are numeric. The first variable is called INTERVAL, and it contains a value specifying
the number of seconds to sleep before trying to ping an unreachable node for the sec-
ond time. I like to use three seconds.

integer INTERVAL=”3” # Number of seconds to sleep between retries

As we discussed before, in our standard ping output we are interested in the PING
Statistics line of output. Specifically, we want to extract the numeric value for the
”3 packets received”, which should be greater than zero if the node is reachable.
To hold the value for the number of pings received back we need two variables, one for
the first try and one for the second attempt, in case the node is unreachable the first
time. These two variables are PINGSTAT and PINGSTAT2 and are initialized to NULL,
as shown here.

PINGSTAT= # Number of pings received back from pinging a node

PINGSTAT2= # Number of pings received back on the second try

The last variable we need to assign is the hostname of the machine that is running
this script. We need the hostname because we may have two nodes pinging each node
in case one pinging node fails. For this variable we again use command substitution, as
shown here.

THISHOST=`hostname` # The hostname of this machine

Notice that this time we used the back tics (`command`) instead of the dollar-
double parentheses method ($(command)) for command substitution. Both command
substitution options produce the same result, which is yogi on this machine.

Creating a Trap
To start out our shell script we are going to set a trap, which allows us to take some
kind of action when an exit signal is captured, such as a user pressing CTRL-C. We can
capture most exit signals except for kill -9. The only action that we want to take in this
shell script is to inform the user that the shell script has detected an exit signal and the
script is exiting. This trap is added in this shell script so that you get used to putting
traps in all of your shell scripts. We are going to capture exit signals 1, 2, 3, 5, and
15 only. You can add many more, but it is overkill in this case. For a complete list of sig-
nals use the kill -l (-ell) command. The command syntax for the trap is shown here.

trap ‘echo “\nExiting on a trapped signal...\n”;exit 1’ 1 2 3 5 15

Using this trap command statement, the following message is displayed before the
shell script exits with exit signal 1.

Exiting on a trapped signal...

Automated Hosts Pinging with Notification 323

Free & Share & Open

The Whole Shell Script
We have all of the initializations complete and know what the ping syntax is for each
operating system, so let’s look at the whole shell script and cover some other issues at
the end of Listing 12.1. Pay close attention to the boldface text.

#!/usr/bin/ksh

#

#

SCRIPT: pingnodes.ksh

#

AUTHOR: Randy Michael

#

DATE: 02-20-2001

#

PURPOSE: This script is used to ping a list of nodes and

send email notification (or alphanumeric page) of any unreachable

nodes.

#

#

REV: 1.0.A

#

REV.LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

#

###

Set a trap and clean up before a trapped exit...

REMEMBER: you CANNOT trap “kill -9”

trap ‘echo “\n\nExiting on trapped signal...\n” \

;exit 1’ 1 2 3 15

###

Define and initialize variables here...

PING_COUNT=”3” # The number of times to ping each node

PACKET_SIZE=”56” # Packet size of each ping

typeset -u PINGNODES # Always use the UPPERCASE value for $PINGNODES

PINGNODES=”TRUE” # To enable or disable pinging FROM this node -

“TRUE”

typeset -u MAILOUT # Always use the UPPERCASE value for $MAILOUT

Listing 12.1 pingnodes.ksh shell script listing.

324 Chapter 12

MAILOUT=”TRUE” # TRUE enables outbound mail notification of

events

UNAME=$(uname) # Get the Unix flavor of this machine

PINGFILE=”/usr/local/bin/ping.list” # List of nodes to ping

if [-s $PINGFILE]

then

Ping all nodes in the list that are not commented out and blank

PINGLIST=$(cat $PINGFILE | grep -v ‘^#’)

else

echo “\nERROR: Missing file - $PINGFILE”

echo “\nList of nodes to ping is unknown...EXITING...\n”

exit 2

fi

MAILFILE=”/usr/local/bin/mail.list” # List of persons to notify

if [-s $MAILFILE]

then

Ping all nodes in the list that are not commented out and

blank

MAILLIST=$(cat $MAILFILE | egrep -v ‘^#’)

else

echo “\nERROR: Missing file - $MAILFILE”

echo “\nList of persons to notify is unknown...\n”

echo “No one will be notified of unreachable nodes...\n”

fi

PING_OUTFILE=”/tmp/pingfile.out” # File for emailed notification

>$PING_OUTFILE # Initialize to an empty file

integer INTERVAL=”3” # Number of seconds to sleep between retries

Initialize the next two variables to NULL

PINGSTAT= # Number of pings received back from pinging a node

PINGSTAT2= # Number of pings received back on the second try

THISHOST=`hostname` # The hostname of this machine

##

############ DEFINE FUNCTIONS HERE #####################

##

function ping_host

{

Listing 12.1 pingnodes.ksh shell script listing. (continues)

Automated Hosts Pinging with Notification 325

Free & Share & Open

This function pings a single node based on the Unix flavor

set -x # Uncomment to debug this function

set -n # Uncomment to check the syntax without any execution

Look for exactly one argument, the host to ping

if (($# != 1))

then

echo “\nERROR: Incorrect number of arguments - $#”

echo “ Expecting exactly one argument\n”

echo “\t...EXITING...\n”

exit 1

fi

HOST=$1 # Grab the host to ping from ARG1.

This next case statement executes the correct ping

command based on the Unix flavor

case $UNAME in

AIX|Linux)

ping -c${PING_COUNT} $HOST 2>/dev/null

;;

HP-UX)

ping $HOST $PACKET_SIZE $PING_COUNT 2>/dev/null

;;

SunOS)

ping -s $HOST $PACKET_SIZE $PING_COUNT 2>/dev/null

;;

*)

echo “\nERROR: Unsupported Operating System - $(uname)”

echo “\n\t...EXITING...\n”

exit 1

esac

}

###

function ping_nodes

{

###

#

Ping the other systems check

#

This can be disabled if you do not want every node to be pinging all

Listing 12.1 pingnodes.ksh shell script listing. (continued)

326 Chapter 12

of the other nodes. It is not necessary for all nodes to ping all

other nodes although you do want more than one node doing the pinging

just in case the pinging node is down. To activate pinging the

“$PINGNODES” variable must be set to “TRUE”. Any other value will

disable pinging from this node.

#

set -x # Uncomment to debug this function

set -n # Uncomment to check command syntax without any execution

if [[$PINGNODES = “TRUE”]]

then

echo # Add a single line to the output

Loop through each node in the $PINGLIST

for HOSTPINGING in $(echo $PINGLIST) # Spaces between nodes in the

list are assumed

do

Inform the user what is going on

echo “Pinging --> ${HOSTPINGING}...\c”

If the pings received back is equal to “0” then you have a

problem.

Ping $PING_COUNT times, extract the value for the pings

received back.

PINGSTAT=$(ping_host $HOSTPINGING | grep transmitted \

| awk ‘{print $4}’)

If the value of $PINGSTAT is NULL, then the node is

unknown to this host

if [[-z “$PINGSTAT” && “$PINGSTAT” = ‘’]]

then

echo “Unknown host”

continue

fi

if ((PINGSTAT == 0))

then # Let’s do it again to make sure it really is

unreachable

echo “Unreachable...Trying one more time...\c”

sleep $INTERVAL

Listing 12.1 pingnodes.ksh shell script listing. (continues)

Automated Hosts Pinging with Notification 327

Free & Share & Open

PINGSTAT2=$(ping_host $HOSTPINGING | grep transmitted \

| awk ‘{print $4}’)

if ((PINGSTAT2 == 0))

then # It REALLY IS unreachable...Notify!!

echo “Unreachable”

echo “Unable to ping $HOSTPINGING from $THISHOST” \

| tee -a $PING_OUTFILE

else

echo “OK”

fi

else

echo “OK”

fi

done

fi

}

##

function send_notification

{

if [-s $PING_OUTFILE -a “$MAILOUT” = “TRUE”];

then

case $UNAME in

AIX|HP-UX|Linux) SENDMAIL=”/usr/sbin/sendmail”

;;

SunOS) SENDMAIL=”/usr/lib/sendmail”

;;

esac

echo “\nSending e-mail notification”

$SENDMAIL -f randy@$THISHOST $MAILLIST < $PING_OUTFILE

fi

}

##

############ START of MAIN #######################

##

ping_nodes

send_notification

End of script

Listing 12.1 pingnodes.ksh shell script listing. (continued)

328 Chapter 12

Now we get to the fun stuff! Let’s start out with the three functions because they do
all of the work anyway. The first function is ping_host. The idea here is to set up a
case statement, and based on the response from the uname command, which was
assigned to the UNAME variable in the definitions section, we execute the specific ping
command for the particular Unix flavor. If an unlisted Unix flavor is given, an ERROR
message is given to the user, and this shell script exits with a return code 1. We must do
this because we have no idea what the correct syntax for a ping command should be
for an unknown operating system.

The ping_host function is called from the ping_nodes function on every loop
iteration. Inside the ping_nodes function we first ensure that the $PINGNODES vari-
able is set to TRUE; otherwise, the pinging of nodes is disabled.

We use the $PINGFILE file to load a variable, PINGLIST, with a list of nodes that
we want to ping. This extra step is done to give the user the ability to comment out spe-
cific node(s) in the $PINGFILE. Without this ability you would leave the user in a state
of annoyance for all of the notifications because of a single node being down for a
period of time. The command to strip out the commented lines and leave the remain-
ing nodes in the list is shown here.

PINGLIST=$(cat $PINGFILE | grep -v ‘^#’)

Notice how this command substitution works. We cat the $PINGFILE and pipe the
output to a grep command. In the grep part of the statement we use the -v switch. The
-v switch tells grep to list everything except for the following pattern, which is “^#” in
this case. Now let’s look at the ^# part. When you put a carat character (^) in front of a
pattern in this grep statement, we are ignoring any line that begins with a pound sign
(#). The carat (^) means begins with.

A for loop is started using the $PINGLIST variable as a list, which contains each
node in the /usr/local/bin/ping.list file that is not commented out. For each
node in the listing we echo to the screen the target node name and call the ping_host
function inside of a command substitution statement on each loop iteration, which is
shown here.

echo “Pinging --> ${HOSTPINGING}...\c”

PINGSTAT=$(ping_host $HOSTPINGING | grep transmitted | awk ‘{print $4}’)

For each node in the $PINGLIST the echo statement and the command substitution
statement are executed. There are three possible results for the command substitution
statement, and we test for two; the last one is assumed. (1) The PINGSTAT value is 0,
zero. If the packets received are 0, zero, then we sleep for $INTERVAL seconds and try
to reach the node again, this time assigning the packets received to the PINGSTAT2
variable. (2) The PINGSTAT value is NULL. This results when you try to ping a node
that is unknown to the system. In this case we echo to the screen Unknown host and
continue to the next node in the list. (3) The PINGSTAT value is nonzero and non-
NULL, which means that the ping was successful. Please study each of these tests in
the ping_nodes function.

Automated Hosts Pinging with Notification 329

Free & Share & Open

Notice the tests used in the if statements. Each of these is a mathematical test so we
use the double parentheses method of testing, as shown here.

if ((PINGSTAT == 0))

There are two things to notice in this if statement. The first is that there is no dollar
sign ($) in front of the PINGSTAT variable. The dollar sign is not needed in a mathe-
matical test when using the double parentheses method because the shell assumes that
any nonnumeric string is a variable for this type of mathematical test. I have had cases
where I added the dollar sign ($) in front of the variable, and it took me four days to
figure out why the script was failing. In other cases I have seen the dollar sign used and
the script worked without error. I always remove the dollar sign, just in case. This
problem is extremely hard to find should an error occur.

The second point I want to make in the previous if statement is the use of the dou-
ble equal signs (==). Using this type of mathematical test, a single equal sign is an
assignment, not an equality test. This sounds a little strange, but you can actually assign
a value to a variable in a test. To test for equality, always use double equal signs (==)
with this test method.

The last function in this shell script is the send_notification function. This
function is used to send an email notification to each address listed in the
/usr/local/bin/mail.list file, which is pointed to by the MAILFILE variable.
Before attempting any notification the function tests to see if the $PING_OUTFILE file
has anything in it or if its size is greater than zero bytes. The second test is to ensure
that the MAILOUT variable is set to TRUE. If the $PING_OUTFILE has some data and
the MAILOUT variable is set to TRUE, then the function will attempt to notify each
email address in the $MAILFILE.

In the send_notification function notice that I am using the sendmail com-
mand, as opposed to the mail or mailx commands. I use the sendmail command
because I worked at a shop where I had a lot of trouble getting mail through the fire-
wall because I was sending the mail as root. I found a solution by using the sendmail
command because I can specify a valid nonroot user as the person who sent the email.
The command I use is shown here.

sendmail -f randy@$THISHOST $MAILLIST < $PING_OUTFILE

In this statement the -f <user@host> specifies who is sending the e-mail. The
$MAILLIST is the list of persons who should receive the email, and the <
$PING_OUTFILE input redirection is the body text of the email, which is stored in a
file. I still have one little problem, though. The sendmail command is not always
located in the same directory, and sometimes it is not in the $PATH. On AIX, HP-UX,
and Linux the sendmail command is located in /usr/sbin. On Solaris the sendmail
command is located in the /usr/lib directory. To get around this little problem we
need a little case statement that utilizes the $UNAME variable that we used in the
ping_host function. With a little modification we have the function shown in List-
ing 12.2.

330 Chapter 12

function send_notification

{

if [-s $PING_OUTFILE -a “$MAILOUT” = “TRUE”];

then

case $UNAME in

AIX|HP-UX|Linux) SENDMAIL=”/usr/sbin/sendmail”

;;

SunOS) SENDMAIL=”/usr/lib/sendmail”

;;

esac

echo “\nSending e-mail notification”

$SENDMAIL -f randy@$THISHOST $MAILLIST < $PING_OUTFILE

fi

}

Listing 12.2 send_notification function listing.

Notice that we used a single line for AIX, HP-UX, and Linux in the case statement.
At the end of the function we use the $SENDMAIL variable to point to the correct full
path of the sendmail command for the specific operating system.

Let’s not forget to look at the pingnodes.ksh shell script in action! In the follow-
ing output, shown in Listing 12.3, the node dino is unknown to the system, and the
mrranger node is powered down so there is no response from the ping to the system.

./pinghostfile.ksh.new

Pinging --> yogi...OK

Pinging --> bambam...OK

Pinging --> booboo...OK

Pinging --> dino...Unknown host

Pinging --> wilma...OK

Pinging --> mrranger...Unreachable...Trying one more time...Unreachable

Unable to ping mrranger from yogi

Sending e-mail notification

Listing 12.3 pingnodes.ksh shell script in action.

From the output in Listing 12.3, notice the result of pinging the node dino. I com-
mented out the hostname dino in the /etc/hosts file. By doing so I made the node

Automated Hosts Pinging with Notification 331

Free & Share & Open

unknown to the system because DNS is not configured on this system. The mrranger
node is powered down so it is known but not reachable. Notice the difference in the
outputs for these two similar, but very different, situations. Please study the code
related to both of these tests in the ping_nodes function.

Other Options to Consider

As always, we can improve on any shell script, and this one is no exception. I have
listed some options that you may want to consider.

$PINGLIST Variable Length Limit Problem
In this scripting solution we gave the user the capability to comment out specific nodes
in the $PINGFILE. We assigned the list of nodes, which is a list without the comments,
to a variable. This is fine for a relatively short list of nodes, but a problem arises when
the maximum variable length, which is usually 2048 characters, is exceeded. If you
have a long list of nodes that you want to ping and you notice that the script never gets
to the end of the ping list, you have a problem. Or if you see a funny-looking node
name, which is probably a hostname that has been cut off by the variable limit and
associated with a system error message, then you have a problem. To resolve this issue,
define a new file to point to the PINGLIST variable, and then we will use the file to
store the ping list data instead of a variable. To use PINGLIST as a file, add/
change the following lines:

ADD THIS LINE:

PINGLIST=/tmp/pinglist.out

CHANGE THIS LINE:

PINGLIST=$(cat $PINGFILE | grep -v ‘^#’)

TO THIS LINE:

cat $PINGFILE | grep -v ‘^#’ > $PINGLIST

CHANGE THIS LINE:

for HOSTPINGING in $(echo $PINGLIST)

TO THIS LINE:

for HOSTPINGING in $(cat $PINGLIST)

332 Chapter 12

Using the file to store the ping list data changes the limit to the maximum file size
that the system supports or when the filesystem fills up, which should be plenty of
space for anyone. This modified shell script is located on this book’s companion Web
site. The script name is pingnodes_using_a_file.ksh.

Ping the /etc/hosts File Instead of a List File
This may be overkill for any large shop, but it is easy to modify the shell script to
accomplish this task. You want to make the following change to the shell script after
completing the tasks in the previous section “$PINGLIST Variable Length Limit Prob-
lem” to the shell script shown in Listing 12.1.

CHANGE THESE LINES:

if [-s $PINGFILE]

then

PINGLIST=$(cat $PINGFILE | grep -v ‘^#’)

TO THESE LINES:

if [-s /etc/hosts]

then

Ping all nodes in the /etc/hosts file

cat /etc/hosts | sed /^#/d | sed /^$/d | grep -v 127.0.0.1 \

| awk ‘{print $2}’ > $PINGLIST

In this changed code we cat the /etc/hosts file and pipe the output to a sed
statement, sed /^#/d. This sed statement removes every line in the /etc/hosts file
that begins with a pound sign (#). The output of this sed statement is then piped to
another sed statement, sed /^$/d, which removes all of the blank lines in the
/etc/hosts file (the blank lines are specified by the ^$). This sed output is sent to a
grep command that removes the loopback address from the list. Finally, the remaining
output is piped to an awk statement that extracts the hostname out of the second field.
The resulting output is redirected to the $PINGLIST file. This modified shell script to
ping the /etc/hosts file is included on the Web site that accompanies the book. The
filename is pinghostsfile.ksh.

Logging
I have not added any logging capability to this shell script. Adding a log file, in addi-
tion to user notification, can help you find trends of when nodes are unreachable.
Adding a log file is not too difficult to do. The first step is to define a unique log file-
name in the definitions section and assign the filename to a variable, maybe LOGFILE.
In the script test for the existence of the file, using a test similar to the following state-
ment will work.

Automated Hosts Pinging with Notification 333

Free & Share & Open

ADD THESE LINES:

LOGPATH=/usr/local/log

LOGFILE=${LOGPATH}/pingnodes.log

if [! -s $LOGFILE]

then

if [! -d $LOGPATH]

then

echo “\nCreating directory ==> $LOGPATH\c”

mkdir /usr/local/log

if (($? != 0))

then

echo “\nUnable to create the $LOGPATH directory...EXITING

\n”

exit 1

fi

chown $USER /usr/local/log

chmod 755 $LOGPATH

echo

fi

echo “\nCreating Logfile ==> $LOGFILE\c”

cp /dev/null > $LOGFILE

chown $USER $LOGFILE

echo

fi

After adding these lines of code, use the tee -a $LOGFILE command in a pipe to
both display the text on the screen and log the data in the $LOGFILE.

Notification of “Unknown Host”
You may want to add notification, and maybe logging too, for nodes that are not
known to the system. This usually occurs when the machine cannot resolve the node
name into an IP address. This can be caused by the node not being listed in the
/etc/hosts file or failure of the DNS lookup. Check both conditions when you get
the Unknown host message. Currently, this shell script only echoes this information
to the screen. You may want to add this message to the notification.

Notification Method
In this shell script we use email notification. I like email notification, but if you have a
network failure this is not going to help you. To get around the network down problem
with email, you may want to set up a modem, for dial-out only, to dial your alpha-
numeric pager number and leave you a message. At least you will always get the
message. I have had times, though, when I received the message two hours later due to
a message overflow to the modem.

334 Chapter 12

You may just want to change the notification to another method, such as SNMP
traps. If you execute this shell script from an enterprise management tool, then the
response required back to the program is usually an SNMP trap. Refer to the docu-
mentation of the program you are using for details.

Automated Execution Using a Cron Table Entry
I know you do not want to execute this shell script from the command line every 15
minutes yourself! I use a root cron table entry to execute this shell script every 15 min-
utes, 24 hours a day, Monday through Saturday, and 8:00 A.M. to midnight on Sunday;
of course, this requires two cron table entries. Because weekly backups and reboots
happen early Sunday morning, I do not want to be awakened every Sunday morning
when a machine reboots, so I have a special cron entry for Sunday. Both root cron table
entries shown execute this script every 15 minutes.

5,20,35,50 * * * 1-6 /usr/local/bin/pingnodes.ksh >/dev/null 2>&1

5,20,35,50 8-23 * * 0 /usr/local/bin/pingnodes.ksh </dev/null 2>&1

The first entry executes the pingnodes.ksh shell script at 5, 20, 35, and 50 minutes
of every hour from Monday through Saturday. The second entry executes the
ping-nodes.ksh shell script at 5, 20, 35, and 50 minutes from 8:00 A.M. until 11:59 P.M.,
with the last ping test running at 11:50 P.M. Sunday night.

Summary

In this chapter we took a different approach than that of some other shell scripts in this
book. Instead of creating a different function for each operating system, we created a
single shell script and then used a separate function to execute the correct command
syntax for the specific operating system. The uname command is a very useful tool for
shell scripting solutions for various Unix flavors in a single shell script.

I hope you enjoyed this chapter. I think we covered some unique ways to solve the
scripting problems that arise when programming for multiple Unix flavors in the same
script. In the next chapter we will dive into the task of taking a system snapshot. The
idea is to get a point-in-time system configuration for later comparison if a system
problem has you puzzled. See you in the next chapter!

Automated Hosts Pinging with Notification 335

Free & Share & Open

337

Have you ever rebooted a system and it came up in an unusual state? Any time you
reboot a system you run a risk that the system will not come back up properly. When
problems arise it is nice to have before and after pictures of the state of the machine. In
this chapter we are going to look at some options for shell scripts that execute a series
of commands to take a snapshot of the state of the machine. Some of the things to con-
sider for this system snapshot include filesystems that are mounted, NFS mounts,
processes that are running, network statistics and configuration, and a list of defined
system resources, just to name a few. This is different from gathering a snapshot of
performance statistics, which is gathered over a period of time. All we are looking for
is system configuration data and the system’s state at a point in time, specifically
before the system is rebooted or when it is running in a normal state with all of the
applications running properly.

With this information captured before a system reboot, you have a better chance of
fixing a reboot problem quickly and reducing down time. I like to store snapshot infor-
mation in a directory called /usr/local/reboot with the command names used for
filenames. For this shell script all of the system information is stored in a single file
with a section header added for each command output. Overall, this is not a difficult
shell script to write, but gathering the list of commands that you want to run can some-
times be a challenge. For example, if you want to gather an application’s configuration
you need to find the commands that will produce the desired output. I always prefer
having too much information, rather than not enough information, to troubleshoot a
problem.

Taking a System Snapshot

C H A P T E R

13

Free & Share & Open

In this chapter I have put together a list of commands and created a bunch of func-
tions to execute in the shell script. The commands selected are the most critical for trou-
bleshooting an AIX machine; however, you will need to tailor this set of commands to
suit your particular needs, operating system, and environment. Every shop is different,
but they are all the same in some sense, especially when it comes to troubleshooting a
problem. Let’s look at some commands and the syntax that is required.

Syntax

As always, we need the commands and the proper syntax for these commands before
we can write a shell script. The commands presented in this section are just a sample of
the information that you can gather from the system. This set of commands is for an
AIX system, but most apply to other Unix flavors with modified syntax. The list of AIX
commands is shown in Listing 13.1.

Hostname of the machine

hostname

OR

uname -n

Unix flavor

uname -s

AIX OS version

oslevel

AIX maintenance level patch set

instfix -i | grep AIX_ML

OR

oslevel -r

Time zone for this system

cat /etc/environment | grep TZ | awk -F’=’ ‘{print $2}’

Real memory in the system

echo “$(bootinfo -r)KB”

OR

lsattr -El -a realmem | awk ‘{print $2}’

Machine type/architecture

uname -M

OR - Depending on the architecture

uname -p

List of defined system devices

lsdev -C

Long directory listing of /dev

ls -l /dev

List of all defined disks

lsdev -Cc disk

List of all defined pdisks for SSA disks

lsdev -Cc pdisk

List of defined tape drives

Listing 13.1 System snapshot commands for AIX.

338 Chapter 13

lsdev -Cc tape

List of defined CD-ROMs

lsdev -Cc cdrom

List of all defined adapters

lsdev -Cc adapter

List of network routes

netstat -rn

Network adapter statistics

netstat -i

Filesystem Statistics

df -k

AND

mount

List of defined Volume Groups

lsvg | sort -r

List of varied-on Volume Groups

lsvg -o | sort -r

List of Logical Volumes in each Volume Group

for VG in $(lsvg -o | sort -r)

do

lsvg -l $VG

done

Paging space definitions and usage

lsps -a

AND

lsps -s

List of all hdisks in the system

lspv

Disk drives listed by Volume Group assignment

for VG in $(lsvg -o | sort -r)

do

lsvg -p $VG

done

List the HACMP configuration, if installed

if [-x /usr/sbin/cluster/utilities/cllsif]

then

/usr/sbin/cluster/utilities/cllsif

echo “\n”

fi

if [-x /usr/sbin/cluster/utilities/clshowres]

then

/usr/sbin/cluster/utilities/clshowres

fi

List of all defined printers

lpstat -W | tail +3

AND

cat /etc/qconfig

Listing 13.1 System snapshot commands for AIX. (continues)

Taking a System Snapshot 339

Free & Share & Open

List of active processes

ps -ef

Show SNA configuration, if installed

sna -d s

if (($? != 0))

then

lssrc -s sna -l

fi

List of udp and x25 processes, if any

ps -ef | egrep ‘udp|x25’ | grep -v grep

Short listing of the system configuration

lscfg

Long listing of the system configuration

lscfg -vp

List of all system installed filesets

lslpp -L

List of broken or inconsistant filesets

lppchk -v 2>&1

List of the last 100 users to log in to the system

last | tail -100

Listing 13.1 System snapshot commands for AIX. (continued)

As you can see in Listing 13.1, we can add anything that you want to the snapshot
shell script to get as much detail as needed to troubleshoot a problem. Every environ-
ment is different, so this list of commands should be modified, or added to, to suit the
needs of your shop. Additional tests include a list of databases that are running, appli-
cation configurations, specific application processes that are critical, and a ping list of
machines that are critical to the operation of any applications. You can add anything
that you want or need here. Always try to gather more information than you think you
may need to troubleshoot a problem.

Using this snapshot technique allows us to go back and look at what the system
looked like under normal conditions and load. By looking at the snapshot script out-
put file, the problem usually stands out when comparing it to the currently running
system that has a problem.

Creating the Shell Script

For this shell script we are going to take the commands shown in Listing 13.1 and cre-
ate a function for each one. Using functions greatly simplifies both creating and modi-
fying the entire shell script. When we want to add a new test, or configuration output,
we just create a new function and add the function-name in the main body of the shell
script exactly where we want it to run. In this shell script all of the function definitions
use the C-like function statement, as shown here.

340 Chapter 13

get_last_logins ()

{

Commands to execute

}

A lot of script programmers like this function definition technique. I prefer defining
a function using the function statement method, as shown here.

function get_last_logins

{

Commands to execute

}

This last method of defining a function is more intuitive to understand for the peo-
ple who will follow in your footsteps and modify this shell script. I hope you noticed
the use of the word will in the last sentence. No matter what the shell script does, there
is always someone who will come along, after you have moved on to bigger and better
things, who will modify the shell script. It is usually not because there is a problem
with the script coding, but more likely a need for added functionality. For the people
who follow me, I like to make sure that the shell script is easy to follow and under-
stand. Use your own judgment and preference when defining functions in a shell
script; just be consistent.

Because we have all of the commands listed in Listing 13.1 let’s look at the entire
shell script in Listing 13.2 and see how we created all of these functions.

#!/bin/ksh

#

SCRIPT: AIXsysconfig.ksh

AUTHOR: Randy Michael

REV: 2.1.P

DATE: 06/14/2002

#

PLATFORM: AIX only

#

PURPOSE: Take a snapshot of the system for later comparision in the

event of system problems. All data is stored in

/usr/local/reboot in the file defined to the $SYSINFO_FILE

variable below.

#

#

REV LIST:

7/11/2002: Changed this script to use a single output file

that receives data from a series of commands

within a bunch of functions.

#

#

Listing 13.2 AIXsysconfig.ksh shell script listing. (continues)

Taking a System Snapshot 341

Free & Share & Open

set -x # Uncomment to debug this script

set -n # Uncomment to verify command syntax without execution

#

###

######### DEFINE VARIABLES HERE #################

###

THISHOST=$(/usr/bin/hostname)

DATETIME=$(/usr/bin/date +%m%d%y_%H%M%S)

WORKDIR=”/usr/local/reboot”

SYSINFO_FILE=”${WORKDIR}/sys_snapshot.${THISHOST}.$DATETIME”

###

############ DEFINE FUNCTIONS HERE ##############

###

get_host ()

{

Hostname of this machine

hostname

uname -n works too

}

###

get_OS ()

{

Operating System - AIX or exit

uname -s

}

###

get_OS_level ()

{

Query for the operating system release and version level

oslevel

}

###

get_ML_for_AIX ()

{

Query the system for the maintenance level patch set

instfix -i | grep AIX_ML

Listing 13.2 AIXsysconfig.ksh shell script listing. (continued)

342 Chapter 13

echo “\n”

oslevel -r

}

###

get_TZ ()

{

Get the time zone that the system is operating in.

cat /etc/environment | grep TZ | awk -F’=’ ‘{print $2}’

}

###

get_real_mem ()

{

Query the system for the total real memory

echo “$(bootinfo -r)KB”

lsattr -El sys0 -a realmem | awk ‘{print $2}’ Works too

}

###

get_arch ()

{

Query the system for the hardware architecture. Newer

machines use the -M switch, and the older Micro-Channel

architecture (MCA) machines use the -p option for

the “uname” command.

ARCH=$(uname -M)

if [[-z “$ARCH” && “$ARCH” = ‘’]]

then

ARCH=$(uname -p)

fi

echo “$ARCH”

}

###

get_devices ()

{

Query the system for all configured devices

lsdev -C

}

###

Listing 13.2 AIXsysconfig.ksh shell script listing. (continues)

Taking a System Snapshot 343

Free & Share & Open

get_long_devdir_listing ()

{

Long listing of the /dev directory. This shows the

device major and minor numbers and raw device ownership

ls -l /dev

}

###

get_defined_disks ()

{

List of all defined disks

lsdev -Cc disk

}

###

get_defined_pdisks ()

{

List of all defined pdisks for SSA disks

lsdev -Cc pdisk

}

###

get_tape_drives ()

{

Query the system for all configured tape drives

lsdev -Cc tape

}

###

get_cdrom ()

{

Query the system for all configured CD-ROM devices

lsdev -Cc cdrom

}

###

get_adapters ()

{

List all configured adapters in the system

lsdev -Cc adapter

}

Listing 13.2 AIXsysconfig.ksh shell script listing. (continued)

344 Chapter 13

###

get_routes ()

{

Save the network routes defined on the system

netstat -rn

}

###

get_netstats ()

{

Save the network adapter statistics

netstat -i

}

###

get_fs_stats ()

{

Save the file system statistics

df -k

echo “\n”

mount

}

###

get_VGs ()

{

List all defined Volume Groups

lsvg | sort -r

}

###

get_varied_on_VGs ()

{

List all varied-on Volume Groups

lsvg -o | sort -r

}

###

get_LV_info ()

{

Listing 13.2 AIXsysconfig.ksh shell script listing. (continues)

Taking a System Snapshot 345

Free & Share & Open

List the Logical Volumes in each varied-on Volume Group

for VG in $(get_varied_on_VGs)

do

lsvg -l $VG

done

}

###

get_paging_space ()

{

List the paging space definitions and usage

lsps -a

echo “\n”

lsps -s

}

###

get_disk_info ()

{

List of all “hdisk”s (hard drives) on the system

lspv

}

###

get_VG_disk_info ()

{

List disks by Volume Group assignment

for VG in $(get_varied_on_VGs)

do

lsvg -p $VG

done

}

###

get_HACMP_info ()

{

If the System is running HACMP then save the

HACMP configuration

if [-x /usr/sbin/cluster/utilities/cllsif]

then

/usr/sbin/cluster/utilities/cllsif

echo “\n\n”

Listing 13.2 AIXsysconfig.ksh shell script listing. (continued)

346 Chapter 13

fi

if [-x /usr/sbin/cluster/utilities/clshowres]

then

/usr/sbin/cluster/utilities/clshowres

fi

}

###

get_printer_info ()

{

Wide listing of all defined printers

lpstat -W | tail +3

echo “\nPrint Queue Configuration File Listing\n”

cat /etc/qconfig | grep -v ^*

}

###

get_process_info ()

{

List of all active processes

ps -ef

}

###

get_sna_info ()

{

If the system is using SNA save the SNA configuration

sna -d s # Syntax for 2.x SNA

if (($? != 0))

then

lssrc -s sna -l # must be SNA 1.x

fi

}

###

get_udp_x25_procs ()

{

Listing of all “udp” and “x25” processes, if

any are running

ps -ef | egrep ‘udp|x25’ | grep -v grep

}

###

Listing 13.2 AIXsysconfig.ksh shell script listing. (continues)

Taking a System Snapshot 347

Free & Share & Open

get_sys_cfg ()

{

Short listing of the system configuration

lscfg

}

###

get_long_sys_config ()

{

Long detailed listing of the system configuration

lscfg -vp

}

###

get_installed_filesets ()

{

Listing of all installed LPP filesets (system installed)

lslpp -L

}

###

check_for_broken_filesets ()

{

Check the system for broken filesets

lppchk -v 2>&1

}

###

last_logins ()

{

List the last 100 system logins

last | head -100

}

###

############## START OF MAIN ###################

###

Check for AIX as the operating system

if [[$(get_OS) != ‘AIX’]]

then

Listing 13.2 AIXsysconfig.ksh shell script listing. (continued)

348 Chapter 13

echo “\nERROR: Incorrect operating system. This

shell script is written for AIX.\n”

echo “\n\t...EXITING...\n”

exit 1

fi

###

#

Define the working directory and create this

directory if it does not exist.

if [! -d $WORKDIR]

then

mkdir -p $WORKDIR >/dev/null 2>&1

if (($? != 0))

then

echo “\nERROR: Permissions do not allow you to create the

$WORKDIR directory. This script must exit.

Please create the $WORKDIR directory and

execute this script again.\n”

echo “\n\t...EXITING...\n”

exit 2

fi

fi

###

{ # Everything enclosed between this opening bracket and the

later closing bracket is both displayed on the screen and

also saved in the log file defined as $SYSINFO_FILE.

echo “\n\n[$(basename $0) - $(date)]\n”

echo “Saving system information for $THISHOST...”

echo “\nSystem:\t\t\t$(get_host)”

echo “Time Zone:\t\t$(get_TZ)”

echo “Real Memory:\t\t$(get_real_mem)”

echo “Machine Type:\t\t$(get_arch)”

echo “Operating System:\t$(get_OS)”

echo “OS Version Level:\t$(get_OS_level)”

echo “\nCurrent OS Maintenance Level:\n$(get_ML_for_AIX)”

echo “\n###\n”

echo “Installed and Configured Devices\n”

get_devices

Listing 13.2 AIXsysconfig.ksh shell script listing. (continues)

Taking a System Snapshot 349

Free & Share & Open

echo “\n###\n”

echo “Long Device Directory Listing - /dev\n”

get_long_devdir_listing

echo “\n###\n”

echo “\nSystem Defined Disks\n”

get_defined_disks

echo “\n###\n”

echo “\nSystem Defined SSA pdisks\n”

get_defined_pdisks

echo “\n###\n”

echo “System Tape Drives\n”

get_tape_drives

echo “\n###\n”

echo “System CD-ROM Drives\n”

get_cdrom

echo “\n###\n”

echo “Defined Adapters in the System\n”

get_adapters

echo “\n###\n”

echo “Network Routes\n”

get_routes

echo “\n###\n”

echo “Network Interface Statistics\n”

get_netstats

echo “\n###\n”

echo “Filesystem Statistics\n”

get_fs_stats

echo “\n###\n”

echo “Defined Volume Groups\n”

get_VGs

echo “\n###\n”

echo “Varied-on Volume Groups\n”

get_varied_on_VGs

echo “\n###\n”

echo “Logical Volume Information by Volume Group\n”

get_LV_info

echo “\n###\n”

echo “Paging Space Information\n”

get_paging_space

echo “\n###\n”

echo “Hard Disks Defined\n”

get_disk_info

echo “\n###\n”

echo “Volume Group Hard Drives\n”

get_VG_disk_info

echo “\n###\n”

echo “HACMP Configuration\n”

get_HACMP_info

Listing 13.2 AIXsysconfig.ksh shell script listing. (continued)

350 Chapter 13

echo “\n###\n”

echo “Printer Information\n”

get_printer_info

echo “\n###\n”

echo “Active Process List\n”

get_process_info

echo “\n###\n”

echo “SNA Information\n”

get_sna_info

echo “\n###\n”

echo “x25 and udp Processes\n”

get_udp_x25_procs

echo “\n###\n”

echo “System Configuration Overview\n”

get_sys_cfg

echo “\n###\n”

echo “Detailed System Configuration\n”

get_long_sys_config

echo “\n###\n”

echo “System Installed Filesets\n”

get_installed_filesets

echo “\n###\n”

echo “Looking for Broken Filesets\n”

check_for_broken_filesets

echo “\n###\n”

echo “List of the last 100 users to log in to $THISHOST\n”

last_logins

echo “\n\nThis report is save in: $SYSINFO_FILE \n”

Send all output to both the screen and the $SYSINFO_FILE

using a pipe to the “tee -a” command”

} | tee -a $SYSINFO_FILE

Listing 13.2 AIXsysconfig.ksh shell script listing. (continued)

As you can see in Listing 13.2, we have a lot of functions in this shell script. When I
created these functions I tried to place each one in the order that I want to execute in
the shell script. This is not necessary as long as you do not try to use a function before
it is defined. Because a Korn shell script is interpreted, as opposed to compiled, the
flow goes from the top to the bottom. It makes sense that you have to define a function
in the code above where the function is used. If we slip up and the function is defined
below where it is used, then we may or may not get an error message. Getting an error
message depends on what the function is supposed to do and how the function is exe-
cuted in the shell script.

Taking a System Snapshot 351

Free & Share & Open

From the top of the shell script in Listing 13.2 we first define the variables that we
need. The hostname of the machine is always nice to know, and it is required for the
report-file definition and in the report itself. Next we create a date/time stamp. This
$DATATIME variable is used in the report-file definition as well. We want the date and
time because this script may be executed more than once in a single day. Next we
define the working directory. I like to use /usr/local/reboot, but you can use any
directory that you want. Finally, we define the report-file, which is assigned to the
$SYSINFO_FILE variable.

The next section is where all of the functions are defined. Notice that some of these
functions contain only a single command, and some have a bit more code. In a shell
script like this one it is a good idea to place every command in a separate function.
Using this method allows you to change the commands to a different operating system
simply by editing some functions and leaving the basic shell script operation intact.
There are too many functions in this shell script to go over them one at a time, but an
output of this shell script is shown in Listing 13.3. For details on the specific AIX com-
mands please refer to the AIX documentation and man pages on an AIX system.

At START OF MAIN we begin the real work. The first step is to ensure that the oper-
ating system is AIX. If this shell script is executed on another Unix flavor, then a lot of
the commands will fail. If a non-AIX Unix flavor is detected, then the user receives an
error message and the script exits with a return code of 1, one. Step two is to test for the
existence of the $WORKDIR directory, which is defined as /usr/local/reboot in this
shell script. If the directory does not exist, an attempt is made to create the directory.
Not all users will have permission to create a directory here. If the directory creation
fails, then the user receives an error message and is asked to create the directory man-
ually and run the shell script again.

If the operating system is AIX and the $WORKDIR exists, then we create the report-
file and begin creating the report. Notice that the entire list of functions and commands
for the report is enclosed in braces, { code }. Then, after the final brace, at the end of
the shell script, all of the output is piped to the tee -a command. Using this pipe to the
tee -a command allows the user to see the report as it is being created and the output is
written to the $SYSINFO_FILE file. Enclosing all of the code for the report within the
braces saves a lot of effort to get the output to the screen and to the report file. The basic
syntax is shown here.

{

report command

report command

.

.

.

report command

} | tee -a $SYSINFO_FILE

Within the braces we start by setting up the report header information, which includes
the hostname, time zone, real memory, machine type, operating system, operating sys-
tem version, and the maintenance level patch set of the operating system version.

352 Chapter 13

When the header is complete then the script executes the functions listed in the
DEFINE FUNCTIONS HERE section. As I stated before, I tried to define the functions
in the order of execution. Before each function is executed, a line of hash marks is writ-
ten out to separate each report section, and then some section header information is
written for the specific task. At the end, and just before the ending brace, the report file-
name is shown to the user to indicate where the report file is located.

Let’s take a look at an abbreviated report output in Listing 13.3.

[AIXsysconfig.ksh - Thu Jul 25 09:46:58 EDT 2002]

Saving system information for yogi...

System: yogi

Time Zone: EST5EDT

Real Memory: 131072KB

Machine Type: powerpc

Operating System: AIX

OS Version Level: 5.1.0.0

Current OS Maintenance Level:

Not all filesets for 5.0.0.0_AIX_ML were found.

Not all filesets for 5.1.0.0_AIX_ML were found.

###

Installed and Configured Devices

sys0 Available 00-00 System Object

sysplanar0 Available 00-00 System Planar

ioplanar0 Available 00-00 I/O Planar

sio0 Available 00-00 Standard I/O Planar

hdisk0 Available 00-00-0S-0,0 2.0 GB SCSI Disk Drive

hdisk1 Available 00-00-0S-1,0 2.0 GB SCSI Disk Drive

rmt0 Available 00-00-0S-5,0 5.0 GB 8mm Tape Drive

cd0 Available 00-00-0S-6,0 SCSI Multimedia CD-ROM Drive

proc0 Available 00-00 Processor

mem0 Available 00-0A 32 MB Memory SIMM

mem1 Available 00-0B 32 MB Memory SIMM

mem2 Available 00-0C 32 MB Memory SIMM

mem3 Available 00-0D 32 MB Memory SIMM

fd0 Available 00-00-0D-00 Diskette Drive

lvdd Available LVM Device Driver

tty0 Available 00-00-S1-00 Asynchronous Terminal

rootvg Defined Volume group

hd5 Defined Logical volume

hd6 Defined Logical volume

.

Listing 13.3 AIXsysconfig.ksh shell script in action. (continues)

Taking a System Snapshot 353

Free & Share & Open

.

.

###

Long Device Directory Listing - /dev

total 24

crw-rw-rw- 1 root system 19, 0 Jun 23 15:23 rmt0

crw-rw-rw- 1 root system 19, 1 Mar 29 13:49 rmt0.1

crw-rw-rw- 1 root system 19, 2 Jul 26 2001 rmt0.2

crw-rw-rw- 1 root system 19, 3 Jul 26 2001 rmt0.3

crw-rw-rw- 1 root system 19, 4 Jul 26 2001 rmt0.4

crw-rw-rw- 1 root system 19, 5 Jul 26 2001 rmt0.5

crw-rw-rw- 1 root system 19, 6 Jul 26 2001 rmt0.6

crw-rw-rw- 1 root system 19, 7 Jul 26 2001 rmt0.7

crw-rw---- 1 root system 10, 0 Jul 26 2001 rootvg

crw-rw---- 1 root system 10, 10 Jul 29 2001 rscripts_lv

crw-rw-rw- 1 root system 13, 14 Jul 26 2001 sad

brw-rw---- 1 root system 10, 10 Jul 29 2001 scripts_lv

crw-rw-rw- 1 root system 11, 0 Jul 26 2001 scsi0

crw-rw-rw- 1 root system 13, 15 Jul 26 2001 slog

crw-rw-rw- 1 root system 13, 30 Jul 26 2001 spx

crw------- 1 root system 7, 0 Jul 26 2001 sysdump

crw------- 1 root system 7, 1 Jul 26 2001 sysdumpctl

crw------- 1 root system 7, 3 Jul 26 2001 sysdumpfile

crw------- 1 root system 7, 2 Jul 26 2001 sysdumpnull

crw-rw-rw- 1 root system 5, 0 Jul 26 2001 systrace

crw-rw-rw- 1 root system 5, 1 Jul 26 2001 systrctl

crw-rw-rw- 1 root system 1, 0 Jul 24 17:53 tty

crw--w--w- 1 root system 18, 0 Jul 24 17:58 tty0

crw-rw-rw- 1 root system 18, 1 Jun 23 15:18 tty1

crw-rw-rw- 1 root system 26, 0 Jul 26 2001 ttyp0

crw-rw-rw- 1 root system 26, 1 Jul 26 2001 ttyp1

crw-rw-rw- 1 root system 2, 3 Jul 26 2001 zero

.

.

.

###

System Defined Disks

hdisk0 Available 00-00-0S-0,0 2.0 GB SCSI Disk Drive

hdisk1 Available 00-00-0S-1,0 2.0 GB SCSI Disk Drive

###

Listing 13.3 AIXsysconfig.ksh shell script in action. (continued)

354 Chapter 13

System Defined SSA pdisks

###

System Tape Drives

rmt0 Available 00-00-0S-5,0 5.0 GB 8mm Tape Drive

###

System CD-ROM Drives

cd0 Available 00-00-0S-6,0 SCSI Multimedia CD-ROM Drive

###

Defined Adapters in the System

sio0 Available 00-00 Standard I/O Planar

fda0 Available 00-00-0D Standard I/O Diskette Adapter

sioka0 Available 00-00-0K Keyboard Adapter

sa0 Available 00-00-S1 Standard I/O Serial Port 1

sa1 Available 00-00-S2 Standard I/O Serial Port 2

scsi0 Available 00-00-0S Standard SCSI I/O Controller

siota0 Available 00-00-0T Tablet Adapter

sioma0 Available 00-00-0M Mouse Adapter

ppa0 Available 00-00-0P Standard I/O Parallel Port Adapter

ent0 Available 00-03 Ethernet High-Performance LAN Adapter (8ef5)

.

.

.

###

Network Routes

Routing tables

Destination Gateway Flags Refs Use If PMTU Exp

Groups

Route Tree for Protocol Family 2 (Internet):

default 10.10.10.2 UGc 0 0 en0 - -

10.10/16 10.10.10.1 U 37 135807 en0 - -

127/8 127.0.0.1 U 5 264 lo0 - -

Route Tree for Protocol Family 24 (Internet v6):

Listing 13.3 AIXsysconfig.ksh shell script in action. (continues)

Taking a System Snapshot 355

Free & Share & Open

::1 ::1 UH 0 0 lo0 16896 -

###

Network Interface Statistics

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll

en0 1500 link#2 2.60.8c.2d.75.b1 112330 0 108697 0 0

en0 1500 10.10 yogi 112330 0 108697 0 0

lo0 16896 link#1 28302 0 28304 0 0

lo0 16896 127 loopback 28302 0 28304 0 0

lo0 16896 ::1 28302 0 28304 0 0

###

Filesystem Statistics

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 32768 10924 67% 1854 12% /

/dev/hd2 1449984 61680 96% 40941 12% /usr

/dev/hd9var 53248 10568 81% 673 6% /var

/dev/hd3 106496 70184 35% 223 1% /tmp

/dev/hd1 4096 3892 5% 55 6% /home

/proc - - - - - /proc

/dev/hd10opt 655360 16460 98% 16260 10% /opt

/dev/scripts_lv 102400 25296 76% 887 4% /scripts

/dev/lv_temp 409600 350456 15% 26 1% /tmpfs

node mounted mounted over vfs date

options

-------- ------------ ------------ ------ ------------ ---------------

/dev/hd4 / jfs Jul 23 18:56 rw,log=/dev/hd8

/dev/hd2 /usr jfs Jul 23 18:56 rw,log=/dev/hd8

/dev/hd9var /var jfs Jul 23 18:56 rw,log=/dev/hd8

/dev/hd3 /tmp jfs Jul 23 18:56 rw,log=/dev/hd8

/dev/hd1 /home jfs Jul 23 18:57 rw,log=/dev/hd8

/proc /proc procfs Jul 23 18:57 rw

/dev/hd10opt /opt jfs Jul 23 18:57 rw,log=/dev/hd8

/dev/scripts_lv /scripts jfs Jul 23 18:57 rw,log=/dev/hd8

/dev/lv_temp /tmpfs jfs Jul 23 18:57 rw,log=/dev/hd8

###

Defined Volume Groups

rootvg

Listing 13.3 AIXsysconfig.ksh shell script in action. (continued)

356 Chapter 13

###

Varied-on Volume Groups

rootvg

###

Logical Volume Information by Volume Group

rootvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT

POINT

hd5 boot 2 2 1 closed/syncd N/A

hd6 paging 84 84 1 open/syncd N/A

hd8 jfslog 1 1 1 open/syncd N/A

hd4 jfs 8 8 1 open/syncd /

hd2 jfs 354 354 2 open/syncd /usr

hd9var jfs 13 13 2 open/syncd /var

hd3 jfs 26 26 1 open/syncd /tmp

hd1 jfs 1 1 1 open/syncd /home

hd10opt jfs 160 160 2 open/syncd /opt

scripts_lv jfs 25 25 1 open/syncd /scripts

lv_temp jfs 100 100 1 open/syncd /tmpfs

###

Paging Space Information

Page Space Physical Volume Volume Group Size %Used Active Auto Type

hd6 hdisk0 rootvg 336MB 10 yes yes lv

Total Paging Space Percent Used

336MB 10%

###

Hard Disks Defined

hdisk0 00003677cf068b62 rootvg

hdisk1 000125608a48c132 rootvg

###

Volume Group Hard Drives

Listing 13.3 AIXsysconfig.ksh shell script in action. (continues)

Taking a System Snapshot 357

Free & Share & Open

rootvg:

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdisk0 active 479 0 00..00..00..00..00

hdisk1 active 479 184 92..00..00..00..92

###

HACMP Configuration

###

Printer Information

hp4 lp0 READY

hp4-ps lp0 READY

hp4-gl lp0 READY

yogi_hp4_1 lp0 READY

yogi_hp4_1ps lp0 READY

Print Queue Configuration File Listing

hp4:

device = lp0

lp0:

file = /dev/lp0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

hp4-ps:

device = lp0

lp0:

file = /dev/lp0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

hp4-gl:

device = lp0

lp0:

file = /dev/lp0

header = never

trailer = never

access = both

Listing 13.3 AIXsysconfig.ksh shell script in action. (continued)

358 Chapter 13

backend = /usr/lib/lpd/piobe

yogi_hp4_1:

device = lp0

lp0:

file = /dev/lp0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

yogi_hp4_1ps:

device = lp0

lp0:

file = /dev/lp0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

###

Active Process List

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jul 23 - 0:17 /etc/init

root 1950 1 0 Jul 23 - 0:00 /usr/sbin/srcmstr

root 2672 1 0 Jul 23 - 0:00 /usr/lib/errdemon

root 3140 1 0 Jul 23 - 2:04 /usr/sbin/syncd 60

root 3642 4644 0 17:11:20 - 0:00 rpc.ttdbserver 100083 1

root 3882 1950 0 Jul 23 - 0:04 sendmail: accepting

connections

root 4168 1950 0 Jul 23 - 0:00 /usr/sbin/syslogd

root 4388 1950 0 Jul 23 - 0:00 /usr/sbin/portmap

root 4644 1950 0 Jul 23 - 0:00 /usr/sbin/inetd

nobody 4906 5418 0 Jul 23 - 0:01 /usr/sbin/tftpd -n

daemon 8798 1950 0 Jul 23 - 0:00 /usr/sbin/rpc.statd

root 9034 1950 0 Jul 23 - 0:00 /usr/sbin/biod 6

root 9296 1950 0 Jul 23 - 0:00 /usr/sbin/nfsd 3891

root 9554 1950 0 Jul 23 - 0:00 /usr/sbin/rpc.mountd

root 9814 1950 0 Jul 23 - 0:00 /usr/sbin/rpc.lockd

root 10336 1 0 Jul 23 - 0:00 /usr/sbin/uprintfd

root 10588 1950 0 Jul 23 - 0:00 qdaemon

root 10842 1 0 Jul 23 - 0:02 /usr/sbin/cron

root 11360 1950 0 Jul 23 - 0:00 /usr/sbin/writesrv

root 11616 1 0 Jul 23 - 0:00

/usr/lpp/diagnostics/bin/diagd

root 16820 15772 0 17:11:39 pts/0 0:03 dtfile

Listing 13.3 AIXsysconfig.ksh shell script in action. (continues)

Taking a System Snapshot 359

Free & Share & Open

root 17540 16538 0 21:16:59 pts/3 0:00 /usr/bin/ksh

.

.

.

###

SNA Information

0513-085 The sna Subsystem is not on file.

###

x25 and udp Processes

###

System Configuration Overview

INSTALLED RESOURCE LIST

The following resources are installed on the machine.

+/- = Added or deleted from Resource List.

* = Diagnostic support not available.

* sys0 00-00 System Object

+ sysplanar0 00-00 System Planar

+ ioplanar0 00-00 I/O Planar

+ hdisk0 00-00-0S-0,0 2.0 GB SCSI Disk Drive

+ hdisk1 00-00-0S-1,0 2.0 GB SCSI Disk Drive

+ rmt0 00-00-0S-5,0 5.0 GB 8mm Tape Drive

+ cd0 00-00-0S-6,0 SCSI Multimedia CD-ROM Drive (650

+ proc0 00-00 Processor

+ mem0 00-0A 32 MB Memory SIMM

+ mem1 00-0B 32 MB Memory SIMM

+ mem2 00-0C 32 MB Memory SIMM

+ mem3 00-0D 32 MB Memory SIMM

* sysunit0 00-00 System Unit

.

.

.

###

Detailed System Configuration

Listing 13.3 AIXsysconfig.ksh shell script in action. (continued)

360 Chapter 13

INSTALLED RESOURCE LIST WITH VPD

The following resources are installed on your machine.

sys0 00-00 System Object

sysplanar0 00-00 System Planar

Part Number.................065G8317

EC Level....................00D28027

Processor Identification....00012560

ROS Level and ID............IPLVER1.3 LVL3.01,065G8318

Processor Component ID......0800004800000050

Device Specific.(Z0)........000000

Device Specific.(Z1)........000000

Device Specific.(Z2)........000000

Device Specific.(Z3)........000000

Device Specific.(Z4)........000000

Device Specific.(Z5)........000000

Device Specific.(Z6)........000000

Device Specific.(Z7)........000000

Device Specific.(Z8)........000000

Device Specific.(Z9)........000000

ROS Level and ID............OCS(00000C54)

ROS Level and ID............SEEDS(28040203)

hdisk0 00-00-0S-0,0 2.0 GB SCSI Disk Drive

Manufacturer................IBMRISC

Machine Type and Model......0664M1H

Part Number.................86F0101

ROS Level and ID............5 5A

Serial Number...............00221833

EC Level....................895186

FRU Number..................86F0118

Device Specific.(Z0)........000002029F00001E

Device Specific.(Z1)........75G3644

Device Specific.(Z2)........0983

Device Specific.(Z3)........95123

Device Specific.(Z4)........0002

Device Specific.(Z5)........22

Device Specific.(Z6)........895172

rmt0 00-00-0S-5,0 5.0 GB 8mm Tape Drive

Manufacturer................EXABYTE

Listing 13.3 AIXsysconfig.ksh shell script in action. (continues)

Taking a System Snapshot 361

Free & Share & Open

Machine Type and Model......IBM-8505

Device Specific.(Z1)........807A

Part Number.................8191044

Serial Number...............082737

Device Specific.(LI)........00000001

EC Level....................D48098

FRU Number..................59H3159

Device Specific.(Z0)........0180020283000010

cd0 00-00-0S-6,0 SCSI Multimedia CD-ROM Drive (650

MB)

Manufacturer................IBM

Machine Type and Model......CDRM00203

ROS Level and ID............8B08

Device Specific.(Z0)........058002028F000018

Part Number.................73H2600

EC Level....................D75458A

FRU Number..................73H2601

siota0 00-00-0T Tablet Adapter

sa0 00-00-S1 Standard I/O Serial Port 1

tty0 00-00-S1-00 Asynchronous Terminal

sa1 00-00-S2 Standard I/O Serial Port 2

tty1 00-00-S2-00 Asynchronous Terminal

proc0 00-00 Processor

mem0 00-0A 32 MB Memory SIMM

Size........................32

Device Specific.(Z3)........90000000

EC Level....................00

mem1 00-0B 32 MB Memory SIMM

Size........................32

Device Specific.(Z3)........90000000

EC Level....................00

.

.

.

###

System Installed Filesets

Fileset Level State Type Description

(Uninstaller)

--

Listing 13.3 AIXsysconfig.ksh shell script in action. (continued)

362 Chapter 13

.

.

.

Tivoli_Management_Agent.client.rte

3.2.0.0 C F Management Agent

runtime”

X11.Dt.ToolTalk 5.1.0.0 C F AIX CDE ToolTalk

Support

X11.Dt.adt 5.1.0.0 C F AIX CDE Application

Developers’

Toolkit

X11.Dt.bitmaps 5.1.0.0 C F AIX CDE Bitmaps

X11.Dt.compat 5.1.0.0 C F AIX CDE Compatibility

X11.Dt.helpinfo 5.1.0.0 C F AIX CDE Help Files

and Volumes

X11.Dt.helpmin 5.1.0.0 C F AIX CDE Minimum Help

Files

X11.Dt.helprun 5.1.0.0 C F AIX CDE Runtime Help

X11.Dt.lib 5.1.0.0 C F AIX CDE Runtime

Libraries

X11.Dt.rte 5.1.0.0 C F AIX Common Desktop

Environment

(CDE) 1.0

X11.Dt.xdt2cde 5.1.0.0 C F AIX CDE Migration

Tool

X11.adt.bitmaps 5.1.0.0 C F AIXwindows

Application

Development Toolkit

Bitmap Files

X11.adt.imake 5.1.0.0 C F AIXwindows

Application

Development Toolkit

imake

X11.adt.include 5.1.0.0 C F AIXwindows

Application

Development Toolkit

Include

Files

X11.adt.lib 5.1.0.0 C F AIXwindows

Application

Development Toolkit

Libraries

X11.adt.motif 5.1.0.0 C F AIXwindows

Application

Development Toolkit

Motif

X11.apps.xterm 5.1.0.0 C F AIXwindows xterm

Application

Listing 13.3 AIXsysconfig.ksh shell script in action. (continues)

Taking a System Snapshot 363

Free & Share & Open

X11.base.common 5.1.0.0 C F AIXwindows Runtime

Common

Directories

X11.base.lib 5.1.0.0 C F AIXwindows Runtime

Libraries

X11.base.rte 5.1.0.1 A F AIXwindows Runtime

Environment

bos.acct 5.1.0.0 C F Accounting Services

bos.adt.base 5.1.0.1 A F Base Application

Development

Toolkit

bos.adt.debug 5.1.0.1 A F Base Application

Development

Debuggers

bos.adt.include 5.1.0.1 A F Base Application

Development

Include Files

bos.adt.lib 5.1.0.0 C F Base Application

Development

Libraries

bos.adt.libm 5.1.0.0 C F Base Application

Development

Math Library

bos.alt_disk_install.boot_images

5.1.0.0 C F Alternate Disk

Installation Disk

Boot Images

bos.alt_disk_install.rte 5.1.0.0 C F Alternate Disk

Installation

Runtime

bos.diag.com 5.1.0.0 C F Common Hardware

Diagnostics

bos.diag.rte 5.1.0.0 C F Hardware Diagnostics

bos.diag.util 5.1.0.1 A F Hardware Diagnostics

Utilities

bos.msg.en_US.net.tcp.client

5.1.0.0 C F TCP/IP Messages -

U.S. English

bos.msg.en_US.rte 5.1.0.0 C F Base Operating System

Runtime

Msgs - U.S. English

bos.msg.en_US.svprint 5.1.0.0 C F System V Print

Subsystem

Messages - U.S.

English

bos.msg.en_US.sysmgt.nim.master_gui

4.3.0.0 C F NIM GUI Messages -

U.S. English

Listing 13.3 AIXsysconfig.ksh shell script in action. (continued)

364 Chapter 13

bos.msg.en_US.txt.tfs 5.1.0.0 C F Text Formatting

Services

Messages - U.S.

English

bos.net.ate 5.1.0.0 C F Asynchronous Terminal

Emulator

bos.net.ipsec.rte 5.1.0.0 C F IP Security

bos.net.ncs 5.1.0.0 C F Network Computing

System 1.5.1

bos.net.nfs.adt 5.1.0.0 C F Network File System

Development

Toolkit

bos.net.nfs.cachefs 5.1.0.0 C F CacheFS File System

bos.net.nfs.client 5.1.0.1 A F Network File System

Client

bos.net.nfs.server 5.1.0.0 C F Network File System

Server

bos.net.nis.client 5.1.0.0 C F Network Information

Service

.

.

.

State codes:

A -- Applied.

B -- Broken.

C -- Committed.

O -- Obsolete. (partially migrated to newer version)

? -- Inconsistent State...Run lppchk -v.

Type codes:

F -- Installp Fileset

P -- Product

C -- Component

T -- Feature

R -- RPM Package

###

Looking for Broken Filesets

lppchk: The following filesets need to be installed or corrected to

bring the system to a consistent state:

vac.C.readme.ibm 4.4.0.1 (not installed; requisite fileset)

###

Listing 13.3 AIXsysconfig.ksh shell script in action. (continues)

Taking a System Snapshot 365

Free & Share & Open

List of the last 100 users to log in to yogi

root ftp booboo Jul 25 13:28 - 13:29 (00:00)

root ftp booboo Jul 25 12:17 - 12:18 (00:00)

root tty0 Jul 24 17:35 still logged in.

root ftp booboo Jul 24 17:35 - 17:35 (00:00)

root pts/1 mrranger Jul 24 17:11 still logged in.

root pts/0 mrranger Jul 24 17:11 still logged in.

root pts/0 mrranger Jul 24 17:09 - 17:11 (00:01)

root ftp booboo Jul 23 21:53 - 21:53 (00:00)

shutdown tty0 Jul 10 00:25

root ftp booboo Jul 09 23:41 - 23:41 (00:00)

reboot ~ Jul 09 19:38

reboot ~ Jun 27 16:07

root pts/3 mrranger Jun 26 20:55 - 20:56 (00:00)

root pts/2 mrranger Jun 26 20:55 - 20:56 (00:00)

root pts/1 mrranger Jun 26 20:55 - 20:56 (00:00)

.

.

.

wtmp begins Jul 31 18:20

This report is saved in:

/usr/local/reboot/sys_snapshot.yogi.072502_094658

Listing 13.3 AIXsysconfig.ksh shell script in action. (continued)

From Listing 13.3 you can see that we collected a lot of information about the system
configuration. This is just a sample of what you can collect, and I will leave the
specifics of the information you gather up to you. For each function that you add or
change, be sure to test the response. Sometimes you may be surprised that you do not
see any output. Some of the command output shown in Listing 13.3 does not have any
output because my little system does not have the hardware that the query is looking
for. If you expect output and there is not any, try redirecting standard error to standard
output by using the following syntax:

command 2>&1

Many commands send information type output to standard error, specified by file
descriptor 2, instead of standard output, specified by file descriptor 1. First try the
command without this redirection.

366 Chapter 13

Other Options to Consider

There can always be improvements to any shell script. The shell script presented in this
chapter is intended to be an example of the process of gathering system information.
You always want to query the system for as much information as you can. Notice that
I did not add any database or application configuration/statistics gathering here. The
amount of information gathered is up to you. As I said before, every shop is different,
but they are all the same when troubleshooting a problem. The AIXsysconfig.ksh
shell script looks only at system-level statistics and configuration, so there is a large
gap that you need to fill in. This gap is where your specific application comes into play.
Look at your database and application documentation for the best method of gather-
ing information about these products. By running the configuration gathering script at
least once a week, you will save yourself a lot of effort when a problem arises.

Summary

In this chapter we strictly looked at AIX. The process is the same for any Unix flavor,
but the information gathered will vary in each shop. No rocket science is needed here,
but you do need a good understanding of how your system is configured. You need to
understand the applications and databases and what determines a failed application.
You may be looking for a set of processes, or it could be a database query with an SQL
statement. These are the things that need research on your part to make this type of
shell script really beneficial.

In the next chapter we are going to move on to installing, configuring, and using
sudo. The sudo program stands for super user do, and it allows us to set up specific
commands that a user can execute as root. I hope you enjoyed this chapter, and I’ll see
you in the next chapter!

Taking a System Snapshot 367

Free & Share & Open

369

The main job of any good Systems Administrator is to protect the root password. No
matter how firm and diligent we are about protecting the root password we always
have the application support group and DBAs wanting root access for one reason or
another. But, alas, there is a way to give specific users the ability to run selected com-
mands as the root user without the need to know the root password. Facilitating this
restricted root access is a free software program called sudo, which stands for superuser
do. In this chapter we are going to show how to compile, install, configure, and use the
sudo program. The current distribution can be downloaded by following the link on
the Web site that accompanies the book, and I will list some Web other sites where you
can download the program in this chapter.

Because sudo is not a shell script you may be asking, “Why is sudo included in this
book?” I am including the sudo chapter because I have not found any reference to sudo
in any scripting book, and it is a nice tool to use. We will cover a short shell script at the
end of this chapter showing how to use sudo in a shell script.

The Need for sudo

In Unix the root user is almighty and has absolutely no restrictions. All security is
bypassed, and anyone with root access can perform any task, with some possibly
resulting in major damage to the system, without any restrictions at all. Unix systems

Compiling, Installing,
Configuring, and Using sudo

C H A P T E R

14

Free & Share & Open

do not ask “Are you sure?”; they just run the command specified by the root user and
assume you know what you are doing. The sudo program allows the Systems Admin-
istrator to set up specific commands (or all commands) to be executed as the root user
and specify only certain users (or groups of users) to execute the individual com-
mands. In addition, all commands and command arguments are logged either to a
defined file or the system syslog. The logging allows the Systems Administrator to have
an audit trail and to monitor user sudo activities as well as failed sudo attempts! The
user executes a restricted command by preceding the command with the word sudo.
For example:

sudo chmod 600 /etc/sudoers

Password:

When a user executes the preceding command, a password prompt is displayed. The
password that the sudo program is asking for is not the root password but the user’s
password that wants root access. When the password is entered, the /etc/sudoers
file is searched to determine if root authority should be granted to run the specified
command. If both the system password is correct and the /etc/sudoers search
grants access, then the command will execute with root authority. After this initial
sudo command, the user may submit more sudo commands without the need for a
password until a sudo timeout, typically five minutes without issuing another sudo
command. After the timeout period the user will again be prompted for his or her pass-
word when a sudo command is entered.

Downloading and Compiling sudo

The sudo program is included on the Web site that accompanies the book and can be
downloaded from various FTP mirror sites. The main sudo Web site is located at
www.courtesan.com/sudo. The sudo program is free software and is distributed under
a BDS-style license. As of this writing the current version of sudo is 1.6.6 and was
released April 25, 2002. Todd Miller currently maintains the sudo program, and if you
would like to tip Todd for his fine work you may do so at PayPal, which can be
accessed from a link on the sudo main page. You can download sudo from any of the
Web sites shown in Listing 14.1.

http://www.courtesan.com/sudo/dist/ (Main site in Boulder, Colorado USA)

http://www.rge.com/pub/admin/sudo/ (Rochester, New York USA)

http://sudo.stikman.com/ (Los Angeles, California USA)

http://www.c0r3dump.com/sudo/ (Edmonton, Canada)

http://core.ring.gr.jp/archives/misc/sudo/ (Japan)

http://www.ring.gr.jp/archives/misc/sudo/ (Japan)

http://sudo.cdu.elektra.ru/ (Russia)

Listing 14.1 Web sites to download the sudo program.

370 Chapter 14

There are two ways to download the files. You can download the precompiled bina-
ries for your Unix flavor and version or download the source code distribution and
compile the sudo program for your particular machine. I always download the source
code and compile it on each individual system. The process takes just a few minutes,
and you can be assured that it will run on your system. If you have a boatload of sys-
tems to install, you may want to consider using the precompiled binaries and pushing
the binaries out to each system, or writing a shell script to push and install the product!
Either way you choose, you will need only about 4MB of free space to work with. Once
sudo is installed you can remove the downloaded files if you need to regain the disk
space. In this chapter we are going to download the source code and compile sudo for
a particular system.

Compiling sudo

You will need a C compiler; cc is preferred but gcc normally works fine and is free to
download. I say gcc normally works fine because I have found instances where gcc had
compiler errors and cc did not have any problems. The source code distribution is in a
compressed tar format, where gzip is used for compression. The gzip file has a .gz
extension—for example, sudo-1.6.6.tar.gz. When you download the file, put the
software distribution in a directory that has about 4MB of free space. In our example
we will use /usr/local, which is a separate filesystem from /usr on my machine.
You must have root access to compile, install, and configure sudo!

After the sudo distribution file is placed in a work directory, the first step is to unzip
the compressed file. The gunzip command uncompresses a gzipped file, as shown in
the next example:

gunzip sudo-1.6.6.tar.gz

After the file is uncompressed, you are left with the following tar archive file:

sudo-1.6.6.tar

When we untar the archive, a subdirectory will be created called sudo-1.6.6 that
will contain all of the source code, LICENSE, README, manuals, configure, and
Makefile. In the directory containing the sudo-1.6.6.tar file, in our case
/usr/local, issue the following command:

tar xvf sudo-1.6.6.tar

After the program distribution file is uncompressed and untarred we can proceed to
the installation process. This is not a difficult process so if you have never worked with
the make command and Makefile before, don’t worry. The first step is to configure
the Makefile for your system. As you might expect, this is done with the configure
command. First change directory to where the source code is located, in our example
/usr/local/sudo-1.6.6, and run the configure command.

Compiling, Installing, Configuring, and Using sudo 371

Free & Share & Open

cd /usr/local/sudo-1.6.6

./configure

The configure command goes through system checks and builds a Makefile and
the config.h file used to build sudo for your system. The configure command out-
put for my system is shown in Listing 14.2.

Configuring Sudo version 1.6.6

checking whether to lecture users the first time they run sudo... yes

checking whether sudo should log via syslog or to a file by default...

syslog

checking which syslog facility sudo should log with... local2

checking at which syslog priority to log commands... notice

checking at which syslog priority to log failures... badpri

checking how long a line in the log file should be... 80

checking whether sudo should ignore ‘.’ or ‘’ in $PATH... no

checking whether to send mail when a user is not in sudoers... yes

checking whether to send mail when user listed but not for this host...

no

checking whether to send mail when a user tries a disallowed command...

no

checking who should get the mail that sudo sends... root

checking for bad password prompt... Password:

checking for bad password message... Sorry, try again.

checking whether to expect fully qualified hosts in sudoers... no

checking for umask programs should be run with... 0022

checking for default user to run commands as... root

checking for editor that visudo should use... vi

checking whether to obey EDITOR and VISUAL environment variables... no

checking number of tries a user gets to enter their password... 3

checking time in minutes after which sudo will ask for a password

again... 5

checking time in minutes after the password prompt will time out... 5

checking whether to use per-tty ticket files... no

checking whether to include insults... no

checking whether to override the user’s path... no

checking whether to get ip addresses from the network interfaces... yes

checking whether to do user authentication by default... yes

checking whether to disable running the mailer as root... no

checking whether to disable use of POSIX saved ids... no

checking whether to disable shadow password support... no

checking whether root should be allowed to use sudo... yes

checking whether to log the hostname in the log file... no

checking whether to invoke a shell if sudo is given no arguments... no

checking whether to set $HOME to target user in shell mode... no

checking whether to disable ‘command not found’ messages... no

checking for egrep... egrep

Listing 14.2 Command output—./configure.

372 Chapter 14

checking for gcc... no

checking for cc... cc

checking for C compiler default output... a.out

checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for executable suffix...

checking for object suffix... o

checking whether we are using the GNU C compiler... no

checking whether cc accepts -g... (cached) no

checking for POSIXized ISC... no

checking for cc option to accept ANSI C... none needed

checking how to run the C preprocessor... cc -E

checking for uname... uname

checking for tr... tr

checking for sed... sed

checking for nroff... nroff

checking build system type... powerpc-ibm-aix5.1.0.0

checking host system type... powerpc-ibm-aix5.1.0.0

checking for getspnam... no

checking for getspnam in -lgen... no

checking for getprpwnam... no

checking for an ANSI C-conforming const... yes

checking for working volatile... yes

checking for bison... no

checking for byacc... no

checking for mv... /usr/bin/mv

checking for bourne shell... /bin/sh

checking for sendmail... /usr/sbin/sendmail

checking for vi... /usr/bin/vi

checking for ANSI C header files... yes

checking for dirent.h that defines DIR... yes

checking for opendir in -ldir... no

checking for malloc.h... yes

checking for paths.h... yes

checking for utime.h... yes

checking for netgroup.h... no

checking for sys/sockio.h... no

checking for sys/bsdtypes.h... no

checking for sys/select.h... yes

checking POSIX termios... yes

checking for sys/types.h... yes

checking for sys/stat.h... yes

checking for stdlib.h... yes

checking for string.h... yes

checking for memory.h... yes

checking for strings.h... yes

checking for inttypes.h... yes

Listing 14.2 Command output—./configure. (continues)

Compiling, Installing, Configuring, and Using sudo 373

Free & Share & Open

checking for stdint.h... no

checking for unistd.h... yes

checking for mode_t... yes

checking for uid_t in sys/types.h... yes

checking for sig_atomic_t... yes

checking for sigaction_t... no

checking for size_t... yes

checking for ssize_t... yes

checking for dev_t... yes

checking for ino_t... yes

checking for full void implementation... yes

checking max length of uid_t... 10

checking for long long support... yes

checking for sa_len field in struct sockaddr... yes

checking return type of signal handlers... void

checking for strchr... yes

checking for strrchr... yes

checking for memchr... yes

checking for memcpy... yes

checking for memset... yes

checking for sysconf... yes

checking for tzset... yes

checking for seteuid... yes

checking for setegid... yes

checking for strftime... yes

checking for setrlimit... yes

checking for initgroups... yes

checking for fstat... yes

checking for setreuid... yes

checking for getifaddrs... no

checking for getcwd... yes

checking for lockf... yes

checking for waitpid... yes

checking for innetgr... yes

checking for getdomainname... yes

checking for lsearch... yes

checking for utime... yes

checking for POSIX utime... yes

checking for working fnmatch with FNM_CASEFOLD... no

checking for isblank... yes

checking for strerror... yes

checking for strcasecmp... yes

checking for sigaction... yes

checking for snprintf... yes

checking for vsnprintf... yes

checking for asprintf... no

checking for vasprintf... no

Listing 14.2 Command output—./configure. (continued)

374 Chapter 14

checking for crypt... yes

checking for socket... yes

checking for inet_addr... yes

checking for syslog... yes

checking for log file location... /var/adm/sudo.log

checking for timestamp file location... /tmp/.odus

configure: creating ./config.status

config.status: creating Makefile

config.status: creating sudo.man

config.status: creating visudo.man

config.status: creating sudoers.man

config.status: creating config.h

config.status: creating pathnames.h

Listing 14.2 Command output—./configure. (continued)

After the configure command completes without error, you have a customized
Makefile for your system. You can, if you need to, edit the Makefile and change the
default paths and the compiler to use. Now that we have a new customized Makefile
we can now compile the sudo program on the system. Issue the following command,
assuming you are still in the /usr/local/sudo-1.6.6 directory:

make

The make command is located in /usr/bin/make on most systems, and it uses
the Makefile in the current directory to compile, in our case /usr/local/
sudo-1.6.6. The make command output is shown in Listing 14.3. Notice that my
system uses the cc compiler.

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 check.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 env.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 getspwuid.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 goodpath.c

Listing 14.3 Command output—make command. (continues)

Compiling, Installing, Configuring, and Using sudo 375

Free & Share & Open

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 fileops.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 find_path.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 interfaces.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 logging.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 parse.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 set_perms.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 sudo.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 tgetpass.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 ./auth/sudo_auth.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 ./auth/passwd.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 sudo.tab.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 lex.yy.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 alloc.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 defaults.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 fnmatch.c

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 snprintf.c

Listing 14.3 Command output—make command. (continued)

376 Chapter 14

cc -o sudo check.o env.o getspwuid.o goodpath.o fileops.o

find_path.o interfaces.o logging.o parse.o set_perms.o sudo.o

tgetpass.o sudo_auth.o passwd.o sudo.tab.o lex.yy.o alloc.o defaults.o

fnmatch.o snprintf.o -Wl,-bI:./aixcrypt.exp

cc -c -I. -I. -D_XOPEN_EXTENDED_SOURCE -

D_PATH_SUDOERS=\”/etc/sudoers\” -D_PATH_SUDOERS_TMP=\”/etc/sudoers.tmp\”

-DSUDOERS_UID=0 -DSUDOERS_GID=0 -DSUDOERS_MODE=0440 visudo.c

cc -o visudo visudo.o fileops.o goodpath.o find_path.o sudo.tab.o

lex.yy.o alloc.o defaults.o fnmatch.o snprintf.o

Target “all” is up to date.

Listing 14.3 Command output—make command. (continued)

After the make command completes, we have custom compiled code for your
system, but we still have one more installation step to complete before we are ready to
configure sudo. This last step is to install the compiled files created with the make
command. The next command handles the installation of sudo:

make install

Remember that the make command is usually located in /usr/bin and should be
in your $PATH. The output of the make install command for my machine is shown in
Listing 14.4.

/bin/sh ./mkinstalldirs /usr/local/bin /usr/local/sbin /etc

/usr/local/man/man8 /usr/local/man/man5

/bin/sh ./install-sh -c -O 0 -G 0 -M 4111 -s sudo

/usr/local/bin/sudo

/bin/sh ./install-sh -c -O 0 -G 0 -M 0111 -s visudo

/usr/local/sbin/visudo

test -f /etc/sudoers || /bin/sh ./install-sh -c -O 0 -G 0 -M 0440

./sudoers /etc/sudoers

/bin/sh ./install-sh -c -O 0 -G 0 -M 0444 ./sudo.man

/usr/local/man/man8/sudo.8

/bin/sh ./install-sh -c -O 0 -G 0 -M 0444 ./visudo.man

/usr/local/man/man8/visudo.8

/bin/sh ./install-sh -c -O 0 -G 0 -M 0444 ./sudoers.man

/usr/local/man/man5/sudoers.5

Target “install” is up to date.

Listing 14.4 Command output—make install.

If you did not have any failures during the compilation and installation processes,
then sudo is installed but not yet configured. In the next section we will look at two
sample configuration files.

Compiling, Installing, Configuring, and Using sudo 377

Free & Share & Open

Configuring sudo

Configuring sudo is where a lot of people get a bit confused. The configuration is not
too difficult if you take small steps and test each part as you build the configuration
file. If you look in /etc after the installation is complete, you will see a file called
sudoers. The sudoers file is used to configure the commands and users for the sudo
program. Be very careful to never directly edit the sudoers file! A special program is
supplied that has a wrapper around the vi editor called visudo, or vi sudo.

The visudo program resides in /usr/local/sbin by default. The nice thing about
visudo is that it checks the /etc/sudoers file for any errors before saving the file. If
errors are detected, the visudo program will tell you exactly what the error is and in
most cases the line the error is on. If you directly edit the /etc/sudoers file and you
make a mistake, the editor will just let you save the file, with the mistake, and it can be
difficult to find the error. The visudo program checks for the correct file format and
ensures that the command/user references are consistent. If you make a mistake with
a user name, the visudo editor will not catch the mistake, but this type of error should
be easy to find and correct after an initial run.

I am enclosing two samples of a /etc/sudoers file for you to use as a template in
Listings 14.5 and 14.6.

NOTE The sudoers file in Listing 14.5 is used with the permission of Todd
Miller at www.courtesan.com and is included in the sudo distribution as a
sample. Thank you, Todd!

#

Sample /etc/sudoers file.

#

This file MUST be edited with the ‘visudo’ command as root.

#

See the sudoers man page for the details on how to write a sudoers

file.

#

##

User alias specification

##

User_Alias FULLTIMERS = millert, mikef, dowdy

User_Alias PARTTIMERS = bostley, jwfox, crawl

User_Alias WEBMASTERS = will, wendy, wim

##

Runas alias specification

##

Listing 14.5 Sample /etc/sudoers file #1.

378 Chapter 14

Runas_Alias OP = root, operator

Runas_Alias DB = oracle, sybase

##

Host alias specification

##

Host_Alias SPARC = bigtime, eclipse, moet, anchor:\

SGI = grolsch, dandelion, black:\

ALPHA = widget, thalamus, foobar:\

HPPA = boa, nag, python

Host_Alias CUNETS = 128.138.0.0/255.255.0.0

Host_Alias CSNETS = 128.138.243.0, 128.138.204.0/24, 128.138.242.0

Host_Alias SERVERS = master, mail, www, ns

Host_Alias CDROM = orion, perseus, hercules

##

Cmnd alias specification

##

Cmnd_Alias DUMPS = /usr/sbin/dump, /usr/sbin/rdump, /usr/sbin/restore,

\

/usr/sbin/rrestore, /usr/bin/mt

Cmnd_Alias KILL = /usr/bin/kill

Cmnd_Alias PRINTING = /usr/sbin/lpc, /usr/bin/lprm

Cmnd_Alias SHUTDOWN = /usr/sbin/shutdown

Cmnd_Alias HALT = /usr/sbin/halt, /usr/sbin/fasthalt

Cmnd_Alias REBOOT = /usr/sbin/reboot, /usr/sbin/fastboot

Cmnd_Alias SHELLS = /usr/bin/sh, /usr/bin/csh, /usr/bin/ksh, \

/usr/local/bin/tcsh, /usr/bin/rsh, \

/usr/local/bin/zsh

Cmnd_Alias SU = /usr/bin/su

Cmnd_Alias VIPW = /usr/sbin/vipw, /usr/bin/passwd, /usr/bin/chsh, \

/usr/bin/chfn

##

Override builtin defaults

##

Defaults syslog=auth

Defaults:FULLTIMERS !lecture

Defaults:millert !authenticate

Defaults@SERVERS log_year, logfile=/var/log/sudo.log

##

User specification

##

root and users in group wheel can run anything on any machine

as any user

Listing 14.5 Sample /etc/sudoers file #1. (continues)

Compiling, Installing, Configuring, and Using sudo 379

Free & Share & Open

root ALL = (ALL) ALL

%wheel ALL = (ALL) ALL

full time sysadmins can run anything on any machine without a password

FULLTIMERS ALL = NOPASSWD: ALL

part time sysadmins may run anything but need a password

PARTTIMERS ALL = ALL

jack may run anything on machines in CSNETS

jack CSNETS = ALL

lisa may run any command on any host in CUNETS (a class B network)

lisa CUNETS = ALL

operator may run maintenance commands and anything in /usr/oper/bin/

operator ALL = DUMPS, KILL, PRINTING, SHUTDOWN, HALT, REBOOT,\

/usr/oper/bin/

joe may su only to operator

joe ALL = /usr/bin/su operator

pete may change passwords for anyone but root on the hp snakes

pete HPPA = /usr/bin/passwd [A-z]*, !/usr/bin/passwd root

bob may run anything on the sparc and sgi machines as any user

listed in the Runas_Alias “OP” (ie: root and operator)

bob SPARC = (OP) ALL : SGI = (OP) ALL

jim may run anything on machines in the biglab netgroup

jim +biglab = ALL

users in the secretaries netgroup need to help manage the printers

as well as add and remove users

+secretaries ALL = PRINTING, /usr/bin/adduser, /usr/bin/rmuser

fred can run commands as oracle or sybase without a password

fred ALL = (DB) NOPASSWD: ALL

on the alphas, john may su to anyone but root and flags are not

allowed

john ALPHA = /usr/bin/su [!-]*, !/usr/bin/su *root*

jen can run anything on all machines except the ones

in the “SERVERS” Host_Alias

Listing 14.5 Sample /etc/sudoers file #1. (continued)

380 Chapter 14

jen ALL, !SERVERS = ALL

jill can run any commands in the directory /usr/bin/, except for

those in the SU and SHELLS aliases.

jill SERVERS = /usr/bin/, !SU, !SHELLS

steve can run any command in the directory /usr/local/op_commands/

as user operator.

steve CSNETS = (operator) /usr/local/op_commands/

matt needs to be able to kill things on his workstation when

they get hung.

matt valkyrie = KILL

users in the WEBMASTERS User_Alias (will, wendy, and wim)

may run any command as user www (which owns the web pages)

or simply su to www.

WEBMASTERS www = (www) ALL, (root) /usr/bin/su www

anyone can mount/unmount a CD-ROM on the machines in the CDROM alias

ALL CDROM = NOPASSWD: /sbin/umount /CDROM,\

/sbin/mount -o nosuid\,nodev /dev/cd0a /CDROM

Listing 14.5 Sample /etc/sudoers file #1. (continued)

sudoers file.

#

This file MUST be edited with the ‘visudo’ command as root.

#

See the sudoers man page for the details on how to write a sudoers

file.

#

Users Identification:

#

All ROOT access:

#

d7742 - Michael

Restricted Access to: mount umount and exportfs

#

#

Listing 14.6 Sample /etc/sudoers file #2. (continues)

Compiling, Installing, Configuring, and Using sudo 381

Free & Share & Open

Restricted Access to: Start and stop Fasttrack Web Server

#

d3920 - Park

d7525 - Brinker

d7794 - Doan

#

Restricted OPERATIONS access

#

d6331 - Sutter

d6814 - Martin

d8422 - Smith

d9226 - Milando

d9443 - Summers

d0640 - Lawson

d2105 - Fanchin

d2188 - Grizzle

d3408 - Foster

d3551 - Dennis

d3883 - Nations

d6290 - Alexander

d2749 - Mayo

d6635 - Wright

d3916 - Chatman

d6782 - Scott

d6810 - Duckery

d6811 - Wells

d6817 - Gilliam

d5123 - Crynick

d7504 - Davis

d7505 - McCaskey

d7723 - Rivers

#

Host alias specification

Host_Alias LOCAL=yogi

User alias specification

User_Alias NORMAL=d7742,d7537,d7526,d6029,d7204,d1076,d7764,d7808

User_Alias ADMIN=e17742,d7211,d6895,d8665,d7539,b003

User_Alias ORACLE=d7742

User_Alias SAP=d7742

User_Alias OPERATOR=d7742,d6895,d6331,d6814,d8422,d9226,d9443,d0640,

d2105,d2188,d3408,d3551,d3883,d6290,d2749,d6635,d3916,d6782,d6810,

Listing 14.6 Sample /etc/sudoers file #2. (continued)

382 Chapter 14

d6811,d6817,d5123,d7504,d7505,d7723

User_Alias FASTTRACK=d3920,d7525,d7794

Cmnd alias specification

Cmnd_Alias MNT=/usr/bin/mount

Cmnd_Alias UMNT=/usr/bin/umount

Cmnd_Alias EXP_FS=/usr/bin/exportfs

Cmnd_Alias KILL=/usr/bin/kill

Cmnd_Alias ROOT_SU=/usr/bin/su -

Cmnd_Alias SU_ROOT=/usr/bin/su - root

Cmnd_Alias SUROOT=/usr/bin/su root

Cmnd_Alias ORACLE_SU=/usr/bin/su - oracle

Cmnd_Alias SAP_SU=/usr/bin/su - sap

Cmnd_Alias TCPDUMP=/usr/sbin/tcpdump

Cmnd_Alias ERRPT=/usr/bin/errpt

Cmnd_Alias SVRMGRL=/oracle/product/8.0.5/bin/svrmgrl

Cmnd_Alias RSH_UPDATE=/usr/local/bin/rsh_update.ksh

Cmnd_Alias START_FT_YOGI=/usr/netscape/httpd-yogi/start

Cmnd_Alias STOP_FT_YOGI=/usr/netscape/httpd-yogi/stop

Cmnd_Alias START_FT_DINO=/usr/netscape/httpd-dino/start

Cmnd_Alias STOP_FT_DINO=/usr/netscape/httpd-dino/stop

Cmnd_Alias START_WSADM=/usr/netscape/start-admin

Cmnd_Alias STOP_WSADM=/usr/netscape/stop-admin

User privilege specification

FULL ROOT ACCESS!!!!!! (BE CAREFUL GRANTING FULL ROOT!!!!!!!)

root ALL=(ALL) ALL

d7742 ALL=(ALL) ALL # Michael

Only mount, umount and exportfs

NORMAL LOCAL=MNT,UMNT,EXP_FS

Some Limited Sys Admin Functions

ADMINLOCAL=MNT,UMNT,KILL,ORACLE_SU,SAP_SU,TCPDUMP,ERRPT,ROOT_SU: \

LOCAL=SU_ROOT,SUROOT,EXP_FS

Some Operator Functions

OPERATOR LOCAL=RSH_UPDATE

Some FastTrack/WebAdm Functions

FASTTRACK

LOCAL=START_FT_E1,STOP_FT_E1,START_FT_E2,STOP_FT_E2,START_WSADM,

Listing 14.6 Sample /etc/sudoers file #2. (continues)

Compiling, Installing, Configuring, and Using sudo 383

Free & Share & Open

STOP_WSADM

Override Defaults

Change the default location of the SUDO log file

Defaults logfile=/var/adm/sudo.log

Listing 14.6 Sample /etc/sudoers file #2. (continued)

As you can see by the two sample /etc/sudoers files, you can get as detailed as
you want. As you look at these files, notice that there are four kinds of aliases:
User_Alias, Runas_Alias, Host_Alias, and Cmd_Alias. The use of each alias
type is listed next.

A User_Alias is a list that can contain any combination of usernames, UID (with
a “#” prefix), system groups (with a “%” prefix), netgroups (with a “+” prefix), and
other user-defined aliases. Any of these can be prefixed with the NOT operator, “!”, to
negate the entry.

A Runas_Alias can contain any of the same elements as the User_Alias; the
only difference is that you use Runas_Alias instead of User_Alias in the configu-
ration. The Runas_Alias allows execution of a command as a user other than root.

AHost_Alias is a list of hostnames, IP addresses, or netgroups (with a “+” prefix).
The Host_Alias also supports the NOT operator, “!”, to negate an entry. You will
need to use the fully qualified DNS name if the hostname command on any machine
returns the name of the machine in a fully qualified DNS format. The visudo editor
will not catch this “error.”

A Cmnd_Alias is list of one or more commands specified by a full pathname, not
just the filename. You can also specify directories and other aliases to commands. The
command alone will allow command arguments to the command, but you can disable
command arguments using double quotes (“ “). If a directory is specified a user can
execute any command within that directory, but not any subdirectories. Wildcards are
allowed, but be very careful to ensure that the wildcard is working as expected.

I am not going to discuss every piece of sudo because very detailed documentation
is included with the sudo distribution, and I need to limit my page count in this book.
Our next step is to look at how to use sudo and how to use sudo in a shell script.

Using sudo

We use sudo by preceding the command that we want to run with the word sudo. As
an example, if my user ID is rmichael and I want to gain root access for the first time,
I will follow these steps:

384 Chapter 14

PATH=$PATH:/usr/local/bin

export PATH

sudo su - root

We trust you have received the usual lecture from the local System

Administrator. It usually boils down to these two things:

#1) Respect the privacy of others.

#2) Think before you type.

Password:

yogi@/#

Listing 14.7 Using sudo for the first time.

Notice the short lecture that is displayed in Listing 14.7. This lecture message is dis-
played only the first time that sudo is used by each user. In the password field the user
responds with his or her normal user account password, not the root password. You
should be careful granting full root permission like this. Allowing a user to su to root
via the sudo program does not leave an audit trail of what the user did as root! You
should still have the root history file if the user did not delete or edit the file. Also
notice in Listing 14.7 that I added /usr/local/bin to my $PATH. By default the
sudo command is located in the /usr/local/bin directory, but most shops do not
add this directory to the $PATH environment variable as a normal path when setting
up user accounts. Just make sure that all sudo users have the sudo command in the
$PATH or that they need to provide the full pathname to the sudo command.

Using sudo in a Shell Script

We can also use sudo in a shell script. As you create the shell script add the sudo com-
mand as a prefix to each command that you want to execute as root. The script in List-
ing 14.8 uses the sudo command to allow our Operations Team to reset passwords.

On an AIX system you can manage user passwords with the pwdadm command. In
this particular shell script we want our Operations Team to be able to change a user’s
password from a menu selection in a shell script. The bold text shown in Listing 14.8
points out the use of sudo and also the use of the tput command for reverse video,
which we will study further in Chapter 15.

Compiling, Installing, Configuring, and Using sudo 385

Free & Share & Open

#!/usr/bin/ksh

#

SCRIPT: chpwd_menu.ksh

AUTHOR: Randy Michael

DATE: 11/05/2001

PLATFORM: AIX

REV: 1.1.P

#

PURPOSE: This script was created for the Operations Team

to change user passwords. This shell script uses

“sudo” to execute the “pwdadm” command as root.

Each member of the Operations Team needs to be

added to the /etc/sudoers file. CAUTION: When

editing the /etc/sudoers file always use the

/usr/local/sbin/visudo program editor!!!

NEVER DIRECTLY EDIT THE sudoers FILE!!!!

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

###

DEFINE FUNCTIONS HERE

###

function chg_pwd

{

USER_NAME=”$1”

echo “\nThe next password prompt is for YOUR NORMAL PASSWORD”

echo “NOT the new password...”

The next command turns off the checking of the password history

/usr/local/bin/sudo /usr/bin/pwdadm -f NOCHECK $USER_NAME

if [$? -ne 0]

then

echo “\nERROR: Turning off password history failed...”

usage

exit 1

fi

The next command changes the user’s password

/usr/local/bin/sudo /usr/bin/pwdadm $USER_NAME

Listing 14.8 chpwd_menu.ksh shell script listing.

386 Chapter 14

if [$? -ne 0]

then

echo “\nERROR: Changing $USER_NAME password failed...”

usage

exit 1

fi

The next command forces the user to change his or her password

at the next login.

/usr/local/bin/sudo /usr/bin/pwdadm -f ADMCHG $USER_NAME

return 0

}

###

START OF MAIN

###

OPT=0 # Initialize to zero

clear # Clear the screen

while [[$OPT != 99]] # Start a loop

do

Draw reverse image bar across the top of the screen

with the system name.

clear

tput smso

echo “ $(hostname) “

tput sgr0

echo “”

Draw menu options.

echo “\n\n\n\n\n\n\n”

print “10. Change Password”

echo “\n\n\n\n\n\n\n\n\n”

print “99. Exit Menu”

Draw reverse image bar across bottom of screen,

Listing 14.8 chpwd_menu.ksh shell script listing. (continues)

Compiling, Installing, Configuring, and Using sudo 387

Free & Share & Open

with error message, if any.

tput smso

echo “ $MSG “

tput sgr0

Prompt for menu option.

read OPT

Assume invalid selection was taken. Message is always

displayed, so blank it out when a valid option is selected.

MSG=” Invalid option selected “

Option 10 - Change Password

if [$OPT -eq 10]

then

echo “\nUsername for password change? \c”

read USERNAME

grep $USERNAME /etc/passwd >/dev/null 2>&1

if [$? -eq 0]

then

chg_pwd $USERNAME

if [$? -eq 0]

then

MSG=”$USERNAME password successfully changed”

else

MSG=”ERROR: $USERNAME password change failed”

fi

else

MSG=” ERROR: Invalid username $USERNAME “

fi

fi

End of Option 99 Loop

done

Erase menu from screen upon exiting.

clear

Listing 14.8 chpwd_menu.ksh shell script listing. (continued)

The chpwd_menu.ksh shell script in Listing 14.8 displays a menu on the screen that
has only two options, change a user’s password or exit. This shell script uses the sudo
program to execute the pwdadm command as the root user. The pwdadm command is

388 Chapter 14

used for password administration in AIX and has options to turn password history
checking off and to force password changes on the next login attempt. The pwdadm
command is executed three times in the chg_pwd function within the shell script. The
first time pwdadm is executed as root we turn off the checking of the password history.
Notice that I added a comment to the staff that the next password prompt is for their
normal user password, not the new user password. I turn off the history checking
because the password that the Operation Team is going to enter is a temporary pass-
word. The next time the user logs in, the system will prompt for a new password, and
at this stage the password history will be checked. The second time that pwdadm is
executed, the password is actually changed by the Operations Team member. The third
time pwdadm is executed, the user is forced to change his or her password the next
time they log in. Each time sudo is used to execute pwdadm as root.

Also notice the tput commands. The tput command has many options to control the
cursor and the terminal. In this script we are using reverse video to display the host-
name of the machine in the menu title bar at the top and to display messages at the
bottom of the menu. There is much more on the tput command options in Chapter 15.

The sudo Log File

Before we end this chapter I want to show you what the sudo log file looks like. Each
time that sudo is executed, an entry is made in the specified log. Logging can be to a
file or to the system syslog. I specify a log file in the /etc/sudoers, but you may
prefer the syslog. A short version of my sudo log file is shown in Listing 14.9.

Nov 9 10:07:44 : d7742 : TTY=pts/2 ; PWD=/usr/local ; USER=root ;

COMMAND=/usr/bin/ftp bambam

Nov 9 10:09:13 : d7742 : TTY=pts/2 ; PWD=/usr/local ; USER=root ;

COMMAND=/usr/bin/ftp dino

Nov 13 10:10:48 : d7742 : TTY=pts/0 ; PWD=/home/guest ; USER=root ;

COMMAND=/usr/bin/whoami

Jul 23 17:35:47 : d7996 : TTY=pts/3 ; PWD=/home/guest ; USER=root ;

COMMAND=/usr/sbin/mount /usr/local/common

Oct 2 09:29:33 : d7742 : TTY=pts/1 ; PWD=/home/d7742 ; USER=root ;

COMMAND=/usr/bin/su -

Nov 14 16:01:31 : d7742 : TTY=pts/0 ; PWD=/home/d7742 ; USER=root ;

COMMAND=/usr/bin/su - root

Nov 14 16:03:58 : rmichael : TTY=pts/0 ; PWD=/home/rmichael ; USER=root

;

COMMAND=/usr/bin/su - root

Nov 15 11:31:32 : d7742 : TTY=pts/0 ; PWD=/scripts ; USER=root ;

COMMAND=/usr/bin/pwdadm -f NOCHECK rmichael

Nov 15 11:31:32 : d7742 : TTY=pts/0 ; PWD=/scripts ; USER=root ;

COMMAND=/usr/bin/pwdadm rmichael

Nov 15 11:31:32 : d7742 : TTY=pts/0 ; PWD=/scripts ; USER=root ;

Listing 14.9 Sample sudo log file. (continues)

Compiling, Installing, Configuring, and Using sudo 389

Free & Share & Open

COMMAND=/usr/bin/pwdadm -f ADMCHG rmichael

Nov 15 14:58:49 : root : TTY=pts/0 ; PWD=/usr/local/sudo-1.6.3p7 ;

USER=root ; COMMAND=/usr/bin/errpt

Nov 15 14:59:50 : d7742 : 3 incorrect password attempts ; TTY=pts/0 ;

PWD=/home/d7742 ; USER=root ; COMMAND=/usr/bin/errpt

Listing 14.9 Sample sudo log file. (continued)

In Listing 14.9 notice the last line of output. This line shows three incorrect password
attempts. You can set up sudo to send an email on each password failure if you want
immediate notification of misuse. The shell script in Listing 14.8 produced three log
entries on each password change. I have highlighted several other entries for ftp and
su to root to show you how the log entries look.

Summary

Through this chapter we have shown how to compile, install, configure, and use the
sudo program. We all know that protecting the root password is one of our main tasks
as a Systems Administrator, and sudo makes the job a little less difficult. When you use
sudo in a shell script, it is important that each user is familiar with sudo and has used
it at least once from the command line. Remember that on the first use the lecture mes-
sage is displayed and you do not want a lecture in the middle of a menu! In the sudo
distribution there are several files that you should review. The README file has valu-
able information in installation and a lot of OS-specific problems and workarounds.
The FAQ file answers the most frequently asked questions. The Sudoers Manual is a
must read! This manual describes the many options in configuring your sudoers file.
Finally, we have the Visudo Manual that explains how to use the visudo editor and
lists the command options and possible error conditions. Again, I want to thank Todd
Miller at www.courtesan.com for allowing me to use his material in this chapter.

In the next chapter we are going to create a highlight grep script. If you have ever
wanted to find a text string in a large file, you will really appreciate this script! The
command syntax is exactly the same as the grep command, but instead of extracting
the line that the grep command pattern matched on, we display the entire file and use
reverse video to highlight the text within the file.

390 Chapter 14

391

Ever want to find text in a large file easily? The larger the text file, the more you will
appreciate this shell script. We can use reverse video in shell scripts for more than just
making pretty menus. What about highlighting text in a file or in a command’s output?
In this chapter we are going to show an example of using reverse video in a shell script
that works similar to the grep command. Instead of displaying the line(s) that match
the pattern, we are going to display the entire file, or command output, with the
matched pattern highlighted in reverse video. I like to call this hgrep.

In the process of creating this shell script, an initial test script was developed that
ended up being very complicated. It started by grepping each line for the specified pat-
tern. If the pattern was found in the line, then a scan of the line, character by character,
was started to locate the exact pattern in the line for highlighting, then we grepped
again for the pattern in remaining line of text, and so on. This initial code had quite a
few problems, other than the complicated nature of the script, caused by Unix special
characters making the output do some very interesting things when scanning shell
script code. Regular text files worked fine, but the script was very slow to execute.

Then there was the revelation that sed should somehow be able to handle the pat-
tern matching—and do so a lot faster than parsing the file with a shell script. A Korn
shell script is really not meant to work on a file line by line and character by character; it
can be done, but this is what Perl is for! The problem to resolve using sed was how to
add in the highlighting control within a sed command statement. After thinking about
using sed and command substitution for a while, I had a working script in about 15
minutes (we might have a record!), and the following is what I came up with.

hgrep: Highlighted grep Script

C H A P T E R

15

Free & Share & Open

Reverse Video Control

There are two commands that control reverse video: tput smso turns soft reverse video
on, and tput rmso turns highlighting back off. The tput command has many other
options to control the terminal, but tput sgr0 (sgr-zero) will turn every tput option off.
To highlight text we turn reverse video on, print whatever we want highlighted, and
then turn reverse video off. We can also save this output, with the highlighted text, in
a file. To display the file with highlighted text we can use pg, or page, and on some
operating systems more will work. The more command did not work on either AIX or
HP-UX operating systems. Instead, the more command displayed the characters that
make up the escape sequence for the highlighted text, not the highlighted text itself. You
would see the same result using the vi editor. On Solaris both commands displayed the
highlighted text, but not all operating systems have the pg and page commands.

There is one common mistake that will prevent this shell script from working, not
double quoting the variables, for example “$STRING”. The double quotes have no
effect on a single-word pattern match, but for multiword string patterns the variables
must be double quoted or standard error will produce command usage errors within
the script. The errors are due to the fact that each word that makes up the string pattern
will be interpreted as a separate argument instead of one entity. The double quotes are
very important when working with string variables. Forgetting the double quotes is a
very hard error to find when troubleshooting code!

The sed command is next. Remember the basic sed syntax that we use in this book:

cat $FILENAME | sed s/current_string/new_string/g

In our script we want to take the sed command statement and redirect output to a
file, then display the file with pg, page, or more.

cat $FILENAME | sed s/current_string/new_string/g > $OUTPUT_FILE

pg $OUTPUT_FILE

--verse--

more $OUTPUT_FILE

To add in the reverse video piece we have to do some command substitution within
the sed statement using the tput commands—this is the part that had to be worked out.
Where we specify the new_string we will add in the control for reverse video using
command substitution, one to turn highlighting on and one to turn it back off. When
the command substitution is added, our sed statement will look like the following:

sed s/current_string/$(tput smso)new_string$(tput rmso)/g

In our case, the current_string and new_string will be the same because we
only want to highlight existing text without changing it. We also want the string to be
assigned to a variable, as in the next command:

sed s/”$STRING”/$(tput smso)”$STRING”$(tput rmso)/g

392 Chapter 15

Notice the double quotes around the string variable, “$STRING”. Do not forget to
add the double quotes around variables!

As an experiment using command substitution, try this next command statement on
any Unix machine:

cat /etc/hosts | sed s/`hostname`/$(tput smso)`hostname`$(tput rmso)/g

In the preceding command statement notice that we used both types of command
substitution, enclosing the command within back tics, `command`, and the dollar
parentheses method, $(command). The previous statement will cat the /etc/hosts
file and highlight the machine’s hostname in reverse video each time it appears in the
file. Now try the same command, but this time pipe the command to more. Try the
same command again using pg and page instead of more, if your machine supports
the page commands. If your machine does not have the pg command, then the more
command should work. If your operating system has both pg and more, notice that
using more may not display the string pattern in reverse video—it will display the
characters that make up the escape sequence that the tput commands create, but
Solaris is an exception. We will need to consider this when we display the result on dif-
ferent operating systems.

To make this script have the same look and feel as the grep command, we want to be
able to supply input via a file, as a command-line argument, or as standard input from
a command pipe. When supplying a filename to the script as a command-line argu-
ment, we need to ensure that the file exists, its size is greater than zero bytes, it is read-
able by this script, and the string pattern is matched in the file. We could leave out the
last step, but if the pattern is not in the file then it would be nice to let the user know. If
we are getting input from standard input instead of a file specified as an argument—
for example, cat /etc/hosts | hgrep.ksh `hostname`—then we need to
check for the string pattern in the output file instead of the input file. Then we can still
inform the user if the pattern is not found.

Building the hgrep.ksh Shell Script

Now that we have the basic command syntax, let’s build the hgrep.ksh shell script.
There are two types of input for this script, file input and standard input. For the file
input we need to do some sanity checks so that we don’t get standard error messages
from the system. We also want to give the user some feedback if there is something that
will cause an error using the specified file as input—for example, the file does not exist
or is not readable by the script because of file permissions. The command syntax using
the hgrep.ksh script should be the same as the grep command, which is:

grep pattern [filename]

By looking at this we can determine that we will sanity-check the file only when we
have two command-line arguments; otherwise, we are using piped-in standard input,
which implies that we check the file only when $# is equal to 2. We begin with checking
the command-line arguments and making assignments of the arguments to variables.

hgrep: Highlighted grep Script 393

Free & Share & Open

if [$# -eq 1]

then

Input coming from standard input

PATTERN=”$1” # Pattern to highlight

FILENAME= # Assign NULL to FILENAME

elif [$# -eq 2]

then

Input coming from $FILENAME file

PATTERN=”$1” # Pattern to highlight

FILENAME=”$2” # File to use as input

else

Incorrect number of command-line arguments

usage

exit 1

fi

We should now have enough to get us started. If we have a single command-line
argument, then we assign $1 to PATTERN and assign the FILENAME variable a NULL
value. If there are two command-line arguments, then we assign $1 to PATTERN and
$2 to FILENAME. If we have zero or more than two arguments, then we display the
usage message and exit with a return code of 1, one. The function for correct usage is
listed here:

function usage

{

echo “\nUSAGE: $SCRIPT_NAME pattern [filename]\n”

}

Follow through the hgrep.ksh script in Listing 15.1, and the process will be
explained at the end of the shell script.

#!/usr/bin/ksh

#

SCRIPT: hgrep.ksh

AUTHOR: Randy Michael

DATE: 03/09/2001

REV 2.1.P

PLATFORM: Not Platform Dependent...(Not very platform dependent)

There is a slight “more” command issue that has been

resolved

#

PURPOSE: This script is used to highlight text in a file or standard

Listing 15.1 hgrep.ksh shell script.

394 Chapter 15

input. Given a text string and a file, or standard input, the

script will search for the specified string and highlight each

occurrence of the string using command substitution within a

sed statement to turn on and off the reverse video. “tput smso”

turns on reverse video and “tput rmso” will turn it off. This

script is a “highlighted grep” command.

#

set -x # Uncomment to debug

set -n # Uncomment to check command syntax without execution

#

EXIT CODES:

#

0 ==> Script exited normally

1 ==> Usage error

2 ==> Input file error

3 ==> Pattern not found in the file

#

REV LIST:

03/12/2001 - Randy Michael - Sr. Sys. Admin.

Added code to just exit if the string is not in

the target file.

#

03/13/2001 - Randy Michael - Sr. Sys. Admin.

Added code to ensure the target file is a readable “regular”

non-zero file.

#

03/13/2001 - Randy Michael - Sr. Sys. Admin.

Added code to highlight the text string and filename

in the error and information messages.

#

08-22-2001 - Randy Michael - Sr. Sys. Admin

Changed the code to allow this script to accept standard

input from a pipe. This makes the script work more like the

grep command

SCRIPT_NAME=`basename $0`

##

########### DEFINE FUNCTIONS HERE ############

##

function usage

{

echo “\nUSAGE: $SCRIPT_NAME pattern [filename]\n”

}

##

########### CHECK COMMAND SYNTAX #############

Listing 15.1 hgrep.ksh shell script. (continues)

hgrep: Highlighted grep Script 395

Free & Share & Open

##

if [$# -eq 1]

then

Input coming from standard input

PATTERN=”$1” # Pattern to highlight

FILENAME= # Assign NULL to FILENAME

elif [$# -eq 2]

then

Input coming from $FILENAME file

PATTERN=”$1” # Pattern to highlight

FILENAME=”$2” # File to use as input

Perform sanity checks on the file!!!

Does the file exist as a “regular” file?

if [[! -f $FILENAME]]

then

echo “\nERROR: \c”

tput smso

echo “${FILENAME}\c” # Highlight the filename

tput rmso

echo “ does not exist as a regular file...\n”

usage

exit 2

fi

Is the file empty?

if [[! -s $FILENAME]]

then

echo “\nERROR: \c”

tput smso

echo “${FILENAME}\c” # Highlight the filename

tput rmso

echo “ file size is zero...nothing to search\n”

usage

exit 2

fi

Is the file readable by this script?

if [[! -r $FILENAME]]

then

Listing 15.1 hgrep.ksh shell script. (continued)

396 Chapter 15

echo “\nERROR: \c”

tput smso

echo “${FILENAME}\c” # Highlight the filename

tput rmso

echo “ is not readable to this program...\n”

usage

exit 2

fi

Is the pattern anywhere in the file?

grep “$PATTERN” $FILENAME >/dev/null 2>&1

if [$? -ne 0]

then

echo “\nSORRY: The string \c”

tput smso

echo “${PATTERN}\c” # Highlight the pattern

tput rmso

echo “ was not found in \c”

tput smso

echo “${FILENAME}\c” # Highlight the filename

tput rmso

echo “\n\n....EXITING...\n”

exit 3

fi

else

Incorrect number of command line arguments

usage

exit 1

fi

##

########### DEFINE VARIABLES HERE ############

##

OUTPUT_FILE=”/tmp/highlightfile.out”

>$OUTPUT_FILE

##

############ START OF MAIN ###################

##

If the $FILENAME varaible is NULL then input is from a command pipe

Testing for NULL assigned to $FILENAME.

if [[! -z “$FILENAME” && “$FILENAME” != ‘’]]

then

Listing 15.1 hgrep.ksh shell script. (continues)

hgrep: Highlighted grep Script 397

Free & Share & Open

Using $FILENAME as input

MUST USE DOUBLE QUOTES AROUND $PATTERN!!! -> “$PATTERN”

cat “$FILENAME” \

| sed s/”${PATTERN}”/$(tput smso)”${PATTERN}”$(tput rmso)/g \

> $OUTPUT_FILE

else

Input is from standard input...

MUST USE DOUBLE QUOTES AROUND $PATTERN!!! -> “$PATTERN”

sed s/”${PATTERN}”/$(tput smso)”${PATTERN}”$(tput rmso)/g \

> $OUTPUT_FILE

Check to see if the pattern was in the standard input

grep “$PATTERN” $OUTOUT_FILE >/dev/null 2>&1

if [$? -ne 0]

then

echo “\nSORRY: The string \c”

tput smso

echo “${PATTERN}\c”

tput rmso

echo “ was not found in standard input \c”

echo “\n\n....EXITING...\n”

exit 3

fi

fi

Check the operating system, on AIX and HP-UX we need to

use the “pg”, or “page” command. The “more” command does

not work to highlight the text, it will show only the

characters that make up the escape sequence. All

other operating systems use the “more” command.

case $(uname) in

AIX|HP-UX)

This is a fancy “pg” command. It acts similarly to the

“more” command but instead of showing the percentage

displayed it shows the page number of the file

/usr/bin/cat $OUTPUT_FILE | /usr/bin/pg -csn -p”Page %d:”

;;

*)

Listing 15.1 hgrep.ksh shell script. (continued)

398 Chapter 15

/usr/bin/cat $OUTPUT_FILE | /usr/bin/more

;;

esac

rm -f $OUTPUT_FILE # End of Script Cleanup

Listing 15.1 hgrep.ksh shell script. (continued)

In the shell script in Listing 15.1 we first check for the correct number of command-
line arguments; either one or two arguments are valid. Otherwise, the script usage
message is displayed, and the script will exit with a return code 1. If we have the cor-
rect number of arguments, then we assign the arguments to variables. If we have two
command-line arguments, then an input file is specified in $2—at least it is supposed
to be a file. We need to do some sanity checking on this second command-line argu-
ment by first checking to see that the file exists as a regular file. We do not want to do
anything with the file if it is a block or character special file, a directory, or any other
nonregular file. Next we make sure that the file is not empty. Then we ensure that the
script can read the file, and finally we grep for the pattern in the file to see if we have
anything to highlight. If all of the tests are passed, then we can proceed.

By checking if the $FILENAME variable is null, or empty, we know which type of
input we are dealing with. A null or empty $FILENAME variable means we use stan-
dard input, which is input from a pipe in this case. If $FILENAME is not null, then we
have a file specified as input to the script on the command line. The only difference
in handling an input file versus standard input is that we will supply the ”cat
$FILENAME |” if there is an input file specified. Otherwise, the input is already com-
ing in from a pipe directly into the sed statement—it’s that simple. We have one more
check before displaying the output. If we are using piped-in standard input, then we
grep for “$PATTERN” in the $FILENAME to see if it exists. If not, we display a string not
found message and exit.

The output display is interesting because more will not work on HP-UX or AIX to dis-
play the highlighted text. For HP-UX and AIX we use pg instead of more. To determine
which flavor of Unix we are running, we use the uname command in a case statement. If
the OS is either AIX or HP-UX, we used a fancy pg command, which has output that
appears similar to the more output. Using pg -csn -p"Page %d:" will display the page
number of the file, where more displays the percentage of file. All other Unix flavors will
use more to display the output file.

The script in Listing 15.1 is a good example of how a little ingenuity can greatly sim-
plify a challenge. We sometimes make things more complicated than they need to be,
as in my initial test script that parsed through the file line by line and character by char-
acter, searching for the pattern. We live and learn!

hgrep: Highlighted grep Script 399

Free & Share & Open

Other Options to Consider

As with every script there is room for improvement or customization, however you
want to look at it.

Other Options for the tput Command
The only tput command option that we worked with was the tput smso command,
which is used to turn on highlighting. The tput command has many other options to
control terminal display. In our example we did a highlight of not only the text but also
the surrounding block for each character. We could also highlight only the text piece,
double video the entire text block, underline with other options—for example, we
could have underlined bold text. The tput command is fun to play with. The short list
of command options is shown in Table 15.1.

Table 15.1 Options for the tput Command

tput bell Ring the bell

tput blink Start blinking mode

tput bold Start double intensity (much brighter than reverse video)

tput civis Turn the cursor off (make the cursor invisible)

tput cnorm Make the cursor normal again

tput cr Send a carriage to the terminal

tput cvvis Make the cursor very bright

tput dim Start one-half intensity mode

tput ed Clear to the end of the display

tput el Clear to the end of the line

tput flash Send a visible bell (good to send a flash to someone’s screen)

tput invis Start invisible text mode

tput prot Start protected mode

tput rc Restore the last saved cursor position (paved by tput sc)

tput rev Begin reverse video mode (bright!)

tput rmso End the standout mode (reverses tput smso)

tput rmul Ends the underline (underscore) mode

tput sc Save the cursor position

400 Chapter 15

Table 15.1 (Continued)

tput sgr0 Turn off all video modes

tput smso Start the standout mode (soft reverse video we used in
this chapter)

tput smul Start the underline (underscore) mode

tput Underscore one character and move to the next character

Table 15.1 is only an abbreviated listing of the tput command options. As you can
see, we can do a lot with the text on the screen. Use your imagination, and play around
with the commands.

Summary

In this chapter we introduced using reverse video to highlight text within our output.
Also we showed how to do command substitution inside a sed command statement.
There are many more options for the tput command to control the terminal; for exam-
ple, we could have underlined the matching pattern. The nice thing about the tput
command is that it will let you mix things up, too.

In the next chapter we are going to look at how to keep the printers in the landscape
printing. If you do not automate this function you could spend all of your time doing
printer management instead of doing any real work. See you in the next chapter!

hgrep: Highlighted grep Script 401

Free & Share & Open

403

If you have worked in a large systems environment for very long you already know
how frustrating it can be to keep the printer farm happy. In my contracting days I
worked in several shops that consistently had problems with the printers. In most cases,
the print queues went down because of network timeouts and extended device waits.
In this kind of environment you have two choices: keep answering the calls from the
help desk or write a shell script to monitor the printer queues and reenable the queues
as they drop offline.

I prefer the second method. Like every other Systems Administrator, I like to be
proactive in my approach to solving the little problems as well as the big ones. The
shop I remember the best was a hospital. This hospital has more than 30 satellite clin-
ics around town and only one 100MB/Sec pipe coming in to the hospital from the out-
side world. Most of the clinics have between three and five printers, with at least one
printer active most of the day. When I came on board, the first problem I encountered
was the huge volume of calls to the help desk about printer problems. What caught my
eye was the fact that all of the calls came from the clinics, not from inside the hospital.
I knew immediately that a shell script was in order! In this chapter we are going to look
at two methods of bringing up the print queues, enabling individual queues and bring-
ing up the whole lot. Because Unix flavors vary on handling printers and queues, we
first will look at the differences between the Unix flavors.

Print Queue Hell: Keeping
the Printers Printing

C H A P T E R

16

Free & Share & Open

System V versus BSD Printer Subsystems

Depending on the Unix flavor, the commands vary to control the printers and queues
because some use the System V subsystem and others use BSD. With AIX you have an
ever more confusing situation beginning with AIX 5L. Starting with this release, AIX
now supports both the “classic” AIX printer subsystem and the System V printer ser-
vice. Another problem is that some commands do not provide the full print queue
name if the queue name exceeds seven characters. I have come up with some ways to
get around the long queue names, and on most systems you do not have to worry
about long queue names too much if you want to control all of the printers at once.

In this book we are covering AIX, HP-UX, Linux, and Solaris. For no other reason
that I can think of, let’s cover the printer systems in alphabetical order.

AIX Print Control Commands
AIX is the most interesting of the bunch with its new support for the System V printer
service starting with AIX 5L. Although the AIX classic printer subsystem will still be
supported for many years, the move seems to be going to System V for printing service.

Classic AIX Printer Subsystem

Most AIX Systems Administrators still prefer to use the classic AIX printer subsystem.
This is the primary printing that I have supported for years. With the AIX printer sub-
system you do not have the detailed control that the System V service offers. For exam-
ple, you do not control forms and user priorities at a granular level, and you cannot
manage the printers independently of the print queues easily. With this printer sub-
system anyone can print on any printer, and the print queue is either UP, allowing you
to print, or DOWN, disabling all printing. The shell scripts we are going to write for the
classic AIX printer subsystem work at the print queue level.

The two commands we are going to use are lpstat and enq -A. Both commands pro-
duce the same output, but some administrators seem to like one over the over. As I stated
earlier, we need to be aware that sometimes print queues are created with queue names
longer than seven characters, which is the default that can be displayed with both of
these commands. I guess IBM noticed this little problem and added the -W switch to give
a wide character output. Look at Listings 16.1 and 16.2 to see the different outputs.

lpstat

Queue Dev Status Job Files User PP % Blks Cp Rnk

------- ----- --------- --- ----------- ---------- ---- -- ----- --- ---

hp4 lp0 READY

hp4-ps lp0 READY

hp4-gl lp0 READY

yogi_hp lp0 DOWN

yogi_hp lp0 DOWN

Listing 16.1 Output using lpstat or enq -A.

404 Chapter 16

lpstat -W

Queue Dev Status Job Files User PP % Blks Cp Rnk

---------------- ----- -------- ---- -------- ------ --- -- ---- --- ---

hp4 lp0 READY

hp4-ps lp0 READY

hp4-gl lp0 READY

yogi_hp4_1 lp0 DOWN

yogi_hp4_1ps lp0 DOWN

Listing 16.2 Output using lpstat -W or enq -AW.

As you can see in Listing 16.1, the long queue names are cut off at the seventh char-
acter when using the lpstat or enq -A commands. By adding the -W switch to these
commands we see the entire long queue name. This is important because you cannot
control a print queue if you do not have the exact, and full, queue name.

There are two methods to script using either lpstat -W or enq -AW. One method is
to loop through each queue that is reported DOWN; the other is to use one long com-
pound command. We are first going to look at the looping method.

A little for loop can be used to extract out the queue names of the printers in a
DOWN state. The list used for the for loop comes from either of the following command
statements:

lpstat -W | tail +3 | grep DOWN | awk ‘{print $1}’

or

enq -AW | tail +3 | grep DOWN | awk ‘{print $1}’

Both of the previous statements produce the same output. Notice that tail +3 is the
second command in pipe, just after the lpstat and enq commands. We use tail +3 in this
statement to remove the two lines of header information. This method is much cleaner
than trying to grep out some unique character in both of the header lines.

Notice that the number of lines, specified by +3, is one larger than the actual num-
ber of lines that we want to remove. Using the tail command this way, we are telling
tail to start listing at the third line, so two lines are removed at the top of the output.

The third command in the pipe is where we grep for DOWN, looking for disabled
printers, as shown in Listing 16.2. The output from this stage of the command is only
the lines of the enq and lpstat output that contains the word DOWN. Using these lines as
input for the next command in the pipe, we are ready to extract the actual queue
name(s) of the disabled printers, as shown in the output here.

yogi_hp4_1 lp0 DOWN

yogi_hp4_1ps lp0 DOWN

Print Queue Hell: Keeping the Printers Printing 405

Free & Share & Open

The awk command, as we use it, is used to extract the field that we want to work
with, which is the first field, the queue name. Using the previous output as input to our
awk statement we extract out the first field using the following syntax:

command | awk ‘{print $1}’

You can extract any valid field using awk as well as different fields at the same time.
For example, if we want to extract fields 1 and 3, specified by $1 and $3, the following
awk statement will take care of the task.

command | awk ‘{print $1, $3}’

Notice that I added a comma between $1 and $3. If the comma is omitted, then there
will not be a space between the two strings. Instead the output will be two strings
appended together without a space.

For our for loop we can first send the lpstat and enq command output to a file and
process the file in a loop, or we can use command substitution to add the statement
directly into the for loop to create the list of objects to loop through. Let’s look at our
for loop structure.

for Q in $(enq -AW | tail +3 | grep DOWN | awk ‘{print $1}’)

do

Do something here.

done

Using this loop command statement, the for loop will loop through yogi_hp4_1
and yogi_hp4_1ps print queue names, which is equivalent to the following for loop
structure:

for Q in yogi_hp4_1 yogi_hp4_1ps

do

Do something here.

done

Because we never know which queues may be down, we need to parse through the
output of the actual queue names of the printers in a disabled state. The shell script in
its entirety is shown in Listing 16.3.

#!/bin/ksh

#

SCRIPT: enable_AIX_classic.ksh

#

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: 1.1.P

Listing 16.3 For loop to enable “classic” AIX print queues.

406 Chapter 16

#

PLATFORM: AIX Only

#

PURPOSE: This script is used to enable print queues on AIX systems.

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

for Q in $(enq -AW | tail +3 | grep DOWN | awk ‘{print $1}’)

do

enable $Q

(($? == 0)) || echo “\n$Q print queue FAILED to enable.\n”

done

Listing 16.3 For loop to enable “classic” AIX print queues. (continued)

Inside the for loop we attempt to enable each print queue individually. If the return
code of the enable command is not zero we echo an error message indicating that the
queue could not be enabled. Notice the highlighted lines in Listing 16.3. We use the
mathematical test, specified by the double parentheses, ((math test)). Using this
math test you normally do not add a dollar sign, $, in front of a numeric variable.
When the variable is produced by the system, such as $?, the dollar sign is required.
Testing for equality also requires using the double equal signs, ==, because the single
equal sign, =, is meant as an assignment, not a test.

After the test to check for a zero return code, we use a logical OR, specified by the
double pipes, ||. This logical OR will execute the next command only if the return
code of the enable $Q command is nonzero, which means that the command failed.
There is also a logical AND that is used by placing double ampersands, &&, in a com-
mand statement. A logical AND does just the opposite; it would execute the succeeding
command if the test is true, instead of false. Both the logical OR and logical AND are
used as replacements for if..then..else.. statements.

We can also accomplish this task by using a single compound command statement.
Just as we used command substitution in the for loop, we can use command substitu-
tion to produce command parameters. For example, we can use our for loop command
to create command parameters to the enable command. To see this more clearly, look
at the following two commands.

enable $(enq -AW | tail +3 | grep DOWN | awk ‘{print $1}’) 2>/dev/null

or

enable $(lpstat -W | tail +3 | grep DOWN | awk ‘{print $1}’) 2>/dev/null

Print Queue Hell: Keeping the Printers Printing 407

Free & Share & Open

Both of the previous compound command statements produce the same result,
enabling all of the print queues on the system. The only problem with using this tech-
nique is that if you execute this command and all of the printers are already enabled,
then you will get the following output from standard error:

usage: enable PrinterName ...

Enables or activates printers.

As you can see, I sent this output to the bit bucket by adding 2>/dev/null to the
end of the statement, but the return code is still nonzero if all of the printers are already
enabled. This should not be a problem unless you want to create some notification that
a printer failed to enable. In our for loop in Listing 16.3 we used the return code from
the enable command to produce notification. I will leave the technique that you use
up to you. If you do not want to see any output, then you could add the single com-
pound statement as a cron table entry or use the for loop technique in a shell script to
redirect the failure notification to a log file. If you use a log file you may want to add a
date stamp.

System V Printing on AIX

Beginning with AIX 5L, IBM supports System V printing. I find that Solaris has the
closest command usage and output. With only a few differences between AIX and
Solaris System V printing in the output produced, you could use the shell scripts inter-
changeably. Because people tend to read only the parts of a technical book that they
need to, I will devote this entire section to AIX System V printing.

To switch your AIX system from the “classic” AIX printer subsystem to System V
printing, refer to your AIX reference manual. This section expects that you are already
running System V printing.

Like Solaris, AIX uses the System V lpc (line printer control) command to control the
printers and print queues. The nice thing about this print service is that you can con-
trol the queues and the printers independently. The main commands that we are inter-
ested in for AIX queuing and printing include the following options and parameters to
the lpc command, as shown in Table 16.1.

Table 16.1 AIX lpc Command Options

LPC COMMAND COMMAND RESULT

disable (printer[@host] | all) Disables queuing

stop (printer[@host] | all) Disables printing

down (printer[@host] | all) Disables printing and queuing

enable (printer[@host] | all) Enables queuing

start (printer[@host] | all) Enables printing

up (printer[@host] | all) Enables printing and queuing

408 Chapter 16

As you can see in Table 16.1, the granularity of printer control is excellent, which
gives us several options when creating shell scripts. To control all of the printing and
queuing at one time you really do not need a shell script. The following two commands
can start and stop all printing and queuing on all print queues at the same time.

lpc down all # Disable all printing and queuing

lpc up all # Enable all printing and queuing

To keep all of the printers printing and queuing you only need the lpc up all com-
mand entered into a cron table. I placed an entry in my root cron table to execute this
lpc command every 10 minutes, as shown here:

5,15,25,35,45,55 * * * * /usr/sbin/lpc up all >/dev/null 2>&1

This cron table entry enables all printing and queuing on all printers on the 5s, 24
hours a day, 7 days a week. With AIX System V printing, the data we are interested in
is separated on three lines of output when we use the lpc status all command to mon-
itor the printer service. The same command executed on AIX , Linux, and Solaris is
shown here.

AIX SYSTEM V OUTPUT

lpc status all

hp4V:

queueing is enabled

printing is disabled

5 entries in spool area

LINUX SYSTEM V OUTPUT

lpc status

Printer Printing Spooling Jobs Server Subserver Redirect

Status/(Debug)

hp4@localhost enabled disabled 0 none none

SOLARIS SYSTEM V OUTPUT

lpc status all

bambam_hp4:

queueing is enabled

printing is enabled

no entries

Of these three outputs Linux is the one that differs. With the data we are interested
in for AIX residing on three separate lines for each print queue, we need a different

Print Queue Hell: Keeping the Printers Printing 409

Free & Share & Open

strategy to get the exact data the we want. First notice that at the beginning of each
stanza a queue name has a colon, :, appended to the name of the queue. Because this
character occurs only in the queue name, we can use the colon character as a tag for a
grep statement. Following the queue name entry, the next two lines contain the data
that we are interested in pertaining to the status of the queuing and printing.

Because we have some unique tag for each entry, it is easy to extract the lines of data
that we are interested in by using an extended grep, or egrep, statement, as shown here:

lpc status all | egrep ‘:|printing|queueing’ | while read LINE

The egrep command works the same way as the grep command except that you can
specify multiple patterns to match. Each pattern is separated by a pipe without any
spaces! If you add spaces on either side of the search pattern, the egrep statement will
fail to make a match. The entire list of patterns is then enclosed within single forward
tic marks, ’pattern1|pattern2|pattern3’. The output produced has the queue
name on the first line, the printing status on the second line, and the queuing status on
the third line.

The last part of the previous command is where the output is piped to a while loop.
On each read the entire line of data is loaded into the variable LINE. Inside of the while
loop we use the following case statement to assign the data to the appropriate variable.

case $LINE in

*:) Q=$(echo $LINE | cut -d ‘:’ -f1)

;;

printing*)

PSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

queueing*)

QSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

esac

Notice that if $LINE begins with *: then we load the Q variable. If $LINE begins
with printing* we load the PSTATUS variable with the third field, which should be
either enabled or disabled. We do the same thing in loading the QSTATUS variable
with the third field of the value that the $LINE variable points to.

The trick in this script is how to load and process three lines of data and then load
and process three more lines of data, and so on. The most intuitive approach is to have
a loop counter. Each time the loop counter reaches three we process the data and reset
the loop counter back to zero. Take a look at the entire script in Listing 16.4 to see how
this loop count works. Pay close attention to the bold type.

410 Chapter 16

#!/bin/ksh

#

SCRIPT: print_UP_SYSV_AIX.ksh

#

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: 1.1.P

#

PLATFORM: AIX System V Printing

#

PURPOSE: This script is used to enable printing and queuing separately

on each print queue on AIX and Solaris systems.

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

###

LOOP=0 # Loop Counter - To grab three lines at a time

lpc status all | egrep ‘:|printing|queueing’ | while read LINE

do

Load three unique lines at a time

case $LINE in

*:) Q=$(echo $LINE | cut -d ‘:’ -f1)

;;

printing*)

PSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

queueing*)

QSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

esac

Increment the LOOP counter

((LOOP = LOOP + 1))

if ((LOOP == 3)) # Do we have all three lines of data?

then

Check printing status

case $PSTATUS in

Listing 16.4 print_UP_AIX.ksh shell script listing. (continues)

Print Queue Hell: Keeping the Printers Printing 411

Free & Share & Open

disabled) lpc start $Q >/dev/null

(($? == 0)) && echo “\n$Q printing re-started\n”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

Check queuing status

case $QSTATUS in

disabled) lpc enable $Q >/dev/null

(($? == 0)) && echo “\n$Q queueing re-enabled\n”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

LOOP=0 # Reset the loop counter to zero

fi

done

Listing 16.4 print_UP_AIX.ksh shell script listing. (continued)

Notice that we grab three lines at a time. The reason that I say that we are grabbing
three lines at a time is because I use the case statement to specify unique tags for each
line of data. I know that the queue name will have a colon, :, as a suffix. I know that
the printing status line will begin with printing*, and I know that the queuing line
will begin with queueing*. We load only one variable on each loop iteration. So, to
get three pieces of data (queue name, printing status, and queuing status), we need to
go through the while loop three times for each printer queue. Once we pass the initial
case statement, we increment the LOOP counter by one. If the $LOOP variable is equal
to 3 then we have all of the data that we need to process a single printer queue. After
processing the data for this printer queue, we reset the LOOP variable to zero, 0, and
start gathering data for the next printer queue.

Sounds simple enough? This same technique works for any fixed set of lines of data
in command output or in a file. The only changes that are needed to use this method
include creating unique tags for the data you are interested in and setting the $LOOP
equality statement to reflect the number of lines in each set of data.

More System V Printer Commands

We have been looking at only the lpc command thus far. We also need to look at two
command parameters to the lpstat command in this section. The -a parameter lists the
status of queuing, and the -p command parameter lists the status of printing. The nice
thing about these two command options is that the output for each queue is on a sin-
gle line, which makes the data easier to parse through. See Table 16.2.

412 Chapter 16

Table 16.2 System V lpstat Command Options

COMMAND DESCRIPTION

lpstat -a Show status of queuing on all printers

lpstat -p Show status of printing on all printers

Other than having to query the printer service twice, having to use separate com-
mands for monitoring printing and queuing is not so bad. The separation is built in
because the -a and -p command parameters are mutually exclusive, which means that
you cannot use -a and -p at the same time. Output from each command option is
shown here:

lpstat -a

hp4 accepting requests since May 07 07:02 2002

yogi_hp4_1ps accepting requests since May 07 07:02 2002

long_queue not accepting requests since Tue May 7 07:02:23 EDT 2002 -

s_q_nam not accepting requests since Tue May 7 07:02:23 EDT 2002 -

lpstat -p

printer long_queue disabled since Tue May 7 07:02:01 EDT 2002.

available.

stopped by user

printer s_q_nam disabled since Tue May 7 07:02:01 EDT 2002. available.

stopped by user

printer hp4 unknown state. enabled since May 07 07:30 2002. available.

printer yogi_hp4_1ps unknown state. enabled since May 07 07:30 2002.

available.

Listing 16.5 lpstat -a and lpstat -p command output.

Notice in Listing 16.5 that the output from each command option has a unique set of
status information for each printer on each line of output. We want to use the unique-
ness of the status information as tags in a grep statement. The terms make sense, too. A
queue is either accepting new requests or is not accepting new requests, and a printer is
either enabled for printing or is disabled from printing. Because we are interested only in
the disabled and not-accepting states, we can create a simple script or a one-liner.

We need to know two things to enable printing and to bring up a print queue to
accept new requests, the printer/queue name and the state of the queue or printer. The
first step is to grep out the lines of output that contain our tag. The second step is to

Print Queue Hell: Keeping the Printers Printing 413

Free & Share & Open

extract the printer/queue name from each line of output. Let’s first look at using a
while loop to bring everything up, as shown in the Listing 16.6.

lpstat -a | grep ‘not accepting’ | while read LINE

do

Q=$(echo $LINE | awk ‘{print $1}’)

lpc enable $Q

done

lpstat -p | grep disabled | while LINE

do

P=$(echo $LINE | awk ‘{print $2}’)

lpc start $P

done

Listing 16.6 Scripting the lpstat command using -a and -p.

Notice in Listing 16.6 that we have to work on the print queues and printers sepa-
rately, by using two separate loops. In the first while loop all of the queuing is started.
In the second loop we enable printing for each of the printers. The down side to this
method occurs when you have hundreds of printers and scanning through all of the
printers twice can take quite a while. Of course, if you have hundreds of printers you
should use lpc up all to bring everything up at once.

As I said before, we can also make a one-liner out of the two loops in Listing 16.6. We
can combine the grep and awk commands on the same line and use command substi-
tution to execute the lpc command. The following two commands replace the two
while loops.

lpc enable $(lpstat -a | grep ‘not accepting’ | awk ‘{print $1}’)

lpc start $(lpstat -p | grep disabled | awk ‘{print $2}’)

The first command enables queuing, and the second command starts printing. The
command substitution, specified by the $(command) notation, executes the appropri-
ate lpstat command, then greps on the tag and extracts the printer/queue name out.
The resulting output is used as the parameter to the lpc commands.

HP-UX Print Control Commands
Of the Unix operating systems, HP-UX has a unique lpstat command output. We do
not have to do anything special to see the full print queue names, and if a queuing is
disabled or printing is stopped, we get a Warning: message. With a warning message
for each printer on a single line we can use grep and awk to find the printer/queue
name and the status in a case statement. Let’s first look at the lpstat output when both
printing and queuing is up, as shown here:

414 Chapter 16

lpstat

printer queue for hp4_yogi_1

printer queue for yogi_hp4_1ps

If print requests were queued up they would be listed below the queue name. Now
let’s disable printing on the hp4_yogi_1 print queue.

disable hp4_yogi_1

printer “hp4_yogi_1” now disabled

Now look at the output of the lpstat command:

lpstat

printer queue for hp4_yogi_1

dino: Warning: hp4_yogi_1 is down

printer queue for yogi_hp4_1ps

The warning message tells us that the printer is down; however, notice that the
queue status is not listed here. Now let’s bring down the hp4_yogi_1 print queue and
see what this does.

reject hp4_yogi_1

destination “hp4_yogi_1” will no longer accept requests

To see only queuing status we use the lpstat -a command, as shown here:

lpstat -a

hp4_yogi_1 not accepting requests since Oct 1 05:45 -

reason unknown

yogi_hp4_1ps accepting requests since Sep 26 04:23

Because hp4_yogi_1 now has printing disabled and queuing stopped, I would
expect that we should see some queue status output in the lpstat command output for
the first time.

lpstat

printer queue for hp4_yogi_1

Print Queue Hell: Keeping the Printers Printing 415

Free & Share & Open

dino: Warning: hp4_yogi_1 queue is turned off

dino: Warning: hp4_yogi_1 is down

printer queue for yogi_hp4_1ps

Just what we expected. From this little exercise we have determined that queuing is
reported only when the queuing is stopped on the queue using the lpstat command
alone. For our scripting effort let’s stick to the lpstat output. We want to use the word
Warning as a tag for our grep statement. Then we can further grep this extracted line
to check printing and queuing status. If the string ‘queue is turned off’ is
present we know that queuing is turned off, and if the string ‘is down’ appears on
the line we know that printing is disabled. The only thing left to extract is the
printer/queue name, which is always located in the third field.

To script this we can use the code in Listing 16.7. Pay attention to the bold type, and
we will cover the script at the end.

#!/bin/ksh

#

SCRIPT: print_UP_HP-UX.ksh

#

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: 1.1.P

#

PLATFORM: HP-UX Only

#

PURPOSE: This script is used to enable printing and queuing separately

on each print queue on an HP-UX system.

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

lpstat | grep Warning: | while read LINE

do

if (echo $LINE | grep ‘is down’) > /dev/null

then

enable $(echo $LINE | awk ‘{print $3}’)

fi

if (echo $LINE | grep ‘queue is turned off’) >/dev/null

then

accept $(echo $LINE | awk ‘{print $3}’)

fi

done

Listing 16.7 print_UP_HP-UX.ksh shell script listing.

416 Chapter 16

I want to point out a nice little trick in the shell script in Listing 16.7. In both of the
if..then..fi statements, notice that we execute a command inside parentheses. What this
technique allows us to do is execute a command in a sub-shell and use the command’s
resulting return code directly in the if..then..fi structure. We really could not care less
about seeing the line that we are grepping on; however, if the return code from the
command is zero, then the pattern is present.

In the first half of the script in Listing 16.7 we check the status of printing. If a printer
is found to be disabled, then we use command substitution to produce the printer
name for the enable command. Likewise, we check for the status of queuing in the sec-
ond half of the script. Again, using command substitution we have the queue name to
provide as a parameter to the accept command. Notice that I added the redirection to
the bit bucket, specified by >/dev/null, after the command in the if statement. I add
this redirection to /dev/null to suppress the output of the grep statement.

That is it for HP-UX printing. HP did a good job of keeping everything pretty
straightforward in the printing arena.

Linux Print Control Commands
Linux uses the System V lpc (line printer control) command to control the printers and
print queues, as most System V Unix does. The nice thing about this print service is
that you can control the queues and the printers independently. The main commands
that we are interested in for Linux queuing and printing include the options to the lpc
command listed in Table 16.3.

As you can see in Table 16.3, the granularity of printer control is excellent, which
gives up several options when creating shell scripts. To control all of the printing and
queuing at one time you really do not need a shell script. The following two commands
can start and stop all printing and queuing on all print queues at the same time.

lpc down all # Disable all printing and queuing

lpc up all # Enable all printing and queuing

Table 16.3 Linux lpc Command Options

LPC COMMAND COMMAND RESULT

disable (printer[@host] | all) Disables queuing

stop (printer[@host] | all) Disables printing

down (printer[@host] | all) Disables printing and queuing

enable (printer[@host] | all) Enables queuing

start (printer[@host] | all) Enables printing

up (printer[@host] | all) Enables printing and queuing

Print Queue Hell: Keeping the Printers Printing 417

Free & Share & Open

To keep all of the printers printing and queuing you need just the lpc up all com-
mand entered into a cron table. I placed an entry in my root cron table to execute this
command every 10 minutes. My cron table entry is shown here:

5,15,25,35,45,55 * * * * /usr/sbin/lpc up all >/dev/null 2>&1

This cron table entry enables all printing and queuing on all printers on the 5s,
24 hours a day, 7 days a week.

If you do want a little more control and if you keep a log of what is going on on a per
queue/printer basis, then we have to do a little scripting. The script that follows
searches all of the queues and reports on the individual status of printing and queuing
and then enables each one independently.

For this script we are going to use arrays to load the variables on each loop iteration.
Array can be created and elements assigned values in two ways. The first technique is
to use set -A to define the array and all of its elements. For example, if I want an array
called QUEUE to contain the values for printing and queuing for a specified queue, I can
set it up this way:

PQueue=yogi_hp4

Print_val=enabled

Queue_val=disabled

set -A QUEUE $PQueue $Print_val $Queue_val

We could have assigned the values directly in the set -A statement, but this time we
used variables for the assignments. This statement defines an array named QUEUE that
contains three array elements. The elements loaded into the array are the values that
the variables $PQueue, $Print_val, and $Queue_val point to. For example, we
assigned PQueue the value yogi_hp4, Print_val is assigned the value enabled,
and Queue_val is assigned the value disabled. The result is that the first array ele-
ment, 0 (zero) contains the value yogi_hp4, the second array element, 1 (one), has the
value enabled, and the third array element, 2, contains the value disabled, which is
what the $Queue_val variable points to. Using this technique requires that you access
the array elements starting with 0, zero.

To address the array elements you use the following syntax:

${QUEUE[0]} # Points to value assigned to the first array element,

yogi_hp4

${QUEUE[1]} # Points to value assigned to the second array element,

enabled

${QUEUE[2]} # Points to the value assigned to the third array element,

disabled

To address all of the array’s elements at the same time use the following syntax:

print “${QUEUE[*]}”

----OR----

418 Chapter 16

print “${QUEUE[@]}”

yogi_hp4 enabled disabled

Now, before I lose you, let’s take a look at a more intuitive way of working with
arrays and array elements. Instead of using the set -A command to define and load an
array, we can define an array and load its elements at the same time using the follow-
ing syntax:

QUEUE[1]=yogi_hp4

QUEUE[2]=enabled

QUEUE[3]=disabled

Notice that the first array element is now referenced by 1, one. These commands cre-
ate an array named QUEUE and load the first three array elements, referenced by 1, 2,
and 3, into array QUEUE. Now you can use the array directly in a command statement
by pointing to the array element that you want to use. For example, if I want to print
the printing status of the yogi_hp4 print queue, I use the following syntax:

echo “\nPrinter ${QUEUE[1]} has print status ${QUEUE[2]}\n”

The previous command produces the following output:

Printer yogi_hp4 has print status enabled

Now that we have seen the basics of working with arrays, let’s look at a shell script
to handle keeping the printing and queuing enabled on all of the printers individually.
The first step is to load an array in a while loop. This is a little different from what we
did before with arrays. In this case I want to use the lpc status all command to find
printers that have either printing or queuing disabled. The output of the lpc status all
command is shown below.

lpc status all

Printer Printing Spooling Jobs Server Subserver Redirect

Status/(Debug)

hp4@localhost enabled disabled 0 none none

This is an easy output to deal with because all of the data for each queue is on a sin-
gle line. The output that we are interested in is the printer name, the printing status,
and the spooling status—the first three fields on the second line. We are not interested
in the first line at all so we can get rid of it with a pipe to the tail command. When we
add to our command we get the following output:

lpc status all | tail +2

yogi_hp4@localhost enabled disabled 0 none none

I currently have only one printer defined on this system, so the output is the status
of a single printer. Now we want to load the first three fields into an array using a

Print Queue Hell: Keeping the Printers Printing 419

Free & Share & Open

while loop. Look at the next command line to see how we are directly loading an array
called pqstat with array elements of the first three fields on each line.

lpc status all | tail +2 | while read pqstat[1] pqstat[2] pqstat[3] junk

Because I want just the first three fields in the output, notice that the fourth variable
in the read part of the while statement is junk. The junk variable is a catch-all vari-
able to capture any remaining strings on the line of output in a single variable. It is a
requirement that you take care of this remaining text because if you neglect adding a
variable to catch any remaining characters on the line, you will read the characters in
as strings on the next loop iteration! This type of error produces some strange output
that is hard to find and troubleshoot.

Notice that in the output of the lpc status all command the printer has queuing dis-
abled, which is the third field. The easiest way to handle the two status fields is to use
two case statements, with each tagging on a separate field. Look at the full script code
in Listing 16.8, and we will cover the technique at the end.

#!/bin/ksh

#

SCRIPT: print_UP_Linux.ksh

#

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: 1.1.P

#

PLATFORM: Linux Only

#

PURPOSE: This script is used to enable printing and queuing separately

on each print queue on a Linux system. Logging can be

enabled.

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

###

Initial Variables Here

###

LOGILE=/usr/local/log/PQlog.log

[-f $LOGFILE] || echo /dev/null > $LOGFILE

###

lpc status | tail +2 | while read pqstat[1] pqstat[2] pqstat[3] junk

Listing 16.8 print_UP_Linux.ksh shell script listing.

420 Chapter 16

do

First check the status of printing for each printer

case ${pqstat[2]} in

disabled)

Printing is disabled - print status and restart printing

echo “${pqstat[1]} Printing is ${pqstat[2]}” \

| tee -a$LOGFILE

lpc start ${pqstat[1]} | tee -a $LOGFILE

(($? == 0)) && echo “${pqstat[1]} Printing Restarted” \

| tee -a $LOGFILE

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

Next check the status of queueing for each printer

case ${pqstat[3]} in

disabled)

echo “${pqstat[1]} Queueing is ${pqstat[3]}” \

| tee -a $LOGFILE

lpc enable ${pqstat[1]} | tee -a $LOGFILE

(($? == 0)) && echo “${pqstat[1]} Printing Restarted” \

| tee -a $LOGFILE

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

done

Listing 16.8 print_UP_Linux.ksh shell script listing. (continued)

We start off this script in Listing 16.8 by defining the $LOGFILE. Notice that the fol-
lowing command, after the log file definition, checks to see if the log file exists. If the
$LOGFILE does not exist, then the result of the test is a nonzero return code. We use a
logical OR, specified by the double pipes, ||, to execute the succeeding command to
create a zero length $LOGFILE because it does not exist if the return code of the test is
nonzero.

Next, we start our while loop to load the pqstat array on each loop iteration,
which in our case is a single loop iteration for a single printer. This means that we load
a one-dimensional array with new data on each loop iteration (one-dimensional arrays
are all that the Korn shell can use). Again, notice the junk variable that is added as the
last variable in the while loop statement. This extra variable is required to catch the
remaining text in a single variable.

With the array loaded we proceed with two case statements to test for the status of
printing and queuing on each print queue. Notice that we use the array element
directly in the case statement, as shown here:

case ${pqstat[2]} in

Print Queue Hell: Keeping the Printers Printing 421

Free & Share & Open

We use the same technique with the print queuing array element in a separate case
statement. We have only two possible results for the array elements, enabled and
disabled. The only result we are concerned about is any disabled value. If we
receive any disabled values we attempt to reenable the printing or queuing on the
printer. Notice that the second option in both case statements includes enabled and
anything else, specified by the wildcard, *, as shown here:

enabled|*)

We could have just used the wildcard to cover everything, but it is clearer to the
reader of the script to see actual expected results in a case statement than just a catchall
asterisk.

When a reenabling task is completed successfully, notice the use of the logical AND
to test the return code and give notification on a zero return code value, as shown here:

(($? == 0)) && echo “${pqstat[1]} Printing Restarted”

The second part of the command will execute only if the test for a zero return code
is true. Otherwise, the system will report an error, so there is no need for us to add any
failure notification.

To see everything that is happening on the screen and to log everything at the same
time we use the tee -a command. This command works with a pipe and prints all of the
output to the screen; at the same time it sends the exact same output to the file speci-
fied after tee -a. An example is shown here.

lpc start ${pqstat[1]} | tee -a $LOGFILE

The previous command attempts to restart printing on the print queue specified by
the array element pqstat[1] and sends any resulting output to the screen and to the
$LOGFILE simultaneously.

Controlling Queuing and Printing Individually

Depending on the situation, you may not always want to enable printing and queuing
at the same time. We can break up the shell script in Listing 16.8 and pull out the indi-
vidual case statements to start either printing or queuing. Because printing is con-
trolled by array element 2 we can extract the first case statement to create a new shell
script. Let’s call this shell script printing_only_UP_Linux.ksh. You can see the
modifications in Listing 16.9.

#!/bin/ksh

#

SCRIPT: printing_only_UP_Linux.ksh

#

Listing 16.9 printing_only_UP_Linux.ksh shell script listing.

422 Chapter 16

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: 1.1.P

#

PLATFORM: Linux Only

#

PURPOSE: This script is used to enable printing on each printer

on a Linux system. Logging is enabled.

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

###

Initial Variables Here

###

LOGILE=/usr/local/log/PQlog.log

[-f $LOGFILE] || echo /dev/null > $LOGFILE

###

lpc status | tail +2 | while read pqstat[1] pqstat[2] pqstat[3] junk

do

Check the status of printing for each printer

case ${pqstat[2]} in

disabled)

Printing is disabled - print status and restart

printing

echo “${pqstat[1]} Printing is ${pqstat[2]}” \

| tee -a$LOGFILE

lpc start ${pqstat[1]} | tee -a $LOGFILE

(($? == 0)) && echo “${pqstat[1]} Printing Restarted” \

| tee -a $LOGFILE

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

done

Listing 16.9 printing_only_UP_Linux.ksh shell script listing. (continued)

Notice that the only thing that was changed is that the second case statement struc-
ture was removed from the script and the name was changed. We can do the same
thing to create a shell script that only enables queuing, as shown in Listing 16.10.

Print Queue Hell: Keeping the Printers Printing 423

Free & Share & Open

#!/bin/ksh

#

SCRIPT: queuing_only_UP_Linux.ksh

#

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: 1.1.P

#

PLATFORM: Linux Only

#

PURPOSE: This script is used to enable printing and queuing separately

on each print queue on a Linux system. Logging can be

enabled.

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

###

Initial Variables Here

###

LOGILE=/usr/local/log/PQlog.log

[-f $LOGFILE] || echo /dev/null > $LOGFILE

###

lpc status | tail +2 | while read pqstat[1] pqstat[2] pqstat[3] junk

do

check the status of queueing for each printer

case ${pqstat[3]} in

disabled)

echo “${pqstat[1]} Queueing is ${pqstat[3]}” \

| tee -a $LOGFILE

lpc enable ${pqstat[1]} | tee -a $LOGFILE

(($? == 0)) && echo “${pqstat[1]} Printing Restarted” \

| tee -a $LOGFILE

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

done

Listing 16.10 queuing_only_UP_Linux.ksh shell script listing.

Notice that the only thing that was changed this time is the first case statement
structure was removed from the script and the name of the shell script was changed.

424 Chapter 16

You could also modify the shell script in Listing 16.8 to add a command-line parame-
ter to let you control queuing and printing individually from the same shell script. I am
going to leave this as an exercise for you to complete.

As a hint for this exercise: Expect only zero or one command-line parameters. If $#
is equal to zero, then enable both queuing and printing. If there is one parameter and
the value of $1 is “all”, then enable both printing and queuing. If the $1 parameter is
equal to “printing”, then enable only printing. If $1 is equal to “queuing”, then enable
only queuing. You need to add a usage function to show how to use the shell script if
the given value does not match what you are expecting.

Arrays are good to use in a lot of situations where you want to address certain out-
put fields directly and randomly. All Korn shell arrays are one-dimensional arrays, but
using the array in a loop gives the appearance of a two-dimensional array.

Solaris Print Control Commands
Solaris uses the System V lpc (line printer control) command to control the printers and
print queues, as most System V Unix does. The nice thing about this print service is
that you can control the queues and the printers independently. The main commands
that we are interested in for Solaris queuing and printing include the following options
and parameters to the lpc command, as shown in Table 16.4.

As you can see in Table 16.4, the granularity of printer control is excellent, which
gives several options when creating shell scripts. To control all of the printing and
queuing at one time you really do not need a shell script. The following two commands
can start and stop all printing and queuing on all print queues at the same time.

lpc down all # Disable all printing and queuing

lpc up all # Enable all printing and queuing

To keep all of the printers printing and queuing you need only the lpc up all com-
mand entered into a cron table. I placed an entry in my root cron table to execute this
command every 10 minutes. My cron table entry is shown here:

5,15,25,35,45,55 * * * * /usr/sbin/lpc up all >/dev/null 2>&1

Table 16.4 Solaris lpc Command Options

LPC COMMAND COMMAND RESULT

disable (printer[@host] | all) Disables queuing

stop (printer[@host] | all) Disables printing

down (printer[@host] | all) Disables printing and queuing

enable (printer[@host] | all) Enables queuing

start (printer[@host] | all) Enables printing

up (printer[@host] | all) Enables printing and queuing

Print Queue Hell: Keeping the Printers Printing 425

Free & Share & Open

This cron table entry enables all printing and queuing on all printers on the 5s, 24
hours a day, 7 days a week.

We have a nice situation here because we can use the same shell script that we used
for the AIX System V printing on Solaris. Unlike Linux, where all of the data that we
want is on a single line of output, with Solaris and AIX System V printing, the data we
are interested in is separated on three lines of output. You can see the difference in the
output here.

AIX SYSTEM V OUTPUT

lpc status all

hp4V:

queueing is enabled

printing is disabled

5 entries in spool area

LINUX SYSTEM V OUTPUT

lpc status

Printer Printing Spooling Jobs Server Subserver Redirect

Status/(Debug)

hp4@localhost enabled disabled 0 none none

SOLARIS SYSTEM V OUTPUT

lpc status all

bambam_hp4:

queueing is enabled

printing is enabled

no entries

Of these three outputs, Linux is the one that differs. With the data we are interested
in for Solaris residing on three separate lines for each print queue, we need a different
strategy to get the exact data the we want. First notice that the beginning of the stanza
for the queue name there is a colon, :, appended to the name of the queue. Because this
character occurs only in the queue name, we can use the colon character as a tag for a
grep statement. Following the queue name entry the next two lines contain the data
pertaining to the status of the queuing and printing.

Because we have some unique tag for each entry, it is easy to extract the lines of
data that we are interested in by using an extended grep, or egrep, statement, as shown
here:

lpc status all | egrep ‘:|printing|queueing’ | while read LINE

The egrep command works the same way as the grep command except that you can
specify multiple patterns to match. Each pattern is separated by a pipe without any

426 Chapter 16

spaces! If you add spaces on either side of the search pattern the egrep statement will
fail to make a match. The entire list of patterns is then enclosed within single forward
tic marks, ’pattern1|pattern2|pattern3’. The output produced has the queue
name on the first line, the printing status on the second line, and the queuing status on
the third line.

The last part of the previous command is where the output is piped to a while loop.
On each read, the entire line of data is loaded into the variable LINE. Inside of the
while loop we use the following case statement to assign the data to the appropriate
variable.

case $LINE in

*:) Q=$(echo $LINE | cut -d ‘:’ -f1)

;;

printing*)

PSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

queueing*)

QSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

esac

Notice that if $LINE begins with *: then we load the Q variable. If $LINE begins
with printing* we load the PSTATUS variable with the third field, which should be
either enabled or disabled. We do the same thing in loading the QSTATUS variable
with the third field of the value that the $LINE variable points to.

The trick in this script is how to load and process three lines of data and then load
and process three more lines of data, and so on. The most intuitive approach is to have
a loop counter. Each time the loop counter reaches three we process the data and reset
the loop counter back to zero. Take a look at the entire script in Listing 16.11 to see how
this loop count works. Pay close attention to the bold type.

#!/bin/ksh

#

SCRIPT: print_UP_Solaris.ksh

#

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: 1.1.P

#

PLATFORM: Solaris Only

#

PURPOSE: This script is used to enable printing and queuing separately

on each print queue on Solaris systems.

#

REV LIST:

Listing 16.11 print_UP_SUN.ksh shell script listing. (continues)

Print Queue Hell: Keeping the Printers Printing 427

Free & Share & Open

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

###

LOOP=0 # Loop Counter - To grab three lines at a time

lpc status all | egrep ‘:|printing|queueing’ | while read LINE

do

Load three unique lines at a time

case $LINE in

*:) Q=$(echo $LINE | cut -d ‘:’ -f1)

;;

printing*)

PSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

queueing*)

QSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

esac

Increment the LOOP counter

((LOOP = LOOP + 1))

if ((LOOP == 3)) # Do we have all three lines of data?

then

Check printing status

case $PSTATUS in

disabled) lpc start $Q >/dev/null

(($? == 0)) && echo “\n$Q printing re-started\n”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

Check queuing status

case $QSTATUS in

disabled) lpc enable $Q >/dev/null

(($? == 0)) && echo “\n$Q queueing re-enabled\n”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

LOOP=0 # Reset the loop counter to zero

fi

done

Listing 16.11 print_UP_SUN.ksh shell script listing. (continued)

428 Chapter 16

Table 16.5 System V lpstat Command Options

COMMAND DESCRIPTION

lpstat -a Show status of queuing on all printers

lpstat -p Show status of printing on all printers

Within this while loop we are grabbing three lines of data at a time to process. I say
that we are grabbing three lines at a time in Listing 16.11 because I use the case state-
ment to specify unique tags for each line of data. I know that the queue name will have
a colon, :, as a suffix. I know that the printing status line will begin with printing*,
and I know that the queuing line will begin with queueing*. We load only one vari-
able on each loop iteration, though. To get three pieces of data (queue name, printing
status, and queuing status), we need to go through the while loop three times for each
printer queue. Once we pass the initial case statement we increment the LOOP counter
by one. If the $LOOP variable is equal to 3, then we have all data that we need to
process a single printer queue. After processing the data for this printer queue we reset
the LOOP variable to zero, 0, and start gathering data for the next printer queue.

Sounds simple enough? This same technique works for any fixed set of lines of data
in command output or in a file. The only changes that are needed to use this method
include creating unique tags for the data you are interested in and setting the $LOOP
equality statement to reflect the number of lines that are in each set of data.

More System V Printer Commands

We have been looking only at the lpc command thus far. We also need to look at two
command parameters to the lpstat command in this section. The -a parameter lists the
status of queuing, and the -p command parameter lists the status of printing. The nice
thing about these two command options is that the output for each queue is on a sin-
gle line, which makes the data easier to parse through. The lpstat command options are
shown in Table 16.5.

Other than having to query the printer subsystem twice, having to use separate
commands for monitoring printing and queuing is not so bad. The separation is built
in because the -a and -p command parameters are mutually exclusive, which means
that you cannot use -a and -p at the same time. Output from each command option is
shown here:

lpstat -a

hp4 accepting requests since May 07 07:02 2002

yogi_hp4_1ps accepting requests since May 07 07:02 2002

Listing 16.12 lpstat -a and lpstat -p command output. (continues)

Print Queue Hell: Keeping the Printers Printing 429

Free & Share & Open

long_queue not accepting requests since Tue May 7 07:02:23 EDT 2002 -

s_q_nam not accepting requests since Tue May 7 07:02:23 EDT 2002 -

lpstat -p

printer long_queue disabled since Tue May 7 07:02:01 EDT 2002.

available.

stopped by user

printer s_q_nam disabled since Tue May 7 07:02:01 EDT 2002. available.

stopped by user

printer hp4 unknown state. enabled since May 07 07:30 2002. available.

printer yogi_hp4_1ps unknown state. enabled since May 07 07:30 2002.

available.

Listing 16.12 lpstat -a and lpstat -p command output. (continued)

Notice in Listing 16.12 that the output from each command option has a unique set
of status information for each printer on each line of output. We want to use the
uniqueness of the status information as tags in a grep statement. The terms make
sense, too. A queue is either accepting new requests or not accepting new requests, and a
printer is either enabled for printing or disabled from printing. Because we are interested
in only the disabled and not accepting states, we can create a simple script or a one-
liner.

We need to know two things to enable printing and to bring up a print queue to
accept new requests, the printer/queue name and the state of the queue or printer. The
first step is to grep out the lines of output that contain our tag. The second step is to
extract the printer/queue name from each line of output. Let’s first look at using a
while loop to bring everything up, as shown in Listing 16.13.

lpstat -a | grep ‘not accepting’ | while read LINE

do

Q=$(echo $LINE | awk ‘{print $1}’)

lpc enable $Q

done

lpstat -p | grep disabled | while LINE

do

P=$(echo $LINE | awk ‘{print $2}’)

lpc start $P

done

Listing 16.13 Scripting the lpstat command using -a and -p.

430 Chapter 16

Notice in Listing 16.13 that we have to work on the print queues and printers sepa-
rately, by using two separate loops. In the first while loop all of the queuing is started.
In the second loop we enable printing for each of the printers. The down side to this
method is where you have hundreds of printers. The time it takes to scan through all
of the printers once and then rescan the printer service can be quite long. Of course, if
you have hundreds of printers, you should use lpc up all to bring everything up at
once.

As I said before, we can also make a one-liner out of the two loops in Listing 16.13.
We can combine the grep and awk commands on the same line and use command sub-
stitution to execute the lpc command. The following two commands replace the two
while loops.

lpc enable $(lpstat -a | grep ‘not accepting’ | awk ‘{print $1}’)

lpc start $(lpstat -p | grep disabled | awk ‘{print $2}’)

The first command enables queuing, and the second command starts printing. The
command substitution, specified by the $(command) notation, executes the appropri-
ate lpstat command, then greps on the tag and extracts the printer/queue name. The
resulting output is used as the parameter to the lpc commands.

Putting It All Together

Now we need to combine the shell scripts for each of the different Unix flavors so that
one script does it all. Please do not think that taking several shell scripts, making func-
tions out of them, and combining the new functions into a new script are difficult tasks.
To make one script out of this chapter we are going to take the best of our scripts and
extract the code. For each shell script we make a new function, which requires only the
word function, a function name, and the code block surrounded by curly braces,
function function_name { code stuff here }. Let’s take a look at the entire
combined shell script in Listing 16.14 and cover the functions at the end.

#!/bin/ksh

#

SCRIPT: PQ_all_in_one.ksh

#

AUTHOR: Randy Michael

DATE: 03/14/2002

REV: 1.1.P

#

PLATFORM: AIX, HP-UX, Linux and Solaris

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continues)

Print Queue Hell: Keeping the Printers Printing 431

Free & Share & Open

#

PURPOSE: This script is used to enable printing and queuing on

AIX, HP-UX, Linux and Solaris

#

REV LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

###

############### DEFINE FUNCTIONS HERE #################

function AIX_classic_printing

{

for Q in $(enq -AW | tail +3 | grep DOWN | awk ‘{print $1}’)

do

enable $Q

(($? == 0)) || echo “\n$Q print queue FAILED to enable.\n”

done

}

###

function AIX_SYSV_printing

{

LOOP=0 # Loop Counter - To grab three lines at a time

lpc status all | egrep ‘:|printing|queueing’ | while read LINE

do

Load three unique lines at a time

case $LINE in

*:) Q=$(echo $LINE | cut -d ‘:’ -f1)

;;

printing*)

PSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

queueing*)

QSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

esac

Increment the LOOP counter

((LOOP = LOOP + 1))

if ((LOOP == 3)) # Do we have all three lines of data?

then

Check printing status

case $PSTATUS in

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continued)

432 Chapter 16

disabled) lpc start $Q >/dev/null

(($? == 0)) && echo “\n$Q printing re-started\n”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

Check queuing status

case $QSTATUS in

disabled) lpc enable $Q >/dev/null

(($? == 0)) && echo “\n$Q queueing re-enabled\n”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

LOOP=0 # Reset the loop counter to zero

fi

done

}

###

function HP_UX_printing

{

lpstat | grep Warning: | while read LINE

do

if (echo $LINE | grep ‘is down’) > /dev/null

then

enable $(echo $LINE | awk ‘{print $3}’)

fi

if (echo $LINE | grep ‘queue is turned off’) >/dev/null

then

accept $(echo $LINE | awk ‘{print $3}’)

fi

done

}

###

function Linux_printing

{

lpc status | tail +2 | while read pqstat[1] pqstat[2] pqstat[3] junk

do

First check the status of printing for each printer

case ${pqstat[2]} in

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continues)

Print Queue Hell: Keeping the Printers Printing 433

Free & Share & Open

disabled)

Printing is disabled - print status and restart

printing

echo “${pqstat[1]} Printing is ${pqstat[2]}”

lpc start ${pqstat[1]}

(($? == 0)) && echo “${pqstat[1]} Printing Restarted”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

Next check the status of queueing for each printer

case ${pqstat[3]} in

disabled)

echo “${pqstat[1]} Queueing is ${pqstat[3]}”

lpc enable ${pqstat[1]}

(($? == 0)) && echo “${pqstat[1]} Printing Restarted”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

done

}

###

function Solaris_printing

{

LOOP=0 # Loop Counter - To grab three lines at a time

lpc status all | egrep ‘:|printing|queueing’ | while read LINE

do

Load three unique lines at a time

case $LINE in

*:) Q=$(echo $LINE | cut -d ‘:’ -f1)

;;

printing*)

PSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

queueing*)

QSTATUS=$(echo $LINE | awk ‘{print $3}’)

;;

esac

Increment the LOOP counter

((LOOP = LOOP + 1))

if ((LOOP == 3)) # Do we have all three lines of data?

then

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continued)

434 Chapter 16

Check printing status

case $PSTATUS in

disabled) lpc start $Q >/dev/null

(($? == 0)) && echo “\n$Q printing re-started\n”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

Check queuing status

case $QSTATUS in

disabled) lpc enable $Q >/dev/null

(($? == 0)) && echo “\n$Q queueing re-enabled\n”

;;

enabled|*) : # No-Op - Do Nothing

;;

esac

LOOP=0 # Reset the loop counter to zero

fi

done

}

###

############### BEGINNING OF MAIN #####################

###

What OS are we running?

To start with we need to know the Unix flavor.

This case statement runs the uname command to

determine the OS name. Different functions are

used for each OS to restart printing and queuing.

case $(uname) in

AIX) # AIX okay...Which printer subsystem?

Starting with AIX 5L we support System V printing also!

Check for an active qdaemon using the SRC lssrc command

if (ps -ef | grep ‘/usr/sbin/qdaemon’ | grep -v grep) \

>/dev/null 2>&1

then

Standard AIX printer subsystem found

AIX_PSS=CLASSIC

elif (ps -ef | grep ‘/usr/lib/lp/lpsched’ | grep -v grep) \

>/dev/null 2>&1

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continues)

Print Queue Hell: Keeping the Printers Printing 435

Free & Share & Open

then

AIX System V printer service is running

AIX_PSS=SYSTEMV

fi

Call the correct function for Classic AIX or SysV printing

case $AIX_PSS in

CLASSIC) # Call the classic AIX printing function

AIX_classic_printing

;;

SYSTEMV) # Call the AIX SysV printing function

AIX_SYSV_printing

;;

esac

;;

HP-UX) # Call the HP-UX printing function

HP_UX_printing

;;

Linux) # Call the Linux printing function

Linux_printing

;;

SunOS) # Call the Solaris printing function

Solaris_printing

;;

*) # Anything else is unsupported.

echo “\nERROR: Unsupported Operating System: $(uname)\n”

echo “\n\t\t...EXITING...\n”

;;

esac

Listing 16.14 PQ_all_in_one.ksh shell script listing. (continued)

For each of the operating systems and, in the case of AIX, each printer service we
took the previously created shell scripts, extracted the code, and placed it between
function function_name { and the function ending character }. We now have the
following functions:

AIX_classic_printing

AIX_SYSV_printing

HP_UX_printing

Linux_printing

Solaris_printing

436 Chapter 16

To execute the correct function for a specific operating system, we need to know the
Unix flavor. The uname command returns the following output for each of our target
operating systems:

OS uname Output

AIX AIX

HP-UX HP-UX

Linux Linux

Solaris SunOS

With the exception of AIX, this information is all that is needed to execute the cor-
rect function. But with AIX we have to determine which printer service is running on
the server. Both types of print services have a process controlling them so we can grep
for each of the processes using the ps -ef command to find the currently running
printer service. When the classic AIX printer subsystem is running, there is a /usr/
sbin/qdaemon process running. When the System V printer service is running, there
is a /usr/lib/lp/lpsched process running. With this information we have every-
thing needed to make a decision on the correct function to run.

We added at the end of the script all of the function execution control in the case
statement that is shown in Listing 16.15.

case $(uname) in

AIX) # AIX okay...Which printer subsystem?

Starting with AIX 5L we support System V printing also!

Check for an active qdaemon using the SRC lssrc command

if (ps -ef | grep ‘/usr/sbin/qdaemon’ | grep -v grep) \

>/dev/null 2>&1

then

Standard AIX printer subsystem found

AIX_PSS=CLASSIC

elif (ps -ef | grep ‘/usr/lib/lp/lpsched’ | grep -v grep) \

>/dev/null 2>&1

then

AIX System V printer service is running

AIX_PSS=SYSTEMV

fi

Call the correct function for Classic AIX or SysV printing

case $AIX_PSS in

CLASSIC) # Call the classic AIX printing function

AIX_classic_printing

;;

Listing 16.15 Controlling case statement listing to pick the OS. (continues)

Print Queue Hell: Keeping the Printers Printing 437

Free & Share & Open

SYSTEMV) # Call the AIX SysV printing function

AIX_SYSV_printing

;;

esac

;;

HP-UX) # Call the HP-UX printing function

HP_UX_printing

;;

Linux) # Call the Linux printing function

Linux_printing

;;

SunOS) # Call the Solaris printing function

Solaris_printing

;;

*) # Anything else is unsupported.

echo “\nERROR: Unsupported Operating System: $(uname)\n”

echo “\n\t\t...EXITING...\n”

;;

esac

Listing 16.15 Controlling case statement listing to pick the OS. (continued)

I hope by now that the code in the case statement is intuitively obvious to read and
understand. If not, the first line of the case block of code is the uname command. At
this point we know what the OS flavor is. For HP-UX, Linux, and Solaris we execute
the target OS printing function. For AIX we make an additional test to figure out which
one of the supported printing services is running. The two options are System V and
the Classic AIX printer subsystem.

Notice that I removed all of the logging functionality from the functions. With this
type of setup, where you have the functions doing the work, you can move the logging
out to the main body of the shell script. This means that you can capture all of the out-
put data of the function to save to a log file, use the tee command to view the data
while logging at the same time, or just point it to the bit bucket by redirection to
/dev/null.

Other Options to Consider

As usual, we can always improve on a shell script, and these shell scripts are no excep-
tion. Some options that you may want to consider are listed next.

438 Chapter 16

Logging
You may want to add logging with date/time stamps. If you are having a lot of trouble
keeping certain print queues up, studying the log may give you a trend that can help
you find the cause of the problem. Some queues may drop in a particular location more
than others. This can indicate network problems to the site. Any time you start logging
do not forget to keep an eye on the log files! I often see that a script is added to a pro-
duction machine, and the next thing you know, the log file has grown so large that it
has filled up the filesystem. Don’t forget to prune the log files. Trimming the log files is
another little shell script for you to write.

Exceptions Capability
In a lot of shops you do not want to enable every single printer and print queue. In this
case you can create an exceptions file, which contains the queue/printer names that you
want to exclude from enabling. You also may have special considerations if your shop
uses specific forms at different times on some of the floating printers. Some shops are
just print queue hell! Having the capability to keep the majority of the printers active
all of the time and exclude a few is a nice thing to have.

Maintenance
During maintenance windows and other times when you want to stop all printing, you
may want to comment out any cron table entries that are executing the enabling
scripts. You usually find this out after the fact.

Scheduling
I keep a script running 24 × 7 to keep all of the printers available. You may want to tai-
lor the monitoring scheduling to fit business hours (my requirement is 24 × 7). Users’
loading up on print jobs during the middle of the day is always a problem, so we try to
hold big jobs for times of low activity. Low activity times are the times when you want
to be at home so make sure you are keeping the printers printing during these hours,
or the next morning you will have the same problem.

Summary

In this chapter we covered some unique techniques to handle the data from command
output. In the Linux script we used arrays to hold the data as array elements. In other
cases we read in a line at a time and used tags to grab the data we needed. We learned
how to process a specific number of lines of data in groups by using a loop counter
within a while loop.

Print Queue Hell: Keeping the Printers Printing 439

Free & Share & Open

The techniques in this chapter are varied, but the solutions are readable and can be
easily maintained. Someone will follow in your footsteps and try to figure out what
you did when you wrote the shell script. Do not play the “job security” game because
you are you own worst enemy when it comes to documenting your shell scripts. If you
comment when you write the script and make a note in the REV section when you edit
it, you will have a long, happy life using your shell script.

In the next chapter we are going to move into the world of FTP. The object of the
next chapter is to automate file transfers between systems using FTP, or file transfer
protocol.

440 Chapter 16

441

In many shops the business relies on nightly, or even hourly, file transfers of data that
is to be processed. Due to the importance of this data, the data movement must be
automated. The extent of automation in the ftp world is threefold. We want the ability
to move outbound files to another site, move inbound files from a remote location to
your local machine, and check a remote site on a regular basis for files that are ready to
download. In this chapter we are going to create some shell scripts to handle each of
these scenarios.

Most businesses that rely on this type of data movement also require some pre-ftp
and post-ftp processing to ready the system for the files before the transfer takes place
and to verify the data integrity or file permissions after the transfer. For this pre and
post processing we need to build into the shell script the ability to either hard-code the
pre and post processing events or point to a file that performs these tasks. Now we are
up to five pieces of code that we need to create. Before we go any further let’s look at
the syntax for the ftp connections.

Syntax

Normally when we ftp a file, the remote machine’s hostname is included as an argu-
ment to the ftp command. We are prompted for the password and, if it is entered cor-
rectly, we are logged into the remote machine. We then can move to the local directory

Automated FTP Stuff

C H A P T E R

17

Free & Share & Open

containing the file we want to upload, then to the directory that is to receive the upload
from our local machine. In either case we are working with an interactive program. A
typical ftp session looks like the output shown in Listing 17.1.

[root:yogi]@/# cd /scripts/download

[root:yogi]@/scripts/download# ftp wilma

Connected to wilma.

220 wilma FTP server (SunOS 5.8) ready.

Name (wilma:root): randy

331 Password required for randy.

Password:

230 User randy logged in.

ftp> cd /scripts

250 CWD command successful.

ftp> get auto_ftp_xfer.ksh

200 PORT command successful.

150 ASCII data connection for auto_ftp_xfer.ksh (10.10.10.1,32787) (227

bytes).

226 ASCII Transfer complete.

246 bytes received in 0.0229 seconds (10.49 Kbytes/s)

local: auto_ftp_xfer.ksh remote: auto_ftp_xfer.ksh

ftp> bye

221 Goodbye.

[root:yogi]@/scripts/download#

Listing 17.1 Typical FTP file download.

As you can see in Listing 17.1 the ftp command requires interaction with the user to
make the transfer of the file from the remote machine to the local machine. How do we
automate this interactive process? If you have been studying other chapters, then you
know the answer is a here document. A here document is a coding technique that allows
us to place all of the required interactive command input between two labels. Let’s look
at an example of coding a simple ftp transfer using this automation technique in List-
ing 17.2.

#!/bin/ksh

#

SCRIPT: tst_ftp.ksh

AUTHOR: Randy Michael

DATE: 6/12/2002

REV: 1.1.A

PLATOFRM: Not platform dependent

Listing 17.2 Simple here document for FTP transfer in a script.

442 Chapter 17

#

PURPOSE: This shell script is a simple demonstration of

using a here document in a shell script to automate

an FTP file transfer.

#

Connect to the remote machine and begin a here document.

ftp -i -v -n wilma <<END_FTP

user randy mypassword

binary

lcd /scripts/download

cd /scripts

get auto_ftp_xfer.ksh

bye

END_FTP

Listing 17.2 Simple here document for FTP transfer in a script. (continued)

Notice in Listing 17.2 where the beginning and ending labels are located. The first
label, <<END_FTP, begins the here document and is located just after the interactive
command that requires input, which is the ftp command in our case. Next comes all of
the input that a user would have to supply to the interactive command. In this exam-
ple we log in to the remote machine, wilma, using the user randy mypassword
syntax. This ftp command specifies that the user is randy and the password is
mypassword. Once the user is logged in, we set up the environment for the transfer
by setting the transfer mode to binary, locally changing directory to /scripts/
download, then changing directory on the remote machine to /scripts. The last step
is to get the auto_ftp_xfer.ksh file. To exit the ftp session we use bye; quit also
works. The last label, END_FTP, ends the here document, and the script exits.

Also notice the ftp command switches used in Listing 17.2. The -i command switch
turns off interactive prompting during multiple file transfers so there is no prompt for
the username and password. See the FTP man pages for prompt, mget, mput, and
mdelete subcommands for descriptions of prompting during multiple file transfers.
The -n switch prevents an automatic login on the initial connection. Otherwise, the ftp
command searches for a $HOME/.netrc entry that describes the login and initializa-
tion process for the remote host. See the user subcommand in the man page for ftp. The
-v switch was added to the ftp command to set verbose mode, which allows us to see
the commands as the ftp sessions runs. The tst_ftp.ksh shell script from Listing
17.2 is shown in action in Listing 17.3.

Automated FTP Stuff 443

Free & Share & Open

[root:yogi]@/scripts# ./tst_ftp.ksh

Connected to wilma.

220 wilma FTP server (SunOS 5.8) ready.

331 Password required for randy.

230 User randy logged in.

200 Type set to I.

Local directory now /scripts/download

250 CWD command successful.

200 PORT command successful.

150 Binary data connection for auto_ftp_xfer.ksh (10.10.10.1,32793)

(227 bytes).

226 Binary Transfer complete.

227 bytes received in 0.001092 seconds (203 Kbytes/s)

local: auto_ftp_xfer.ksh remote: auto_ftp_xfer.ksh

221 Goodbye.

[root:yogi]@/scripts#

Listing 17.3 Simple automated FTP file transfer using a script.

Using these techniques we are going to create shell scripts to tackle some of the com-
mon needs of a business that depends on either receiving data from or transferring
data to a remote host.

Automating File Transfers and
Remote Directory Listings

We have the basic idea of automating an ftp file transfer, but what do we want to
accomplish? We really want to do three things: download one or more files with get or
mget, upload one or more files with put or mput, and get a directory listing from a
remote host. The first two items are standard uses for any ftp script, but getting a
remote directory listing has not been explained in any of the documentation of a script-
ing technique that I have seen.

Additionally, we need to add the ability of pre-event and post-event processing. For
example, a pre-ftp event may be getting a directory listing from a remote host. A post-
ftp event may be changing the ownership and file permissions on a newly down-
loaded file. This last example brings up another point. When you ftp a file that has the
execute bit set, the file will be received with the execute bit unset. Any time you ftp a
file, the execution bit is stripped out of the file permissions.

Let’s look at these topics one at a time.

Using FTP for Directory Listings on a Remote Machine
To save a remote directory listing from a remote system to a local file, we use the ftp
subcommand nlist. The nlist subcommand has the following form:

444 Chapter 17

nlist [RemoteDirectory][LocalFile]

The nlist subcommand writes a listing of the contents of the specified remote
directory (RemoteDirectory) to the specified local file (LocalFile). If the
RemoteDirectory parameter is not specified, the nlist subcommand lists the con-
tents of the current remote directory. If the LocalFile parameter is not specified or is
a - (hyphen), the nlist subcommand displays the listing on the local terminal.

Let’s create a little shell script to test this idea. We can use most of the shell script
contents shown in Listing 17.2, but we remove the get command and replace it with the
nlist subcommand. Take a look at Listing 17.4.

#!/bin/ksh

#

SCRIPT: get_remote_dir_listing.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

REV: 1.1.P

#

PLATFORM: Not Platform Dependent

#

PURPOSE: This shell script uses FTP to get a remote directory listing

and save this list in a local file.

#

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

#

###

################## DEFINE VARIABLES HERE ##########################

###

RNODE=”wilma”

USER=”randy”

UPASSWD=”mypassword”

LOCALDIR=”/scripts/download”

REMOTEDIR=”/scripts”

DIRLISTFILE=”${LOCALDIR}/${RNODE}.$(basename ${REMOTEDIR}).dirlist.out”

cat /dev/null > $DIRLISTFILE

###

##################### BEGINNING OF MAIN ###########################

###

ftp -i -v -n $RNODE <<END_FTP

user $USER $UPASSWD

nlist $REMOTEDIR $DIRLISTFILE

bye

END_FTP

Listing 17.4 get_remote_dir_listing.ksh shell script listing.

Automated FTP Stuff 445

Free & Share & Open

There are several things to point out in Listing 17.4. We start out with a variable def-
inition section. In this section we define the remote node, the username and password
for the remote node, a local directory, a remote directory, and finally the local file that
is to hold the remote directory listing. Notice that we had to create this file. If the local
file does not already exist, then the remote listing to the local file will fail. To create the
file you can use either of the following techniques:

cat /dev/null > $DIRLISTFILE

>$DIRLISTFILE

touch $DIRLISTFILE

The first two examples create an empty file or will make an existing file empty. The
touch command will update the time stamp for the file modification for an existing file
and will create the file if it does not exist.

At the BEGINNING OF MAIN we have our five lines of code that obtain the direc-
tory listing from the remote node. We use the same technique as we did in Listing 17.2
except that we use variables for the remote node name, username, and password.
Variables are also used for the directory name on the remote machine and for the local
filename that holds the directory listing from the remote machine using the ftp sub-
command nlist.

Notice that the password is hard-coded into this shell script. This is a security night-
mare! In a later section in this chapter we will cover a technique of replacing hard-
coded passwords with hidden password variables.

Getting One or More Files from a Remote System
Now we get to some file transfers. Basically we are going to combine the shell scripts
in Listings 17.1 and 17.4. We are also going to add the functionality to add pre- and
post-ftp events. Let’s start by looking at the shell script in Listing 17.5, get_ftp_
files.ksh.

#!/bin/ksh

#

SCRIPT: get_ftp_files.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

REV: 1.1.P

#

PLATFORM: Not Platform Dependent

#

PURPOSE: This shell script uses FTP to get a list of one or more

remote files from a remote machine.

#

set -n # Uncomment to check the script syntax without any execution

Listing 17.5 get_ftp_files.ksh shell script listing.

446 Chapter 17

set -x # Uncomment to debug this shell script

#

###

################## DEFINE VARIABLES HERE ##########################

###

REMOTEFILES=$1

THISSCRIPT=$(basename $0)

RNODE=”wilma”

USER=”randy”

UPASSWD=”mypassword”

LOCALDIR=”/scripts/download”

REMOTEDIR=”/scripts”

###

################## DEFINE FUNCTIONS HERE ##########################

###

pre_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

: # no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

###

post_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

: # no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

###

usage ()

{

echo “\nUSAGE: $THISSCRIPT \”One or More Filenames to Download\” \n”

exit 1

Listing 17.5 get_ftp_files.ksh shell script listing. (continues)

Automated FTP Stuff 447

Free & Share & Open

}

###

usage_error ()

{

echo “\nERROR: This shell script requires a list of one or more

files to download from the remote site.\n”

usage

}

###

##################### BEGINNING OF MAIN ###########################

###

Test to ensure that the file(s) is/are specified in the $1

command-line argument.

(($# != 1)) && usage_error

pre_event

Connect to the remote site and begin the here document.

ftp -i -v -n $RNODE <<END_FTP

user $USER $UPASSWD

binary

lcd $LOCALDIR

cd $REMOTEDIR

mget $REMOTEFILES

bye

END_FTP

post_event

Listing 17.5 get_ftp_files.ksh shell script listing. (continued)

We made a few changes in Listing 17.5. The major change is that we get the list of
files to download from the $1 command-line argument. If more than one file is listed
on the command line, then they must be enclosed in quotes, “file1 file2 file3 filen”, so
they are interpreted as a single argument in the shell script. A blank space is assumed
when separating the filenames in the list.

448 Chapter 17

Notice that the local and remote directories are hard-coded into the shell script.
If you want, you can modify this shell script and use getopts to parse through some
command-line switches. This is beyond the basic concept of this chapter.

Because we are now requiring a single argument on the command line, we also need
to add a usage function to this shell script. We are looking for exactly one command-
line argument. If this is not the case, then we execute the usage_error function,
which in turn executes the usage function.

Because we may have more than one filename specified on the command line, we
need to use the ftp subcommand mget, as opposed to get. We have already turned off
interactive prompting by adding the -i switch to the ftp command so there will not be
any prompting when using mget.

Pre and Post Events

Notice in Listing 17.5 that we added two new functions, pre_event and
post_event. By default, both of these functions contain only the no-op character, :
(colon). A : does nothing but always has a return code of 0, zero. We are using this as
a placeholder to have something in the function.

If you have a desire to perform a task before or after the ftp activity, then enter the
tasks in the pre_event and/or the post_event functions. It is a good idea to enter
only a filename of an external shell script rather than editing this shell script and try-
ing to debug a function in an already working shell script. An external shell script file-
name, that is executable, is all that is needed to execute the pre and post events.

In the external shell script enter everything that needs to be done to set up the envi-
ronment for the ftp file transfers. Some things that you may want to do include remov-
ing the old files from a directory before downloading new files or getting a directory
listing of a remote host to see if there is anything to even download. You can make the
code as long or as short as needed to accomplish the task at hand.

Script in Action

To see the shell script in Listing 17.5 in action, look at Listing 17.6 where we are trans-
ferring the shell script to another host in the network.

[root:yogi]@/scripts# ./get_ftp_files.ksh get_ftp_files.ksh

Connected to wilma.

220 wilma FTP server (SunOS 5.8) ready.

331 Password required for randy.

230 User randy logged in.

200 Type set to I.

Local directory now /scripts/download

250 CWD command successful.

200 PORT command successful.

Listing 17.6 get_ftp_files.ksh shell script in action. (continues)

Automated FTP Stuff 449

Free & Share & Open

150 Binary data connection for get_ftp_files.ksh (10.10.10.1,32808)

(1567 bytes)

.

226 Binary Transfer complete.

1567 bytes received in 0.001116 seconds (1371 Kbytes/s)

local: get_ftp_files.ksh remote: get_ftp_files.ksh

221 Goodbye.

[root:yogi]@/scripts#

Listing 17.6 get_ftp_files.ksh shell script in action. (continued)

In this example the transfer is taking place between a local AIX machine called yogi
and the remote SunOS machine called wilma.

Putting One or More Files to a Remote System
Uploading files to another machine is the same as downloading the files except we
now use the put and mput commands. Let’s slightly modify the shell script in Listing
17.5 to make it into an upload script. This script modification is shown in Listing 17.7.

#!/bin/ksh

#

SCRIPT: put_ftp_files.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

REV: 1.1.P

#

PLATFORM: Not Platform Dependent

#

PURPOSE: This shell script uses FTP to put a list of one or more

local files to a remote machine.

#

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

#

###

################## DEFINE VARIABLES HERE ##########################

###

LOCALFILES=$1

THISSCRIPT=$(basename $0)

RNODE=”wilma”

Listing 17.7 put_ftp_files.ksh shell script listing.

450 Chapter 17

USER=”randy”

UPASSWD=”mypassword”

LOCALDIR=”/scripts”

REMOTEDIR=”/scripts/download”

###

################## DEFINE FUNCTIONS HERE ##########################

###

pre_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

: # no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

###

post_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

: # no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

###

usage ()

{

echo “\nUSAGE: $THISSCRIPT \”One or More Filenames to Download\” \n”

exit 1

}

###

usage_error ()

{

echo “\nERROR: This shell script requires a list of one or more

files to download from the remote site.\n”

usage

Listing 17.7 put_ftp_files.ksh shell script listing. (continues)

Automated FTP Stuff 451

Free & Share & Open

}

###

##################### BEGINNING OF MAIN ###########################

###

Test to ensure that the file(s) is/are specified in the $1

command-line argument.

(($# != 1)) && usage_error

pre_event

Connect to the remote site and begin the here document.

ftp -i -v -n $RNODE <<END_FTP

user $USER $UPASSWD

binary

lcd $LOCALDIR

cd $REMOTEDIR

mput $LOCALFILES

bye

END_FTP

post_event

Listing 17.7 put_ftp_files.ksh shell script listing. (continued)

The script in Listing 17.7 uses the same techniques as the get_ftp_files.ksh
shell script in Listing 17.5. We have changed the $1 variable assignment to LOCAL-
FILES instead of REMOTEFILES and changed the ftp transfer mode to mput to upload
the files to a remote machine. Other than these two changes the scripts are identical.

In all of the shell scripts in this chapter we have a security nightmare with hard-
coded passwords. In the next section is a technique that allows us to remove these
hard-coded passwords and replace them with hidden password variables. Following
the next section we will use this technique to modify each of our shell scripts to utilize
hidden password variables.

Replacing Hard-Coded Passwords with Variables
Traditionally when a password is required in shell script it has been hard-coded into
the script. Using this hard-coded technique presents us with a lot of challenges, rang-
ing from a security nightmare to the inability to change key passwords on a regular
basis. The variable technique presented in this section is very easy to implement with
only minor changes to each shell script.

452 Chapter 17

NOTE Important: Each shell script must be changed in order to properly
implement the technique throughout the infrastructure.

The variable replacement technique consists of a single file that contains unique vari-
able assignments for each password required for shell scripts on the system. A sample
password file looks like the following:

DBORAPW=alpha

DBADMPW=beta

BACKUPW=gamma

RANDY=mypassword

Some of the considerations of implementing this variable replacement technique
include the following:

■■ The scope of where the variable containing the password can be seen

■■ The file permission of the password variable file that contains the hard-coded
passwords

To limit the scope of the variable it is extremely important that the variable not be
exported in the password variable file. If the variable is exported, then you will be able
to see the password in plain text in the process environment of the shell script that is
using the password variable. Additionally, with all of these passwords in a single file,
the file must be locked down to read-only by root ideally.

The best illustration of this technique is a real example of how it works. In the fol-
lowing code sections, shown in Listings 17.8, 17.9, and 17.10, there is a password file
that contains the password variable assignments that has the name setpwenv.ksh
(notice this file is a shell script!). In the first file, the password variable is exported. In
the second file, the password variable is not exported. Following these two files is a
shell script, mypwdtest.ksh, that executes the password environment file, setp-
wenv.ksh, and tests to see if the password is visible in the environment.

NOTE Test results of using each technique are detailed in the next section of
this chapter.

Example of Detecting Variables in a Script’s Environment

We start the examples with a setpwenv.ksh file that exports the password variable in
Listing 17.8.

#!/bin/ksh

#

SCRIPT: setpwenv.ksh

#

PURPOSE: This shell script is executed by other shell

Listing 17.8 Password file with the password variable exported. (continues)

Automated FTP Stuff 453

Free & Share & Open

scripts that need a password contained in

a variable

#

#

This password is NOT exported

MYPWDTST=bonehead

This password IS exported

MYPWDTST=bonehead

export MYPWDTST

Listing 17.8 Password file with the password variable exported. (continued)

Notice in Listing 17.8 that the password is exported. As you will see, this export of
the password variable will cause the password to be visible in plain text in the calling
shell script’s environment.

The password file in Listing 17.9 shows an example of not exporting the password
variable.

#!/bin/ksh

#

SCRIPT: setpwenv.ksh

#

PURPOSE: This shell script is executed by other shell

scripts that need a password contained in

a variable

#

#

This password is NOT exported

MYPWDTST=bonehead

This password IS exported

MYPWDTST=bonehead

export MYPWDTST

Listing 17.9 Password file showing the variable not exported.

Notice in Listing 17.9 that the password is not exported. As you will see, this variable
assignment without exporting the password variable will cause the password to not
be visible in the calling shell script’s environment, which is the result that we are
looking for.

454 Chapter 17

The shell script shown in Listing 17.10 performs the test of the visibility of the pass-
word assigned for each of the password environment files.

#!/usr/bin/ksh

#

SCRIPT: mypwdtest.ksh

#

PURPOSE: This shell script is used to demonstrate the

use of passwords hidden in variables.

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

Set the BIN directory

BINDIR=/usr/local/bin

Execute the shell script that contains the password variable

assignments.

. ${BINDIR}/setpwenv.ksh

echo “\n\nPASS is $MYPWDTST” # Display the password contained in

the variable

echo “\nSearching for the password in the environment...”

env | grep $MYPWDTST

if (($? == 0))

then

echo “\nERROR: Password was found in the environment\n\n”

else

echo “\nSUCCESS: Password was NOT found in the environment\n\n”

fi

Listing 17.10 Shell script to demonstrate the scope of a variable.

The shell script shown in Listing 17.10, mypwdtest.ksh, tests the environment
using each of the setpwenv.ksh shell scripts, one with the password environment
exported and the second file that does not do the export. You can see the results of the
tests here.

Example with the Password Variable Exported

PASS is bonehead

Searching for the password in the environment...

MYPWDTST=bonehead

ERROR: Password was found in the environment

Automated FTP Stuff 455

Free & Share & Open

Notice in the previous example that the password is visible in the shell script’s envi-
ronment. When the password is visible you can run the env command while the
mypwdtest.ksh shell script is executing and see the password in plain text. There-
fore, anyone could conceivably get the passwords very easily. Notice in the next output
that the password is hidden.

Example with the Password Variable Not Exported

PASS is bonehead

Searching for the password in the environment...

SUCCESS: Password was NOT found in the environment

WARN I NG As you can see, it is extremely important never to export a
password variable.

To implement this variable password substitution into your shell scripts you only
need to add the password to the password environment file using a unique variable
name. Then inside the shell script that requires the password you execute the pass-
word file, which is setpwenv.ksh in our case. After the password file is executed the
password variable(s) is/are ready to use.

NOTE The preceding content uses this technique for passwords; however,
this practice can also be utilized for usernames, hostnames, and application
variables. The main purpose of this exercise is to have a central point of
changing passwords on a regular basis and to eliminate hard-coded passwords
in shell scripts.

Modifying Our FTP Scripts to Use Password Variables
As you saw in the previous section, Replacing Hard-Coded Passwords with Variables, it is
an easy task to modify a shell script to take advantage of hidden password variables.
Here we make the two lines of modifications to our nlist, get, and put shell scripts.

The first thing that we need to do is create a password environment file. Let’s use a
name that is a little more obscure than setpwenv.ksh. How about setlink.ksh?
Also, let’s hide the setlink.ksh shell script in /usr/sbin for a little more security.
Next let’s set the file permissions to 400, read-only by the owner (root). Now you may
be asking how can we execute a shell script that is read-only. All we need to do is to dot
the filename. An example of dotting the file is shown here.

. /usr/sbin/setlink.ksh

456 Chapter 17

The dot just says to execute the filename that follows. Now let’s set up the password
environment file. This example assumes that the user is root.

echo “RANDY=mypassword” >> /usr/sbin/setlink.ksh

chown 400 /usr/sbin/setlink.ksh

Now in each of our shell scripts we need to dot the /usr/sbin/setlink.ksh file
and replace the hard-coded password with the password variable defined in the exter-
nal file, /usr/sbin/setlink.ksh, which is $RANDY in our case.

Listings 17.11, 17.12, and 17.13 show the modified shell scripts with the hard-coded
passwords removed.

#!/bin/ksh

#

SCRIPT: get_remote_dir_listing_pw_var.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

REV: 1.1.P

#

PLATFORM: Not Platform Dependent

#

PURPOSE: This shell script uses FTP to get a remote directory listing

and save this list in a local file. This shell script uses

remotely defined passwords.

#

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

#

###

################## DEFINE VARIABLES HERE ##########################

###

RNODE=”wilma”

USER=”randy”

LOCALDIR=”/scripts/download”

REMOTEDIR=”/scripts”

DIRLISTFILE=”${LOCALDIR}/${RNODE}.$(basename ${REMOTEDIR}).dirlist.out”

cat /dev/null > $DIRLISTFILE

###

##################### BEGINNING OF MAIN ###########################

###

Get a password

Listing 17.11 get_remote_dir_listing_pw_var.ksh script listing. (continues)

Automated FTP Stuff 457

Free & Share & Open

. /usr/sbin/setlink.ksh

ftp -i -v -n $RNODE <<END_FTP

user $USER $RANDY

nlist $REMOTEDIR $DIRLISTFILE

bye

END_FTP

Listing 17.11 get_remote_dir_listing_pw_var.ksh script listing. (continued)

In Listing 17.11 the only modifications that we made to the original shell script
include a script name change, the removal of hard-coded passwords, adding the execu-
tion of the /usr/sbin/setlink.ksh shell script, and adding the $RANDY remotely
defined password variable.

#!/bin/ksh

#

SCRIPT: get_ftp_files_pw_var.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

REV: 1.1.P

#

PLATFORM: Not Platform Dependent

#

PURPOSE: This shell script uses FTP to get one or more remote

files from a remote machine. This shell script uses a

remotely defined password variable.

#

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

#

###

################## DEFINE VARIABLES HERE ##########################

###

REMOTEFILES=$1

THISSCRIPT=$(basename $0)

RNODE=”wilma”

USER=”randy”

LOCALDIR=”/scripts/download”

Listing 17.12 get_ftp_files_pw_var.ksh shell script listing.

458 Chapter 17

REMOTEDIR=”/scripts”

###

################## DEFINE FUNCTIONS HERE ##########################

###

pre_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

: # no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

###

post_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

: # no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

###

usage ()

{

echo “\nUSAGE: $THISSCRIPT \”One or More Filenames to Download\” \n”

exit 1

}

###

usage_error ()

{

echo “\nERROR: This shell script requires a list of one or more

files to download from the remote site.\n”

usage

}

###

##################### BEGINNING OF MAIN ###########################

Listing 17.12 get_ftp_files_pw_var.ksh shell script listing. (continues)

Automated FTP Stuff 459

Free & Share & Open

###

Test to ensure that the file(s) is/are specified in the $1

command-line argument.

(($# != 1)) && usage_error

Get a password

. /usr/sbin/setlink.ksh

pre_event

ftp -i -v -n $RNODE <<END_FTP

user $USER $RANDY

binary

lcd $LOCALDIR

cd $REMOTEDIR

mget $REMOTEFILES

bye

END_FTP

post_event

Listing 17.12 get_ftp_files_pw_var.ksh shell script listing. (continued)

In Listing 17.12 the only modifications that we made to the original shell script
include a script name change, the removal of hard-coded passwords, adding the exe-
cution of the /usr/sbin/setlink.ksh shell script, and adding the $RANDY
remotely defined password variable.

#!/bin/ksh

#

SCRIPT: put_ftp_files_pw_var.ksh

AUTHOR: Randy Michael

DATE: July 15, 2002

REV: 1.1.P

#

PLATFORM: Not Platform Dependent

#

PURPOSE: This shell script uses FTP to put a list of one or more

local files to a remote machine. This shell script uses

Listing 17.13 put_ftp_files_pw_var.ksh shell script listing.

460 Chapter 17

remotely defined password variables

#

set -n # Uncomment to check the script syntax without any execution

set -x # Uncomment to debug this shell script

#

###

################## DEFINE VARIABLES HERE ##########################

###

LOCALFILES=$1

THISSCRIPT=$(basename $0)

RNODE=”wilma”

USER=”randy”

LOCALDIR=”/scripts”

REMOTEDIR=”/scripts/download”

###

################## DEFINE FUNCTIONS HERE ##########################

###

pre_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

: # no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

###

post_event ()

{

Add anything that you want to execute in this function. You can

hard-code the tasks in this function or create an external shell

script and execute the external function here.

: # no-op: The colon (:) is a no-op character. It does nothing and

always produces a 0, zero, return code.

}

###

usage ()

{

echo “\nUSAGE: $THISSCRIPT \”One or More Filenames to Download\” \n”

Listing 17.13 put_ftp_files_pw_var.ksh shell script listing. (continues)

Automated FTP Stuff 461

Free & Share & Open

exit 1

}

###

usage_error ()

{

echo “\nERROR: This shell script requires a list of one or more

files to download from the remote site.\n”

usage

}

###

##################### BEGINNING OF MAIN ###########################

###

Test to ensure that the file(s) is/are specified in the $1

command-line argument.

(($# != 1)) && usage_error

Get a password

. /usr/sbin/setlink.ksh

pre_event

Connect to the remote site and begin the here document.

ftp -i -v -n $RNODE <<END_FTP

user $USER $RANDY

binary

lcd $LOCALDIR

cd $REMOTEDIR

mput $LOCALFILES

bye

END_FTP

post_event

Listing 17.13 put_ftp_files_pw_var.ksh shell script listing. (continued)

462 Chapter 17

In Listings 17.11–17.13 the only modifications that we made to the original shell
scripts include a script name change, the removal of hard-coded passwords, adding
the execution of the /usr/sbin/setlink.ksh shell script, and adding the $RANDY
remotely defined password variable.

Other Things to Consider

This set of shell scripts is very useful to a lot of businesses, but you will need to tailor
the shell scripts to fit your environment. Some options that you may want to consider
are listed in the following sections.

Use Command-Line Switches to Control Execution
By using getopts to parse command-line options you can modify these shell scripts
to have all of the variables assigned on the command line with switches and switch-
arguments. This modification can allow you to specify the target host, the local and
remote working directories, and the file(s) to act on. We have used getopts a lot in this
book, so look at some of the other chapters that use getopts to parse the command-line
switches and try making some modifications as an exercise.

Keep a Log of Activity
It is a very good idea to keep a log of each connection and check the return codes. If you
use the ftp switch -v you will have a detailed account of the connection activity of each
transaction. Remember to add a date stamp to each log entry, and also remember to
trim the log file periodically so the filesystem does not fill up.

Add a Debug Mode to the Scripts
If a connection fails you could put the script into debug mode by adding a function
called debug. In this function the first thing to do is to ping the remote machine to see
if it is reachable. If the machine is not reachable by pinging, then attempting to ftp to
the remote node is useless.

You can also issue the ftp command with the debug option turned on, specified by
the -d switch. For more information on ftp debug mode see the man pages for the ftp
command.

Automated FTP Stuff 463

Free & Share & Open

Summary

This chapter is meant to form a basis for creating larger shell scripts that require the
transfer of files between machines. The set of shell scripts presented in this chapter can
be modified or made onto functions to suit your needs. There are too many variables
for the use of ftp to follow each path to its logical end, so in this case you get the build-
ing blocks. If you have trouble with a shell script, always try to do the same thing
the shell script is doing, except do it on the command line. Usually you can find where
the problem is very quickly. If you cannot reach a remote node, then try to ping the
machine. If you cannot ping the machine, then network connectivity or name resolu-
tion is the problem.

In the next chapter we are moving on to finding large files on the system. This is a
nice tool to clean up filesystems and to look for files that have filled up a filesystem.
You start from the current top-level directory, and the search traverses from the current
directory to all subdirectories below. I hope you found this chapter useful, and I’ll see
you in the next chapter!

464 Chapter 17

465

Filesystem alert! We all hate to get full filesystem alerts, especially at quitting time on
Friday when the developers are trying to meet a deadline. The usual culprit is one or
more large files that were just created, compiled, or loaded. Determining the definition
of a large file varies by system environment, but a “large” file can fill up a filesystem
quickly, especially in a development shop. To find these large files we need a flexible
tool that will search for files larger than a user-defined value. The find command is
your friend when a filesystem search is needed.

The find command is one of the most flexible and powerful commands on the sys-
tem. Before we get started, print out the manual page for the find command. Enter the
following command:

man find | lp -d print_queue_name

The previous command will print the manual page output to the printer defined by
print_queue_name. By studying the find command manual page you can see that
the find command is the most flexible command on the system. You can find files by
modification/creation time, last access time, exact size, greater-than size, owner, group,
permission, and a boatload of other options. You can also execute a command to act on
the file(s) using the -exec command switch. For this chapter we are going to concentrate
on finding files larger that an integer value specified on the command line. As with all
of our shell scripts, we first need to get the correct command syntax for our task.

Finding “Large” Files

C H A P T E R

18

Free & Share & Open

Syntax

We are going to use the -size option for the find command. There are two things to con-
sider when using the -size command switch. We must supply an argument for this
switch, and the argument must be an integer. But the integer number alone as an argu-
ment to the -size switch specifies an exact value, and the value is expressed, by default,
in 512-byte blocks instead of measuring the file size in bytes. For a more familiar mea-
surement we would like to specify our search value in megabytes (MB). To specify the
value in bytes instead of 512-byte blocks we add the character c as a suffix to the inte-
ger value, and to get to MB we can just add six zeros. We also want to look at values
greater than the command-line integer value. To specify greater than we add a + (plus
sign) as a prefix to the integer value. With these specifications the command will look
like the following:

find $SEARCH_PATH -size +integer_valuec -print

To search for files greater than 5MB we can use the following command:

find $SEARCH_PATH -size +5000000c -print

The + (plus sign) specifies greater than, and the c denotes bytes. Also notice in the
previous command that we specified a path to search using the variable
$SEARCH_PATH. The find command requires a search path to be defined in the first
argument to the command. We also added the -print switch at the end of the command
line. If you omit the -print, then you cannot guarantee that any output will be pro-
duced. The command will return the appropriate return code but may not give any
output, even if the files were found! I have found this to be operating system depen-
dent by both Unix flavor and release. Just always remember to add the -print switch to
the find command, and you will not be surprised.

For ease of using this shell script we are going to assume that the search will always
begin in the current directory. The pwd command, or print working directory command,
will display the full pathname of the current directory. Using our script this way
requires that the shell script is located in a directory that is in the user’s $PATH, or you
must use the full script pathname any time you use the shell script. I typically put all
of my scripts in the /usr/local/bin directory and add this directory to my $PATH
environment. You can add a directory to your path using the following command
syntax:

PATH=$PATH:/usr/local/bin

export PATH

Creating the Script

We have the basic idea of the find command syntax, so let’s write a script. The only
argument that we want from the user is a positive integer representing the number of
megabytes (MB) to trigger the search on. We will add the extra six zeros inside the shell

466 Chapter 18

script. As always, we need to confirm that the data supplied on the command line is
valid and usable. For our search script we are expecting exactly one argument; there-
fore, $#must equal one. We are also expecting the argument to be an integer so the reg-
ular expression +([0-9]) should be true. We will use this regular expression in a case
statement to confirm that we have an integer. The integer specified must also be a posi-
tive value so the value given must be greater than zero. If all three tests are true, then
we have a valid value to trigger our search.

I can envision this script producing a daily report at some shops. To facilitate the
reporting we need some information from the system. I would like to know the host-
name of the machine that the report represents. The hostname command will provide
this information. A date and time stamp would be nice to have also. The date com-
mand has plenty of options for the time stamp, and because this is going to be a report,
we should store the data in a file for printing and future review. We can just define a
$OUTPUT file to store our report on disk.

Everyone needs to understand that this script always starts the search from the cur-
rent working directory, defined by the system environment variable $PWD and the pwd
command. We are going to use the pwd command and assign the output to the
SEARCH_PATH script variable. The only other thing we want to do before starting the
search is to create a header for the $OUTFILE file. For the header information we can
append all of the pertinent system data we have already gathered from the system to
the $OUTFILE.

We are now ready to perform the search starting from the current directory. Starting
a search from the current directory implies, again, that this script filename must be in
the $PATH for the user who is executing the script, or the full pathname to the script
must be used instead.

Study the findlarge.ksh shell script in Listing 18.1, and pay attention to the bold
type.

#!/usr/bin/ksh

#

SCRIPT: findlarge.ksh

#

AUTHOR: Randy Michael

#

DATE: 11/30/2000

#

REV: 1.0.A

#

PURPOSE: This script is used to search for files that

are larger than $1 Meg. Bytes. The search starts at

the current directory that the user is in, `pwd`, and

includes files in and below the user’s current directory.

The output is both displayed to the user and stored

in a file for later review.

#

REVISION LIST:

Listing 18.1 findlarge.ksh shell script listing. (continues)

Finding “Large” Files 467

Free & Share & Open

#

#

set -n # Uncomment to check syntax without ANY execution

set -x # Uncomment to debug this script

SCRIPT_NAME=$(basename $0)

##

function usage

{

echo “\n***************************************”

echo “\nUSAGE: $SCRIPT_NAME [Number_Of_Meg_Bytes]”

echo “\nEXAMPLE: $SCRIPT_NAME 5”

echo “\n\nWill Find Files Larger Than 5 Mb in, and below”

echo “the Current Directory...”

echo “\n\n\t...EXITING...”

echo “\n***************************************”

}

##

function trap_exit

{

echo “\n**”

echo “\n\n EXITING ON A TRAPPED SIGNAL...”

echo “\n\n**\n”

}

##

Set a trap to exit. REMEMBER - CANNOT TRAP ON kill -9

trap ‘trap_exit; exit 2’ 1 2 3 15

##

Check for the correct number of arguments

if [$# -ne 1]

then

usage

exit 1

fi

######################################

Check for an integer

case $1 in

Listing 18.1 findlarge.ksh shell script listing. (continued)

468 Chapter 18

+([0-9])) : # no-op -- Do Nothing!

;;

*) usage

exit 1

;;

esac

######################################

Check for an integer greater than zero

if [$1 -lt 1]

then

usage

exit 1

fi

##

Define and initialize files and variables here...

THISHOST=`hostname` # Hostname of this machine

DATESTAMP=$(date +”%h%d:%Y:%T”) # Date/Time Stamp

SEARCH_PATH=$(pwd) # Top-level directory to search (CURRENT DIR!)

MEG_BYTES=$1 # Number of MB for file size trigger

OUTFILE=”/tmp/largefiles.out” # Output user file

cat /dev/null > $OUTFILE # Initialize to a null file

HOLDFILE=”/tmp/temp_hold_file.out” # Temporary storage file

cat /dev/null > $HOLDFILE # Initialize to a null file

##

Prepare the Output File Header

echo “\nSearching for Files Larger Than ${MEG_BYTES}Mb Starting in:”

echo “\n==> $SEARCH_PATH”

echo “\nPlease Standby for the Search Results...”

echo “\nLarge Files Search Results:” >> $OUTFILE

echo “\nHostname of Machine: $THISHOST” >> $OUTFILE

echo “\nTop Level Directory of Search:” >> $OUTFILE

echo “\n==> $SEARCH_PATH” >> $OUTFILE

echo “\nDate/Time of Search: `date`” >> $OUTFILE

echo “\nSearch Results Sorted by File Modification Time” >> $OUTFILE

##

Listing 18.1 findlarge.ksh shell script listing. (continues)

Finding “Large” Files 469

Free & Share & Open

Search for files > $MEG_BYTES starting at the $SEARCH_PATH

#

find $SEARCH_PATH -type f -size +${MEG_BYTES}000000c \

-print > $HOLDFILE

How many files were found?

if [-s $HOLDFILE] # File greater than zero bytes?

then

NUMBER_OF_FILES=`cat $HOLDFILE | wc -l`

echo “\nNumber of Files Found: ==> $NUMBER_OF_FILES\n\n” >> $OUTFILE

Append to the end of the Output File...

ls -lt `cat $HOLDFILE` >> $OUTFILE

Display the Time Sorted Output File...

more $OUTFILE

echo “\nThese Search Results are Stored in ==> $OUTFILE”

echo “\nSearch Complete...EXITING...\n”

else

cat $OUTFILE # Show the header information!

echo “\n\nNo Files were Found in the Search Path that”

echo “are Larger than ${MEG_BYTES}Mb\n”

echo “\n\t...EXITING...\n”

fi

rm -f $HOLDFILE # Remove the temp. file

End of the findlarge.ksh Script

Listing 18.1 findlarge.ksh shell script listing. (continued)

Let’s review the findlarge.ksh shell script in Listing 18.1 in a little more detail.
We added two functions to our script. We always need a usage function, and in case
CTRL-C is pressed we added a trap_exit function. The trap_exit function is
executed by the trap for exit signals 1, 2, 3, and 15 and will display EXITING ON A
TRAPPED SIGNAL before exiting with a return code of 2. The usage function is exe-
cuted if any of our three previously discussed data tests fail and the script exits with a
return code of 1, one, indicating a script usage error.

In the next block of code we query the system for the hostname, date/time stamp,
and the search path (the current directory!) for the find command. All of this system
data is used in the file header for the $OUTFILE. For the search path we could have just

470 Chapter 18

used a dot to specify the current directory, but this short notation would result in a
relative pathname in our report. The full pathname, which begins with a forward slash (/),
provides much clearer information and results in an easier-to-read file report. To get
the full pathnames for our report, we use the pwd command output assigned to the
SEARCH_PATH variable.

We define two files for processing the data. The $HOLDFILE holds the search results
of the find command’s output. The $OUTFILE contains the header data, and the search
results of the find command are appended to the end of the $OUTFILE file. If the
$HOLDFILE is zero-sized, then the find command did not find any files larger than
$MEG_BYTES, which is the value specified in $1 on the command line. If the $HOLDFILE
is not empty, we count the lines in the file with the command NUMBER_OF_
LINES=`cat $HOLDFILE | wc -l`. Notice that we used back tics for command sub-
stitution, `command`. This file count is displayed along with the report header informa-
tion in our output file. The search data from the find command, stored in $HOLDFILE,
consists of full pathnames of each file that has exceeded our limit. In the process of
appending the $HOLDFILE data to our $OUTFILE, we do a long listing sorted by the
modification time of each file. This long listing is produced using the ls -lt $(cat
$HOLDFILE) command. A long listing is needed in the report so that we can see not
only the modification date/time but also the file owner and group as well as the size
of each file.

All of the data in the $OUTFILE is displayed by using the more command so that we
display the data one page at a time. The findlarge.ksh shell script is in action in
Listing 18.2.

Searching for Files Larger Than 1Mb starting in:

==> /scripts

Please Standby for the Search Results...

Large Files Search Results:

Hostname of Machine: yogi

Top Level Directory of Search:

==> /scripts

Date/Time of Search: Thu Nov 8 10:46:21 EST 2001

Search Results Sorted by File Modification Time:

Number of Files Found: ==> 4

-rwxrwxrwx 1 root sys 3490332 Oct 25 10:03

/scripts/sling_shot621.tar

Listing 18.2 findlarge.ksh shell script in action. (continues)

Finding “Large” Files 471

Free & Share & Open

-rwxrwxrwx 1 root sys 1280000 Aug 27 15:33 /scripts/sudo/sudo-

1.6.tar

-rw-r--r-- 1 root sys 46745600 Jul 27 09:48 /scripts/scripts.tar

-rw-r--r-- 1 root system 10065920 Apr 20 2001

/scripts/exe/exe_files.tar

These Search Results are Stored in ==> /tmp/largefiles.out

Search Complete...EXITING...

Listing 18.2 findlarge.ksh shell script in action. (continued)

The output in Listing 18.2 is a listing of the entire screen output, which is also the
contents of the $OUTFILE. The user is informed of the trigger threshold for the search,
the top-level directory for the search, the hostname of the machine, the date and time
of the search, and the number of files found to exceed the threshold. The long listing of
each file is displayed that has the file owner and group, the size of the file in bytes, the
modification time, and the full path to the file. The long listing is very helpful in large
shops with thousands of users!

Other Options to Consider

The findlarge.ksh shell script is simple and does all of the basics for the system
reporting, but it can be improved and customized for your particular needs. I think
you will be interested in the following ideas:

1. The first thing you probably noticed is that the script uses the current directory
as the top-level directory for the search path. You may want to add a second
command-line argument so that you can specify a search path other than the
current directory. You could add this user-supplied search path as an option,
and if a search path is omitted you use the current directory to start the search.
This adds a little more flexibility to the shell script.

2. Each time we run the findlarge.ksh shell script, we overwrite the
$OUTFILE. You may, however, want to keep a month’s worth of reports
on the system. An easy way to keep one month of reports is to use the date
command and extract the day of the month, and then add this value as a suffix
to the $OUTFILE file name definition. The following command will work:

OUTFILE=”/tmp/largefiles.out.$(date +%d)”

Over time our script will result in filenames largefile.out.01 through
largefiles.out.31.

472 Chapter 18

3. When searching large filesystems the search may take a very long time to com-
plete. To give the user feedback that the search process is continuing you may
want to add one of the progress indicators studied in Chapter 4. Two of the
studied progress indicators would be appropriate, the rotating line and the
series of dots. Look in Chapter 4 for details.

4. When we specify our search value we are just adding six zeros to the user-
supplied integer value. But we are back to a basic question: Is one MB equal
to 1,000,000 or 1,024,000? Because a System Administrator may not be the one
reading the report, maybe a manager, I used the mathematical 1,000,000 and
not the system-reported power-of-2 value. This is really a toss-up, so you make
the decision on the value you want to use. The value is easy to change by doing
a little math to multiply the user-supplied value by 1,024,000.

5. If you need to look for newly created files when a filesystem has just filled up,
you can add the following command as a cross reference to find the true cause
of the filesystem filling up:

find $SEARCH_PATH -mtime 1 -print

This command will find all files that have been modified, or created, in the last
24 hours. You can redirect this output to a file and do a cross-reference to dis-
cover the files, and users, that actually caused the filesystem to fill up.

Summary

In this chapter we have shown how to search the system for large files and create a
machine-specific report. As stated in the previous section, there are many ways to do the
same task, and as always we have other options to consider. This chapter, along with
filesystem monitoring in Chapter 5, can help keep filesystem surprises to a minimum.

In the next chapter we are going to study techniques to capture a user’s keystrokes.
Capturing keystrokes has many uses, from giving you an audit trail of all root access
to keeping track of a problem contractor or user. I use this technique to keep an audit
trail of all root access to the systems. I hope you gained some knowledge in this chap-
ter, and I will see you in the next chapter!

Finding “Large” Files 473

Free & Share & Open

475

In most large shops there is a need, at least occasionally, to monitor a user’s actions.
You may even want to audit the keystrokes of anyone with root access to the system or
other administration type accounts, such as oracle. Contractors on site can pose a par-
ticular security risk. Typically when a new application comes into the environment one
or two contractors are on site for a period of time for installation, troubleshooting, and
training personnel on the product. I always set up contractors in sudo (see Chapter 14
for more details on sudo) to access the new application account, after I change the pass-
word. sudo tracks only the commands that were entered with a date/time stamp. The
detail of the command output from stdout and stderr does not get logged so you
do not have a complete audit trail of exactly what happened if a problem arises.

To get around this dilemma you can track a user’s keystrokes from the time he or
she accesses a user account until the time he or she exits the account, if you have the
space for the log file. This little feat is accomplished using the script command. The
idea is to use sudo to kick off a shell script that starts a script session. When the script
session is running, all of the input and output on the terminal is captured in the log file.
Of course, if the user goes into some menus or programs the log file gets a little hard to
read, but we at least have an idea what happened. This monitoring is not done surrep-
titiously because I always want everyone to know that the monitoring is taking place.
When a script session starts, output from the script command informs the user that a
session is running and gives the name of the session’s log file. We can also set up mon-

Monitoring and Auditing
User Key Strokes

C H A P T E R

19

Free & Share & Open

itoring to take place from the time a user logs in until the user logs out. For this moni-
toring we do not need sudo, but we do need to edit the $HOME/.profile or other
login configuration file for the particular user.

Syntax

Using the script command is straightforward, but we want to do a few more things in
the shell script. Giving a specific command prompt is one option. If you are auditing
root access you need to have a timeout set so that after about five minutes (see the
TMOUT environment variable) the shell times out and the root access ends. On a shell
timeout, the session is terminated and the user is either logged out or presented with a
command prompt, but we can control this behavior. We have many options for this set
of shell scripts. You are going to need to set up sudo, super-user-do, on your machine.
The full details for installing and configuring sudo are in Chapter 14. We want sudo to
be configured with the names of each of the shell scripts that are used for this moni-
toring effort, as well as the specific users that you will allow to execute them. We will
get to these details later.

The script command works by making a typescript of everything that appears on
the terminal. The script command is followed by a filename that will contain the cap-
tured typescript. If no filename is given the typescript is saved in the current directory
in a file called typescript. For our scripting we will specify a filename to use. The
script session ends when the forked shell is exited, which means that there are two
exits required to completely log out of the system. The script command has the follow-
ing syntax:

script [filename]

As the script session starts, notification is shown on the terminal and a time stamp
is placed at the top of the file, indicating the start time of the session. Let’s look at a
short script session as used on the command line in Listing 19.1.

[root:yogi]@/# more /usr/local/logs/script/script_example.out

Script command is started on Wed May 8 21:35:27 EDT 2002.

[root:yogi]@/# cd /usr/spool/cron/crontabs

[root:yogi]@/usr/spool/cron/crontabs# ls

adm root sys uucp

[root:yogi]@/usr/spool/cron/crontabs# ls -al

total 13

drwxrwx--- 2 bin cron 512 Feb 10 21:36 .

drwxr-xr-x 4 bin cron 512 Jul 26 2001 ..

-rw-r--r-- 1 adm cron 2027 Feb 10 21:36 adm

-rw------- 1 root cron 1125 Feb 10 21:35 root

-rw-r--r-- 1 sys cron 864 Jul 26 2001 sys

Listing 19.1 Command-line script session.

476 Chapter 19

-rw-r--r-- 1 root cron 703 Jul 26 2001 uucp

[root:yogi]@/usr/spool/cron/crontabs# cd ../..

[root:yogi]@/usr/spool# ls -l

total 12

drwxrwsrwt 2 daemon staff 512 Sep 17 2000 calendar

drwxr-xr-x 4 bin cron 512 Jul 26 2001 cron

drwxrwxr-x 7 lp lp 512 Mar 23 15:21 lp

drwxrwxr-x 5 bin printq 512 May 01 20:32 lpd

drwxrwxr-x 2 bin mail 512 May 06 17:36 mail

drwxrwx--- 2 root system 512 May 06 17:36 mqueue

drwxrwxr-x 2 bin printq 512 Apr 29 11:52 qdaemon

drwxr-xr-x 2 root system 512 Jul 26 2001 rwho

drwxrwsrwx 2 bin staff 512 Jul 26 2001 secretmail

drwxr-xr-x 11 uucp uucp 512 Mar 13 20:43 uucp

drwxrwxrwx 2 uucp uucp 512 Sep 08 2000 uucppublic

drwxrwxr-x 2 root system 512 Apr 16 2001 writesrv

[root:yogi]@/usr/spool# exit

Script command is complete on Wed May 8 21:36:11 EDT 2002.

[root:yogi]@/#

Listing 19.1 Command-line script session. (continued)

Notice that every keystroke is logged as well as all of the command output. At the
beginning and end of the log file a script command time stamp is produced. These
lines of text are also displayed on the screen as the script session starts and stops. These
are the user notifications given as the monitoring starts and stops.

Scripting the Solution

There are three different situations in which you want to use this type of monitor-
ing/auditing. In this first instance we have users that you want to monitor the entire
session. In the next situation you want to monitor activity only when a user wants root
access to the system. Our systems have direct, remote, and su root login disabled, so to
gain root access the user must use sudo to switch to root using the broot script. The
third script is a catch-all for other administrative user accounts that you want to audit.
The first script is covering end-to-end monitoring with the script execution starting at
login through the user’s $HOME/.profile.

Before we actually start the script session, there are some options to consider.
Because we are executing a shell script from the user’s .profile we need to ensure
that the script is the last entry in the file. If you do not want the users to edit any
.profile files, then you need to set the ownership of the file to root and set the user
to read-only access.

Monitoring and Auditing User Key Strokes 477

Free & Share & Open

Logging User Activity
We are keeping log files so it is a good idea to have some kind of standard format for
the log filenames. You have a lot of options for filenames, but I like to keep it simple.
Our log files use the following naming convention:

[hostname].[user $LOGNAME].[Time Stamp]

We want the hostname because most likely you are monitoring users on multiple
systems and using a central repository to hold all of the log files. When I write a shell
script I do not want to execute a command more times than necessary. The hostname
command is a good example. Assigning the system’s hostname to a variable is a good
idea because it is not going to change, or it should not change, during the execution of
the script. To assign the hostname of the system to a variable use the following syntax:

THISHOST=$(hostname)

For the date/time stamp a simple integer representation is best. The following date
command gives two digits for month, day, year, hour, minute, and second:

TS=$(date +%m%d%y%H%M%S)

Now we have to reference only the $TS variable for the date/time stamp. Because
the user may change we can find the active username with either of the following envi-
ronment variables:

echo $LOGNAME

echo $USER

echo $LOGIN

As you change user IDs by using the switch user command (su), all of these envi-
ronment variables change accordingly. However, if a user does a switch user using
sudo, then the $LOGIN environment variable carries over to the new user while the
$LOGNAME and $USER environment variables gain the new user ID. Now we have
everything to build a log filename. A good variable name for a log file is LOGFILE,
unless this variable is used by your system or another application. On my systems
the LOGFILE variable is not used. Not only do we need to create the name of the
$LOGFILE, but we need to create the file and set the permissions on the file. The ini-
tial permissions on the file need to be set to read/write by the owner, chmod 600
$LOGFILE. The following commands set up the log file:

TS=$(date +%m%d%y%H%M%S) # Create a time stamp

THISHOST=$(hostname) # Query the system for the hostname

LOGFILE=${THISHOST}.${LOGNAME}.$TS # Name the log file

touch ${LOGDIR}/$LOGFILE # Create an empty log file

chmod 600 ${LOGDIR}/${LOGFILE} # Set the file permissions

478 Chapter 19

A sample filename is shown here:

yogi.randy.05110274519

The filename is good, but where do we want to store the file on the system? I like to
use a separate variable to hold the directory name. With two separate variables repre-
senting the directory and filename, you can move the log directory to another location
and have to change just one entry in the script. I set up a log directory on my system in
/usr/local/logs. For these script log files I added a subdirectory called script.
Then I set a LOGDIR variable to point to my logging directory, as shown here:

LOGDIR=/usr/local/logs/script

Starting the Monitoring Session
With the logging set up we are ready to start a script session. We start the session using
the following syntax:

script ${LOGDIR}/${LOGFILE}

When the script session starts, a message is displayed on the screen that informs
the user that a script session has started and lists the name of the script log file, as
shown here:

Script command is started. The file is

/usr/local/logs/script/yogi.randy.051102174519.

If the user knows that monitoring is going on and also knows the name of the file,
what is to keep the user from editing or deleting the log? Usually directory permissions
will take care of this little problem. During the script session the actual log file is an
open file—that is, actually a system temporary file that cannot be accessed directly by
the user. But if the user is able to delete the $LOGFILE then you have lost the audit
trail. This is one problem that we will discuss later.

Where Is the Repository?
So far here is the scenario. A user has logged into the system. As the user logs in, a mon-
itoring session is started using the script command, which logs all of the terminal output
in a log file that we specify. During the time that the session is active the log file is open
as a system temporary file. When the session ends, by a user typing exit or CTRL-D or
by an exit signal, the log file is closed and the user is notified of the session ending, and
again the name of the log file is displayed.

For security and auditing purposes we need to have a central repository for the logs.
The method I like to use is email. When the session ends we want to set the file permis-
sions on the log file to read only by the owner. Then we email the log to another machine,
ideally, which is where the repository is located. Once the email is sent I compress the
local file and exit the script.

Monitoring and Auditing User Key Strokes 479

Free & Share & Open

With two copies of the user session existing on two different machines, an audit will
easily detect any changes. In fact, if a user tries to change the log these commands will
also be logged. You may have different ideas on handling the repository, but I set up a
user on a remote machine that I use as a log file manager, with a name logman. The
logman user’s email is the repository on the audit machine. For simplicity in this shell
script we are going to email the logs to the local logman user. To send mail, I use the
mailx command on all Unix flavors except Linux, where I use the mail command, as
shown here:

mailx -s “$TS - $LOGNAME Audit Report” $LOG_MANAGER <

${LOGDIR}/${LOGFILE}

In the shell script the $LOG_MANAGER is defined as logman. The nice thing about
having a variable hold the mail recipients is that you can add a second repository or
other people to receive email notifications. By using the local logman account you have
other options. You can set up mail aliases; one of my favorites is to use the logman
account as a bounce account. By adding a .forward file in the $HOME directory for the
logman user, you can redirect all of the email sent to the logman user to other destina-
tions. If a .forward file exists in the user’s home directory, the mail is not delivered to
the user but instead is sent to each email address and alias listed in the .forward file.
A sample .forward file is shown here.

yogibear@cave.com

booboo@cave.com

dino@flintstones.org

admin

With the previous entries in the $HOME/.forward file for the logman user, all mail
directed to logman is instead sent to the three email address and all of the addresses
pointed to by the admin email alias.

The Scripts
We have covered all of the basics for the shell scripts. We have three different shell
scripts that are used in different ways. The first script is intended to be executed at
login time by being the last entry in the user’s $HOME/.profile. The second shell
script is used only when you want to gain root access, which is done through sudo,
and the third script is a catch-all for any other administration-type accounts that
you want to audit, which also use sudo. Let’s first look at the login script called
log_keystrokes.ksh, shown in Listing 19.2.

#!/bin/ksh

#

SCRIPT: log_keystrokes.ksh

#

AUTHOR: Randy Michael

Listing 19.2 log_keystrokes.ksh shell script listing.

480 Chapter 19

DATE: 05/08/2002

REV: 1.0.P

PLATFOEM: Any Unix

#

PURPOSE: This shell script is used to monitor a login session by

capturing all of the terminal data in a log file using

the script command. This shell script name should be

the last entry in the user’s $HOME/.profile. The log file

is both kept locally and emailed to a log file

administrative user either locally or on a remote machine.

#

REV LIST:

#

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this shell script

#

############# DEFINE AUDIT LOG MANAGER ###################

#

This user receives all of the audit logs by email. This

Log Manager can have a local or remote email address. You

can add more than one email address if you want by separating

each address with a space.

LOG_MANAGER=”logman” # List to email audit log

##

################ DEFINE FUNCTIONS HERE ###################

##

cleanup_exit ()

{

This function is executed on any type of exit except of course

a kill -9, which cannot be trapped. The script log file is

emailed either locally or remotely, and the log file is

compressed. The last “exit” is needed so the user does not

have the ability to get to the command line without logging.

if [[-s ${LOGDIR}/${LOGFILE}]]

then

case `uname` in

Linux) # Linux does not have “mailx”

mail -s “$TS - $LOGNAME Audit Report” $LOG_MANAGER <

${LOGDIR}/${LOGFILE}

;;

*)

mailx -s “$TS - $LOGNAME Audit Report” $LOG_MANAGER <

${LOGDIR}/${LOGFILE}

;;

Listing 19.2 log_keystrokes.ksh shell script listing. (continues)

Monitoring and Auditing User Key Strokes 481

Free & Share & Open

esac

compress ${LOGDIR}/${LOGFILE} 2>/dev/null

fi

exit

}

Set a trap

trap ‘cleanup_exit’1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 26

##

################ DEFINE VARIABLES HERE ###################

##

TS=$(date +%m%d%y%H%M%S) # File time stamp

THISHOST=$(hostname|cut -f1-2 -d.) # Host name of this machine

LOGDIR=/usr/local/logs/script # Directory to hold the logs

LOGFILE=${THISHOST}.${LOGNAME}.$TS # Creates the name of the log file

touch $LOGDIR/$LOGFILE # Creates the actual file

set -o vi 2>/dev/null # Previous commands recall

stty erase ^? # Set the backspace key

Set the command prompt

export PS1=”[$LOGNAME:$THISHOST]@”’$PWD> ‘

#################### RUN IT HERE ##########################

chmod 600 ${LOGDIR}/${LOGFILE} # Change permission to RW for the owner

script ${LOGDIR}/${LOGFILE} # Start the script monitoring session

chmod 400 ${LOGDIR}/${LOGFILE} # Set permission to read-only for

the owner

cleanup_exit # Execute the cleanup and exit function

Listing 19.2 log_keystrokes.ksh shell script listing. (continued)

The log_keystrokes.ksh script in Listing 19.2 is not difficult when you look at
it. At the top we define the cleanup_exit function that is used when the script exits
to email and compress the log file. In the next section we set a trap and define and set
some variables. Finally we start the logging activity with a script session.

In the cleanup_exit function notice the list of exit codes that the trap command will
exit on. This signal list ensures that the log file gets emailed and the file gets compressed.

482 Chapter 19

The only exit signal we cannot do anything about is a kill -9 signal because you cannot
trap kill -9. There are more exit signals if you want to add more to the list in the trap
statement, but I think the most captured are listed.

The last command executed in this shell script is exit because in every case the
cleanup_exit function must execute. If exit is not the last command, then the user
will be placed back to a command prompt without any logging being done. The reason
for this behavior is that the script session is really a fork of the original shell. Therefore,
when the script command stops executing, one of the shells in the fork terminates, but
not the original shell. This last exit logs out of the original shell. You may want to
replace this last exit, located in the cleanup_exit function, with logout, which will
guarantee the user is logged out of the system.

Logging root Activity
In some shops there is a need to log the activity of the root user. If you log the root
activity, then you have an audit trail, and it is much easier to do root cause analysis on
a root user booboo. We can use the same type of shell that we used in the previous sec-
tions, but this time we will use sudo instead of a .profile entry. I call this script
broot because it is a short name for “I want to be root”. In this section let’s look at the
shell script in Listing 19.3 and go through the details at the end.

#!/bin/ksh

#

SCRIPT: broot

#

AUTHOR: Randy Michael

DATE: 05/08/2002

REV: 1.0.P

PLATFOEM: Any Unix

#

PURPOSE: This shell script is used to monitor all root access by

capturing all of the terminal data in a log file using

the script command. This shell script is executed from the

command line using sudo (Super User Do). The log file

is kept locally and emailed to a log file administrative

user either locally or on a remote machine. Sudo must be

configured for this shell script. Refer to your sudo notes.

#

USAGE: sudo broot

#

REV LIST:

#

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this shell script

#

Listing 19.3 broot shell script listing. (continues)

Monitoring and Auditing User Key Strokes 483

Free & Share & Open

############# DEFINE AUDIT LOG MANAGER ###################

This user receives all of the audit logs by email. This

Log Manager can have a local or remote email address. You

can add more than one email address if you want by separating

each address with a space.

LOG_MANAGER=”logman” # List to email audit log

##

################ DEFINE FUNCTIONS HERE ###################

##

cleanup_exit ()

{

This function is executed on any type of exit except of course

a kill -9, which cannot be trapped. The script log file is

emailed either locally or remotely, and the log file is

compressed. The last “exit” is needed so the user does not

have the ability to get to the command line without logging.

if [[-s ${LOGDIR}/${LOGFILE}]]

then

case `uname` in

Linux) # Linux does not have “mailx”

mail -s “$TS - $LOGNAME Audit Report” $LOG_MANAGER <

${LOGDIR}/${LOGFILE}

;;

*)

mailx -s “$TS - $LOGNAME Audit Report” $LOG_MANAGER <

${LOGDIR}/${LOGFILE}

;;

esac

nohup compress ${LOGDIR}/${LOGFILE} 2>/dev/null &

fi

exit

}

Set a trap

trap ‘cleanup_exit’1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 26

##

################ DEFINE VARIABLES HERE ###################

##

TS=$(date +%m%d%y%H%M%S) # File time stamp

Listing 19.3 broot shell script listing. (continued)

484 Chapter 19

THISHOST=$(hostname) # Host name of this machine

LOGDIR=/usr/local/logs/script # Directory to hold the logs

LOGFILE=${THISHOST}.${LOGNAME}.$TS # Creates the name of the log file

touch $LOGDIR/$LOGFILE # Creates the actual file

TMOUT=300 # Set the root shell timeout!!!

export TMOUT # Export the TMOUT variable

set -o vi # To recall previous commands

stty erase _ # Set the backspace key

Run root’s .profile if one exists

if [[-f $HOME/.profile]]

then

. $HOME/.profile

fi

set path to include /usr/local/bin

echo $PATH|grep -q ‘:/usr/local/bin’ || PATH=$PATH:/usr/local/bin

Set the command prompt to override the /.profile default prompt

PS1=”$THISHOST:broot> “

export PS1

#################### RUN IT HERE ##########################

chmod 600 ${LOGDIR}/${LOGFILE} # Change permission to RW for the owner

script ${LOGDIR}/${LOGFILE} # Start the script monitoring session

chmod 400 ${LOGDIR}/${LOGFILE} # Set permission to read-only for the

owner

cleanup_exit # Execute the cleanup and exit function

Listing 19.3 broot shell script listing. (continued)

There is one extremely important difference between this script and the script in
Listing 19.2. In the broot script in Listing 19.3 we execute the .profile for root, if
there is a .profile for root. You may ask why we did not execute the profile last time.
The answer involves the recursive nature of running a file onto itself. In the previous
case we had the following entry in the $HOME/.profile file:

. /usr/local/bin/log_keystrokes.ksh

We add this entry beginning with a “dot”, which means to execute the following file,
as the last entry in the $HOME/.profile. If you added execution of $HOME/
.profile into the shell script you end up executing the log_keystrokes.ksh shell

Monitoring and Auditing User Key Strokes 485

Free & Share & Open

script recursively. When you run the script like this you fill up the buffers and you get
an error message similar to the following output:

ksh: .: 0403-059 There cannot be more than 9 levels of recursion.

For monitoring root access with the broot script we are not executing from the
.profile, but we use sudo to run this broot script, so we have no worries about
recursion. At the top of the script in Listing 19.3 we define a LOG_MANAGER. This list of
one or more email addresses is where the log files are going to be emailed. You may
even want real-time notification of root activity. I like to send the log files off to my
audit box for safe keeping using my logman user account. This email notice in the
cleanup_exit function uses two different e-mail commands, depending on the Unix
flavor. The only machine that does not support the mailx command is Linux, which
supports only the mail command. This is not a problem, but I had to use the mix email
commands to add a subject heading in the email; not all mail commands on all systems
allow a subject heading so I used mailx instead.

The next step is to set a trap. If the script exits on signals 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 26, the cleanup_exit function is executed.
This trap ensures that the log file gets emailed and the file gets compressed locally. In
the next section we define and set the variables that we use. Notice that we added a
shell timeout, specified by the TMOUT environment variable. If someone with root
access is not typing for five minutes the shell times out. You can set the TMOUT variable
to anything you want or even comment it out if you do not want a shell timeout. The
measurement is in seconds. The default is 300 seconds, or 5 minutes, for this script.

After the variable definitions we execute the root .profile. We run the profile here
because we are not running the broot script from a login $HOME/.profile, as we
did with the log_keystrokes.ksh script in Listing 19.2. Next we add /usr/
local/bin to root’s $PATH, if it is not already present. And, finally, before we are
ready to execute the script command we set a command prompt.

The final four things we do are (1) set the permissions on the log file so we can write
to it; (2) run the script command using the log filename as a parameter; (3) set the file
permissions on the log file to read-only; and (4) execute the cleanup_exit function
to email the log and compress the file locally.

Some sudo Stuff

I have inserted a short /etc/sudoers file for Listing 19.4 to show entries that need to
be made. The entire task of setting up and using sudo is shown in Chapter 14. Pay
attention to the bold type in Listing 19.4.

sudoers file.

#

This file MUST be edited with the ‘visudo’ command as root.

#

See the sudoers man page for the details on how to write a

Listing 19.4 Example /etc/sudoers file.

486 Chapter 19

sudoers file.

#

#

Users Identification:

#

All access:

#

randy - Randy Michael

terry - Admin

Restricted Access to: mount umount and exportfs

#

oracle - Oracle Admin

operator - operator access

#

Host alias specification

Host_Alias LOCAL=yogi

User alias specification

User_Alias ROOTADMIN=randy,terry

User_Alias NORMAL=randy,operator,terry

User_Alias ADMIN=randy,terry

User_Alias ORACLE=oracle

User_Alias DB2=db2adm

User_Alias OPERATOR=operator

Runas alias specification

Runas_Alias ORA=oracle

Cmnd alias specification

Cmnd_Alias BROOT=/usr/local/bin/broot

Cmnd_Alias MNT=/usr/bin/mount

Cmnd_Alias UMNT=/usr/bin/umount

Cmnd_Alias EXP_FS=/usr/bin/exportfs

Cmnd_Alias KILL=/usr/bin/kill

Cmnd_Alias ORACLE_SU=/usr/bin/su - oracle

Cmnd_Alias TCPDUMP=/usr/sbin/tcpdump

Cmnd_Alias ERRPT=/usr/bin/errpt

Cmnd_Alias SVRMGRL=/oracle/product/8.0.5/bin/svrmgrl

User privilege specification

root ALL=(ALL) ALL

ROOTADMIN LOCAL=BROOT

NORMAL LOCAL=MNT,UMNT,EXP_FS

Listing 19.4 Example /etc/sudoers file. (continues)

Monitoring and Auditing User Key Strokes 487

Free & Share & Open

ADMIN

LOCAL=BROOT,MNT,UMNT,KILL,ORACLE_SU,TCPDUMP,ERRPT: \

LOCAL=EXP_FS

ORACLE LOCAL=SVRMGRL

Override Defaults

Defaults logfile=/var/adm/sudo.log

Listing 19.4 Example /etc/sudoers file. (continued)

Three entries need to be added to the /etc/sudoers file. Do not ever edit the
sudoers file directly with vi. There is a special program called visudo, in the /usr/
local/sbin directory, that has a wrapper around the vi editor that does a thorough
check for mistakes in the file before the file is saved. If you make a mistake the visudo
program will tell you where the error is located in the /etc/sudoers file.

The three entries that need to be added to the /etc/sudoers are listed next and are
highlighted in bold text in Listing 19.4.

Define the User_Alias, which is where you give a name to a group of users. For
this file let’s name the list of users who can get root access ROOTADMIN, as shown here:

User_Alias ROOTADMIN=randy,terry

Next we need to define the Cmnd_Alias, which is where you define the full path-
name to the command, as shown here.

Cmnd_Alias BROOT=/usr/local/bin/broot

The last step is to define the exact commands that the User_Alias group of users
can execute. In our case we have a separate User_Alias group only for the users who
can use the broot script. Notice that the definition also specifies the machine where
the command can be executed. I always let sudo execution take place only on a single
machine at a time, specified by LOCAL here.

ROOTADMIN LOCAL=BROOT

Once the /etc/sudoers file is set up, you can change the root password and allow
root access only by using the broot script. Using this method you have an audit trail
of root access to the system.

488 Chapter 19

Monitoring Other Administration Users
More often than not, you will want add to the list of auditing that can be done. This
next script is rewritten to allow you to quickly set up a broot type shell script by
changing only the user name and the script name. The method that we use to execute
the script command is what makes this script different—and easy to modify.

For ease of use we can use a lot of variables throughout the script. We have already
been doing this to some extent. Now we will call the monitored user the effective user,
which fits our new variable $EFF_USER. For this script I have set the username to oracle.
You can make it any user that you want to. Take a look at this shell script in Listing 19.5,
and pay particular attention to the boldface type.

#!/bin/ksh

#

SCRIPT: “Banybody” boracle - This time

#

AUTHOR: Randy Michael

DATE: 05/08/2002

REV: 1.0.P

PLATFOEM: Any Unix

#

PURPOSE: This shell script is used to capture all “$EFF_USER”

access by capturing all of the terminal data in a log

file using the script command. This shell script is

executed from the command line using sudo (Super User Do).

The log file is kept locally and emailed to a log file

administrative user either locally or on a remote

machine. Sudo must be configured for this shell script.

Refer to your sudo notes. The effective user, currently

oracle, can be changed by setting the “EFF_USER” variable

to another user, and changing the name of the script.

This is why the original name of the script is called

“Banybody”.

#

ORIGINAL USAGE: sudo Banybody

#

THIS TIME USAGE ==> USAGE: sudo boracle

#

#

REV LIST:

5/10/2002: Modified the script to replace the hard-coded

username with the variable $EFF_USER. This

allows flexibility to add auditing of more

Listing 19.5 boracle shell script listing. (continues)

Monitoring and Auditing User Key Strokes 489

Free & Share & Open

accounts by just changing the EFF_USER variable

and the script name.

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this shell script

#

#

################# DEFINE EFFECTIVE USER ##################

This EFF_USER is the username you want to be to execute

a shell in. An su command is used to switch to this user.

EFF_USER=oracle

############# DEFINE AUDIT LOG MANAGER ###################

This user receives all of the audit logs by email. This

Log Manager can have a local or remote email address. You

can add more than one email address if you want by separating

each address with a space.

LOG_MANAGER=”logman” # List to email audit log

##

################ DEFINE FUNCTIONS HERE ###################

##

cleanup_exit ()

{

This function is executed on any type of exit except of course

a kill -9, which cannot be trapped. The script log file is

emailed either locally or remotely, and the log file is

compressed. The last “exit” is needed so that the user does not

have the ability to get to the command line without logging.

if [[-s ${LOGDIR}/${LOGFILE}]] # Is it greater than zero bytes?

then

case `uname` in

Linux)

mail -s “$TS - $LOGNAME Audit Report” $LOG_MANAGER <

${LOGDIR}/${LOGFILE}

;;

*)

mailx -s “$TS - $LOGNAME Audit Report” $LOG_MANAGER <

${LOGDIR}/${LOGFILE}

Listing 19.5 boracle shell script listing. (continued)

490 Chapter 19

;;

esac

compress ${LOGDIR}/${LOGFILE} 2>/dev/null

fi

exit

}

################# SET A TRAP #############################

trap ‘cleanup_exit’ 1 2 3 5 15

##

################ DEFINE VARIABLES HERE ###################

##

TS=$(date +%m%d%y%H%M%S) # File time stamp

THISHOST=$(hostname) # Hostname of this machine

LOGDIR=/usr/local/logs/script # Directory to hold the logs

LOGFILE=${THISHOST}.${EFF_USER}.$TS # Creates the name of the log file

touch $LOGDIR/$LOGFILE # Creates the actual file

TMOUT=300 # Set the root shell timeout!!!

export TMOUT # Export the TMOUT variable

set -o vi # To recall previous commands

stty erase ^? # Set the backspace key

set path to include /usr/local/bin

echo $PATH|grep -q ‘:/usr/local/bin’ || PATH=$PATH:/usr/local/bin

Set the command prompt to override the /.profile default prompt

PS1=”$THISHOST:b${EFF_USER}> “

export PS1

#################### RUN IT HERE ##########################

chmod 666 ${LOGDIR}/${LOGFILE} # Set permission to read/write

To get the script session to work we have to use the switch user (su)

command with the -c flag, which means execute what follows. Sudo is

also used just to ensure that root is executing the su command.

We ARE executing now as root because this script was started with

sudo. If a nonconfigured sudo user tries to execute this command

then it will fail unless sudo was used to execute this script as root.

Listing 19.5 boracle shell script listing. (continues)

Monitoring and Auditing User Key Strokes 491

Free & Share & Open

Notice we are executing the script command as “$EFF_USER”. This

variable is set at the top of the script. A value such as

“EFF_USER=oracle” is expected.

sudo su - $EFF_USER -c “script ${LOGDIR}/${LOGFILE}”

chmod 400 ${LOGDIR}/${LOGFILE} # Set permission to read-only for

the owner

cleanup_exit # Execute the cleanup and exit function

Listing 19.5 boracle shell script listing. (continued)

The most important line to study in Listing 19.5 is the third line from the bottom:

sudo su - $EFF_USER -c “script ${LOGDIR}/${LOGFILE}”

There are several points to make about this command. Notice that we start the
command with sudo. Because you must use sudo to execute the boracle script, and
you are already executing as root, then why use sudo here? We use sudo here to ensure
that the boracle script was indeed started with sudo. If any old user runs the bora-
cle command we want it to fail if sudo was not used.

The second command in the previous statement is su - $EFF_USER. The signifi-
cance of the hyphen, -, is important here. Using the hyphen, -, with a space on both sides
tells the su command to switch to the user pointed to by the $EFF_USER, oracle in our
case, and run that user’s .profile. If the hyphen is omitted or the spaces are not
around the hyphen, then the user .profile is not executed, which is a bad thing in
this case.

The last part of this command is where we start our script session. When you switch
users with su, you can specify that you want to run a command as this user by adding
the -c switch followed by the command enclosed in single or double quotes. Do not for-
get the quotes around the command.

The only other real change is the use of the EFF_USER variable. This variable is set
at the top of the script, and changing this variable changes who you want to “be.” If
you want to create more admin auditing scripts, copy the boracle file to a new file-
name and edit the file to change the name at the top of the script and modify the
EFF_USER variable. That’s it!

Other Options to Consider

Through this chapter we have covered some interesting concepts. You may have quite
a few things that you want to add to these scripts. I have come up with a few myself.

492 Chapter 19

Emailing the Audit Logs
Depending on the extent of monitoring and auditing you need to do, you may want to
send the files to several different machines. I selected using email for the transport, but
you may have some other techniques, such as automated FTP. You may also want to
compress the files before you email, or whatever, the log files. To email a compressed
file you will need some type of mail tool like metasend or a tool that does a type of
uuencoding. This is needed sometimes because the mail program will think that some
of the characters, or control characters, are mail commands. This can cause some
strange things to happen. You should be able to find some mail tools on the Web.

Watch the disk space! When you start logging user activity you need to keep a close
check on disk space. Most systems store email in /var. If you fill up /var for an
extended period of time you may crash the box. For my log files I create a large dedi-
cated filesystem called /usr/local/logs. With a separate filesystem I do not have
to worry about crashing the system if I fill up the filesystem. You can probably think of
other methods to move the files around as the emails are received.

Compression
For all of these scripts we used the compress command. This compression algorithm is
okay, but we can do better. I find that gzip has a much better compression algorithm,
and the compression ratio is tunable for your needs. The tuning is done using numbers
as a parameter to the gzip command, as shown here:

gzip -9 $LOGFILE

The valid numbers are 1 to 9, with 9 indicating the best compression. This extra com-
pression does come at a price—time! The higher the number, the longer it takes to com-
press the file. By omitting the number you use gzip in default mode, which is -5. For
our needs you will still see a big increase in compression over compress at about the
same amount of time.

Need Better Security?
Another option for this keystroke auditing is to use open secure shell and keep a real
time encrypted connection to the log server by creating a named pipe. This can be done
but it, too, has some potential problems. This first major problem is that you introduce
a dependency for the logging to work. If the connection is lost then the script session
ends. For auditing root activities, and especially when all other root access has been
disabled, you can have a real nightmare. I will leave this idea for you to play around
with because it is beyond the scope of this book.

Inform the Users
I did not add this chapter to the book for everyone to start secretly monitoring every-
one’s keystrokes. Always be up-front with the user community, and let them know that

Monitoring and Auditing User Key Strokes 493

Free & Share & Open

an audit is taking place. I know for a fact that Systems Administrators do not like to
have the root password taken away from them. I know first hand about the reaction.

If you are going to change the user password, please place the root password in a
safe place where, in case of emergency, you can get to the password without delay.
Your group will have to work out how this is accomplished.

Sudoers File
If you start running these scripts and you have a problem, first check your sudo con-
figuration by looking at the /etc/sudoers file. There are some things to look for that
the visudo editor will not catch:

■■ Check the LOCAL line. This variable should have the hostname of your
machine assigned.

■■ Check for exact pathnames of the files.

■■ Ensure that the correct users are assigned to the correct commands.

The visudo editor does catch most errors, but there are some things that are not so
easy to test for.

Summary

I had a lot of fun writing this chapter and playing with these scripts. I hope you take
these auditing scripts and use them in a constructive way. The information gathered
can be immense if you do not have a mechanism for pruning the old log files. The fol-
lowing command works pretty well:

find /directory -mtime +30 -print -exec rm {} \;

This command will remove all the files in /directory that have not been modified
in 30 days. You may want to add a -name parameter to limit what you delete. As with
any type of monitoring activity that creates logs, you need to watch the filesystem
space very closely, especially at first, to see how quickly logs are being created and how
large the log files grow.

Another topic that comes up a lot is the shell timeout. The only place I use the TMOUT
environment is in the broot script. If you add a shell timeout to your other adminis-
trative accounts you may find that a logout happens during a long processing job. With
these users I expect them to just lock the terminal when they leave.

In the next chapter we are going to look at Serial Storage Architecture (SSA) disk
drives and how to physically identify them. These drives normally come in a rack of 18
drives, and we have a ton of racks! In this mess it is hard to locate a specific drive or a
group of drives. We have a script that turns the identification lights on and off, with a
lot of different options. See you in the next chapter!

494 Chapter 19

495

On any system that utilizes the Serial Storage Architecture (SSA) disk subsystem from
IBM you understand how difficult it is to find a specific failed disk in the hundreds of
disks that populate the racks. Other needs for SSA disk identification include finding
all of the drives attached to a particular system. Then you may also want to see only the
drives that are in currently varied-on volume groups or a specific group of disks. In
this chapter we will work through all of these areas of identification.

In identifying hardware components in a system you usually have a set of tools for
this function. This chapter is going to concentrate on AIX systems. The script presented
in this chapter is valid only for AIX, but with a few modifications it can run on other
Unix flavors that utilize the SSA subsystem. I am sticking to AIX because this script has
an option to query volume groups, which not all Unix flavors support. If your systems
are running the Veritas filesystem, then only a few commands need to be modified for
my identification script to work because Veritas supports the concept of a volume
group.

In identifying an SSA disk you have two ways of referencing the disk. In AIX all
disks are represented as an hdisk#. As an example, hdisk0 almost always contains the
operating system, and it is part of the rootvg volume group. It is not often an SSA disk;
it is usually an internal SCSI disk. If an hdisk is an SSA disk, then it has a second disk
name that is used within the SSA subsystem, which is called the pdisk#. Not often are
the hdisk# and the pdisk# the same number because the first couple of disks are usu-
ally SCSI drives. We need to be able to translate an hdisk to its associated pdisk, and
vice versa.

Turning On/Off SSA
Identification Lights

C H A P T E R

20

Free & Share & Open

Syntax

As always, we need to start out with the commands to accomplish the task. With the
SSA subsystem we are concerned about two commands that relate to hdisks and
pdisks. The first command, ssaxlate, translates an hdisk# into a pdisk#, or vice versa.
The second command we use is the ssaidentify command, which requires a pdisk rep-
resentation of the SSA disk drive. This command is used to turn the SSA disk identifi-
cation lights on and off. We want the script to identify the SSA disks to recognize either
disk format, hdisk and pdisk. With the ssaxlate command this is not a problem.

To use these commands you need to know only the SSA disk to act on and add the
appropriate command switch. Let’s look at both commands here.

Translating an hdisk to a pdisk

ssaxlate -l hdisk43

pdisk41

In this example hdisk43 translates to pdisk41. This tells me that the hdisk to pdisk
offset is 2, which I have to assume means that hdisk0 and hdisk1 are both SCSI disks,
and hdisk3 through, at least, hdisk43 are all SSA disks. This is not always the case. It
depends on how the AIX configuration manager discovered the disks in the first place,
but my statement is a fair assumption. We could just as easily translate pdisk41 to
hdisk43 by specifying pdisk41 in the ssaxlate command.

The next step is to actually turn on the identification light for hdisk43, which we dis-
covered to be pdisk41. The ssaidentify command wants the disks represented as
pdisks, so we need to use pdisk41 for this command.

Identifying an SSA Disk

ssaidentify -l pdisk41 -y

The ssaidentify command will just return a return code of success or failure, but no
text is returned. If the return code is 0, zero, then the command was successful. If the
return code is nonzero, then the command failed for some reason and a message is sent
to standard error, which is file descriptor 2. All we are interested in is if the return code
is zero or not.

496 Chapter 20

Table 20.1 SSA Identification Functions

FUNCTION NAME PURPOSE

usage Shows the user how to use the shell script

man_page Shows detailed information on how to use the
shell script

cleanup Executes when a trapped exit signal is detected

twirl Used to give the user feedback that processing
continues

all_defined_pdisks Controls SSA identification lights for all system
SSA disks

all_varied_on_pdisks Controls SSA disks only in currently varied-on
volume groups

list_of_disks Controls SSA identification of a list of one or more
disks

The Scripting Process

In the SSA identification script we are going to use a lot of functions. These functions
perform the work so we just need the logic to decide which function to execute. An
important thing you need to understand about functions is that the function must be
declared, or written, in the code previous to when you want to execute the function.
This makes sense if you think about it: You have to write the code before you can use it!
The functions involved in this shell script are listed in Table 20.1 for your convenience.

Usage and User Feedback Functions
As you can see, we have our work cut out for us, so let’s get started. The first function
is the usage function. When a user input error is detected you want to give the user
some feedback on how to properly use the shell script. Always create a usage func-
tion. I want to show you this function because I did something you may not know that
you can do. I used a single echo command and have 15 separate lines of output. Take
a look at the function in Listing 20.1 to see the method.

Turning On/Off SSA Identification Lights 497

Free & Share & Open

function usage

{

echo “\nUSAGE ERROR...

\nMAN PAGE ==> $SCRIPTNAME -?

\nTo Turn ALL Lights Either ON or OFF:

\nUSAGE: SSAidentify.ksh [-v] [on] [off]

EXAMPLE: SSAidentify.ksh -v on

\nWill turn ON ALL of the system’s currently VARIED ON

SSA identify lights. NOTE: The default is all DEFINED SSA disks

\nTo Turn SPECIFIC LIGHTS Either ON or OFF Using EITHER

the pdisk#(s) AND/OR the hdisk#(s):

\nUSAGE: SSAidentify.ksh [on] [off] pdisk{#1} [hdisk{#2}]...

EXAMPLE: SSAidentify.ksh on hdisk36 pdisk44 pdisk47

\nWill turn ON the lights to all of the associated pdisk#(s)

that hdisk36 translates to and PDISKS pdisk44 and pdisk47.

\nNOTE: Can use all pdisks, all hdisks or BOTH hdisk

and pdisk together if you want...”

exit 1

}

Listing 20.1 Usage function with a single echo command.

As you can see in Listing 20.1, I enclose the entire text that I want to echo to the
screen within double quotes, “usage text”. To place text on the next line, just press
the ENTER key. If you want an extra blank line or a TAB, then use one or more of the
many cursor functions available with the echo command, as shown in Table 20.2.

There are many more in the man pages on your system. When incorrect usage of the
shell script is detected, which you have to build in to the script, the proper usage mes-
sage in Listing 20.2 is displayed on the screen.

Table 20.2 Cursor Control Commands for the echo Command

ECHO FUNCTION PURPOSE

\n Insert a new line with a carriage return

\t Tab over on TAB length characters for each \t entered

\b Back the cursor up one space for each \b entered

\c Leaves the cursor at the current position, without a
carriage return or line feed

498 Chapter 20

USAGE ERROR...

MAN PAGE ==> SSAidentify.ksh -?

To Turn ALL Lights Either ON or OFF:

USAGE: SSAidentify.ksh [-v] [on] [off]

EXAMPLE: SSAidentify.ksh -v on

Will turn ON ALL of the system’s currently VARIED ON

SSA identify lights. NOTE: The default is all DEFINED SSA disks

To Turn SPECIFIC LIGHTS Either ON or OFF Using EITHER

the pdisk#(s) AND/OR the hdisk#(s):

USAGE: SSAidentify.ksh [on] [off] pdisk{#1} [hdisk{#2}]...

EXAMPLE: SSAidentify.ksh on hdisk36 pdisk44 pdisk47

Will turn ON the lights to all of the associated pdisk#(s)

that hdisk36 translates to and PDISKS pdisk44 and pdisk47.

NOTE: Can use all pdisks, all hdisks or BOTH hdisk

and pdisk together if you want...

Listing 20.2 Example of cursor control using the echo command.

By using cursor control with the echo command, we can eliminate using a separate
echo command on every separate line of text we want to display. I do the same thing
in the man_page function. You can see this function in its entirety in the full shell script
shown in Listing 20.9.

Before I show you the cleanup function, I want to show you the twirl function.
The twirl function is used to give feedback to the user, which you saw back in Chap-
ter 4. As a brief review, the twirl function displays the appearance of a line rotating.
And this is accomplished through? You guess it, cursor control using the echo com-
mand. I like the twirl function because it is not too hard to understand and it is very
short. This function works by starting an infinite while loop, which is done using the :
(colon) no-op operator. A no-op does nothing and always has a zero return code so it is
perfect to create an infinite loop. The next step is to have a counter that counts only
from 0 to 4. When the counter reaches 4 it is reset back to 0, zero. At each count a case
statement is used to decide which of the four lines, -, \, |, and /, is to be displayed. At
the same time, the cursor is backed up so it is ready to overwrite the previous line char-
acter with a new one. There is a sleep for one second on each loop iteration. You must

Turning On/Off SSA Identification Lights 499

Free & Share & Open

leave the sleep statement in the code or you will see a big load on the system by all of
the continuous updates to the screen. I use this function for giving user feedback when
a time-consuming job is executing. When the job is finished I kill the twirl function
and move on. The easiest way to kill a background function is to capture the PID just
after kicking off the background job, which is assigned to the $! shell variable. This is
similar to the way $? is used to see the return code of the last command. The twirl
function is shown in Listing 20.3.

function twirl

{

TCOUNT=”0” # For each TCOUNT the line twirls one increment

while : # Loop forever...until you break out of the loop

do

TCOUNT=$(expr ${TCOUNT} + 1) # Increment the TCOUNT

case ${TCOUNT} in

“1”) echo ‘-’”\b\c”

sleep 1

;;

“2”) echo ‘\\’”\b\c”

sleep 1

;;

“3”) echo “|\b\c”

sleep 1

;;

“4”) echo “/\b\c”

sleep 1

;;

*) TCOUNT=”0” ;; # Reset the TCOUNT to “0”, zero.

esac

done

End of twirl function

}

Listing 20.3 Twirl function listing.

When I have a time-consuming job starting, I start the twirl function with the fol-
lowing commands:

twirl &

TWIRL_PID=$!

This leads into the next function, cleanup. In normal operation the twirl function
is killed in the main body of the script, or in the function that it is called in, by using the

500 Chapter 20

kill command and the previously saved PID, which is pointed to by the TWIRL_PID
variable. Life, though, is not always normal. In the top of the main body of the shell
script we set a trap. The trap is used to execute one or more commands, programs, or
shell scripts when a specified exit code is captured. Of course, you cannot trap a kill -9!
In this shell script we execute the cleanup function on exit codes 1, 2 ,3, 5, and 15. You
can add more exit codes if you want. This cleanup function displays a message on the
screen that a trap has occurred and runs the kill -9 $TWIRL_PID command before
exiting the shell script. If you omit the trap and the twirl function is running in the
background, it will continue to run in the background! You cannot miss it—you always
have a twirling line on your screen. Of course, you can kill the PID if you can find it in
the process table with the ps command. The cleanup function is shown in Listing 20.4.

function cleanup

{

echo “\n...Exiting on a trapped signal...EXITING STAGE LEFT...\n”

kill -9 $TWIRL_PID

End of cleanup function

}

Listing 20.4 Cleanup function listing.

When an exit code is captured the user is informed that the shell script is exiting,
and then the kill command is executed on the PID saved in the $TWIRL_PID variable.

Control Functions
Now we get into the real work of turning on and off the SSA identification lights start-
ing with the all_defined_pdisks function. This function is the simplest of the SSA
identification functions in this chapter. The goal is to get a list of every SSA disk on the
system and use the pdisk# to control the identification lights by turning all lights on or
off in sequence.

To understand this function you need to understand an AIX command called lsdev
and the switches we use to extract only the pdisk information. The lsdev command is
used to display devices in the system and the characteristics of devices. The -C switch
tells the lsdev command to look at only the currently defined devices. Then the -c com-
mand switch is added to specify the particular class of device; in our case the device
class is pdisk. So far our lsdev command looks like the following statement:

lsdev -Cc pdisk

Turning On/Off SSA Identification Lights 501

Free & Share & Open

But we want to drill down a little deeper in the system. We can also specify a subclass
to the previously defined class by adding the -s switch with our subclass ssar. We also
want to have a formatted output with column headers so we add the -H switch. These
headers just help ensure that we have good separation between fields. Now we have
the following command:

lsdev -Cc pdisk -s ssar -H

Using this command on a system with SSA disks you see an output similar to the
one in Listing 20.5.

name status location description

pdisk0 Available 34-08-5B91-01-P SSA160 Physical Disk Drive

pdisk1 Available 34-08-5B91-02-P SSA160 Physical Disk Drive

pdisk2 Available 34-08-5B91-03-P SSA160 Physical Disk Drive

pdisk3 Available 34-08-5B91-04-P SSA160 Physical Disk Drive

pdisk4 Available 24-08-5B91-05-P SSA160 Physical Disk Drive

pdisk5 Available 24-08-5B91-07-P SSA160 Physical Disk Drive

pdisk6 Available 24-08-5B91-06-P SSA160 Physical Disk Drive

pdisk7 Available 24-08-5B91-08-P SSA160 Physical Disk Drive

pdisk8 Available 24-08-5B91-09-P SSA160 Physical Disk Drive

pdisk9 Available 24-08-5B91-10-P SSA160 Physical Disk Drive

pdisk10 Available 24-08-5B91-11-P SSA160 Physical Disk Drive

pdisk11 Available 24-08-5B91-12-P SSA160 Physical Disk Drive

pdisk12 Available 34-08-5B91-13-P SSA160 Physical Disk Drive

pdisk13 Available 34-08-5B91-14-P SSA160 Physical Disk Drive

pdisk14 Available 34-08-5B91-16-P SSA160 Physical Disk Drive

pdisk15 Available 34-08-5B91-15-P SSA160 Physical Disk Drive

Listing 20.5 lsdev listing of pdisks.

In Listing 20.5 we have more information than we need. The only part of this lsdev
command output that we are interested in is in the first column, and only the lines that
have “pdisk” in the first column. To filter this output we need to expand our lsdev
command by adding awk and grep to filter the output. Our expanded command is
shown here:

lsdev -Cc pdisk -s ssar -H | awk ‘{print $1}’ | grep pdisk

In this command statement we extract the first column using the awk statement in a
pipe, while specifying the first column with the ‘{print $1}’ notation. Then we use
grep to extract only the lines that contain the pattern pdisk. The result is a list of all cur-
rently defined pdisks on the system.

502 Chapter 20

To control the identification lights for the pdisks in this list we use a for loop and use
our lsdev command to create the list of pdisks with command substitution. These steps
are shown in Listing 20.6.

function all_defined_pdisks

{

TURN ON/OFF ALL LIGHTS:

Loop through each of the system’s pdisks by using the “lsdev”

command with the “-Cc pdisk” switch while using “awk” to extract

out the actual pdisk number. We will either

turn the identifier lights on or off specified by the $SWITCH

variable:

#

Turn lights on: -y

Turn lights off: -n

#

as the $SWITCH value to the “ssaidentify” command, as used below...

echo “\nTurning $STATE ALL of the system’s pdisks...Please Wait...\n”

for PDISK in $(lsdev -Cc pdisk -s ssar -H | awk ‘{print $1}’ \

| grep pdisk)

do

echo “Turning $STATE ==> $PDISK”

ssaidentify -l $PDISK -${SWITCH} \

|| echo “Turning $STATE $PDISK Failed”

done

echo “\n...TASK COMPLETE...\n”

}

Listing 20.6 all_defined_pdisks function listing.

In Listing 20.6 notice the command substitution used in the for loop, which is in
bold text. The command substitution produces the list arguments that are assigned to
the $PDISK variable on each loop iteration. As each pdisk is assigned, the ssaidentify
command is executed using the $PDISK definition as the target and uses the -
$SWITCH as the action to take, which can be either -y for light on or -n for light off.
These values are defined in the main body of the shell script. As each light is being
turned on or off the user is notified. If the action fails the user is notified of the failure
also. This failure notification is done using a logical OR, specified by the double
pipes, ||.

The next function is all_varied_on_pdisks. This function is different in that we
must approach the task of getting a list of SSA disks to act on using completely different
strategy. The result we want is the ability to control the SSA disks that are in volume

Turning On/Off SSA Identification Lights 503

Free & Share & Open

groups that are currently varied-on. To get this list we must first get a list of the varied-
on volume groups using the lsvg -o command. This command gives a list of varied-on
volume groups directly without any added text so we are okay with this command’s
output. Using this list of volume groups we can now use the lspv command to get a
full listing of defined hdisks. From this list we use grep to extract the hdisks that are in
currently varied-on volume groups. Notice that all of this activity so far is at the hdisk
level. We need to have pdisks to control the identification lights. To build a list of
hdisks to convert we use a for loop tagging on the volume groups with the VG variable.
For each $VG we run the following command to build a list.

lspv | grep $VG >> $HDISKFILE

Notice that we use a file to store this list. A file is needed because if a variable were
used we might exceed the character limit for a variable, which is 2048 on most systems.
As you know, most large shops have systems with hundreds, if not thousands, of SSA
disks. To be safe we use a file for storage here.

Using this list of hdisks we are going to use another for loop to translate each of the
hdisks into the associated pdisk. Because we may still have a huge list containing
pdisks we again use a file to hold the list. The translation takes place using the ssaxlate
command, but what if some of these hdisks are not SSA disks? Well, the translation will
fail! To get around this little problem we first test each translation and send all of the
output to the bit bucket and check the return code of the ssaxlate command. If the
return code is 0, zero, then the hdisk is an SSA disk. If the return code is nonzero, then
the hdisk is not an SSA disk. The result is that only pdisks are added to the new pdisk
list file, which is pointed to by the PDISKFILE variable. Because this translation may
take quite a while we start the twirl function, which is our progress indicator, in the
background before the translation begins. As soon as the translation process ends, the
twirl function is killed using the saved PID.

The only thing left to do is to perform the desired action on each of the pdisk identi-
fication lights. We do this by starting yet another for loop. This time we use command
substitution to produce a list of pdisks by listing the pdisk list file with the cat com-
mand. On each loop iteration the ssaidentify command is executed for each pdisk in
the list file. The all_varied_on_pdisk function is shown in Listing 20.7.

function all_varied_on_pdisks

{

trap ‘kill -9 $TWIRL_PID; return 1’ 1 2 3 15

cat /dev/null > $HDISKFILE

cat /dev/null > $PDISKFILE

echo “\nGathering a list of Varied on system SSA disks...Please

wait...\c”

VG_LIST=$(lsvg -o) # Get the list of Varied ON Volume Groups

for VG in $(echo $VG_LIST)

Listing 20.7 all_varied_on_pdisks function listing.

504 Chapter 20

do

lspv | grep $VG >> $HDISKFILE # List of Varied ON PVs

done

twirl & # Gives the user some feedback during long processing times...

TWIRL_PID=$!

echo “\nTranslating hdisk(s) into the associated pdisk(s)

...Please Wait...\c”

for DISK in $(cat $HDISKFILE) # Translate hdisk# into pdisk#(s)

do

Checking for an SSA disk

/usr/sbin/ssaxlate -l $DISK # 2>/dev/null 1>/dev/null

if (($? == 0))

then

/usr/sbin/ssaxlate -l $DISK >> $PDISKFILE # Add to pdisk List

fi

done

kill -9 $TWIRL_PID # Kill the user feedback function...

echo “\b “ # Clean up the screen by overwriting the last character

echo “\nTurning $STATE all VARIED ON system pdisks...Please Wait...\n”

Act on each pdisk individually...

for PDISK in $(cat $PDISKFILE)

do

echo “Turning $STATE ==> $PDISK”

/usr/sbin/ssaidentify -l $PDISK -${SWITCH} \

||echo “Turning $STATE PDISK Failed”

done

echo “\n\t...TASK COMPLETE...\n”

}

Listing 20.7 all_varied_on_pdisks function listing. (continued)

Notice that there is a trap at the beginning of this function in Listing 20.7. Because
we are using the twirl function for user feedback we need a way to kill off the rotat-
ing line so we added a trap inside the function. In the next step we initialized both of
the list files to empty files. Then the fun starts. This is where we filter through all of the
hdisks to find the ones that are in currently varied-on volume groups. With this hdisk
list we loop through each of the disks looking for SSA disks. As we find each hdisk it is
translated into a pdisk and added to the pdisk list. With all of the pdisks of interest
found we loop through each one and turn on/off the SSA identification lights.

Turning On/Off SSA Identification Lights 505

Free & Share & Open

The last function is list_of_disks, which acts on one or more hdisks or pdisks
that are specified on the command line when the shell script is executed. In the main
body of the shell script we do all of the parsing of the command-line arguments
because if you tried to parse the command line inside a function the parsing would act
on the function’s argument, not the shell script’s arguments. Therefore this is a short
function.

In the main body of the shell script a variable, PDISKLIST, is populated with a list
of pdisks. Because the user can specify either hdisks or pdisks, or both, on the com-
mand line the only verification that has been done is on the hdisks only, when they
were translated to pdisks. We need do a sanity check to make sure that each of the
pdisks we act on has a character special file in the /dev filesystem. This is done using
the -c switch in an if...then test. If the pdisk listed has a character special file associated
with it, then an attempt is made to turn the SSA identification light on/off, otherwise,
the user is notified that the specified pdisk is not defined on the system. The
list_of_disks function is shown in Listing 20.8.

function list_of_disks

{

TURN ON/OFF INDIVDUAL LIGHTS:

Loop through each of the disks that was passed to this script

via the positional parameters greater than $1, i.e., $2, $3, $4...

We first determine if each of the parameters is a pdisk or an

hdisk. For each hdisk passed to the script we first need to

translate the hdisk definition into a pdisk definition. This

script has been set up to accept a combinition of hdisks and

pdisks.

#

We will either turn the identifier lights on or off specified by

the $SWITCH variable for each pdisk#:

#

Turn lights on: -y

Turn lights off: -n

#

as the $SWITCH value to the “ssaidentify” command, as used below...

echo “\n”

The disks passed to this script can be all hdisks, all pdisks,

or a combination of pdisks and hdisks; it just does not matter.

We translate each hdisk into the associated pdisk(s).

echo “\nTurning $STATE individual SSA disk lights...\n”

for PDISK in $(echo $PDISKLIST)

do

Listing 20.8 list_of_disks function listing.

506 Chapter 20

Is it a real pdisk??

if [-c /dev/${PDISK}] 2>/dev/null

then # Yep - act on it...

/usr/sbin/ssaidentify -l $PDISK -${SWITCH} >/dev/null

if (($? == 0))

then

/usr/bin/ssaxlate -l $PDISK -${SWITCH}

if (($? == 0))

then

echo “Light on $PDISK is $STATE”

else

echo “Turning $STATE $PDISK Failed”

fi

fi

else

else

echo “\nERROR: $PDISK is not a defined device on $THISHOST\n”

fi

done

echo “\n...TASK COMPLETE...\n”

}

Listing 20.8 list_of_disks function listing. (continued)

Notice in the boldface text in Listing 20.8 where we do the test to see if the pdisk
listed is a real pdisk by using the -c switch in the if statement. We have covered the rest
of the function, so let’s move on to the main body of the shell script.

The Full Shell Script
This is a good point to show the entire shell script and go through the details at the end
of the listing. The SSAidentify.ksh shell script is shown in Listing 20.9.

#!/bin/ksh

#

SCRIPT: SSAidentify.ksh

#

AUTHOR: Randy Michael

#

DATE: 11/7/2000

Listing 20.9 SSA identify.ksh shell script listing. (continues)

Turning On/Off SSA Identification Lights 507

Free & Share & Open

#

REV: 2.5.A

#

PURPOSE: This script is used to turn on, or off, the

identify lights on the system’s SSA disks

#

REV LIST:

11/27/2000: Added code to allow the user to turn on/off

individual pdisk lights

#

12/10/2000: Added code to accept a combination of pdisks

and hdisks. For each hdisk passed the script translates

the hdisk# into the associated pdisk#(s).

#

12/10/2000: Added code to ALLOW using the currently VARIED ON

Volume Group’s disks (-v switch), as opposed to ALL DEFINED

SSA disks, which is the default behavior. Very helpful in an

HACMP environment.

#

12/11/2000: Added the “twirl” function to give the user feedback

during long processing periods, i.e., translating a few hundred

hdisks into associated pdisks. The twirl function is just a

rotating cursor, and it twirls during the translation processing.

#

set -n # Uncomment to check syntax without any execution

set -x # Uncomment to debug this script

SCRIPTNAME=$(basename $0)

##

function usage

{

echo “\nUSAGE ERROR...

\nMAN PAGE ==> $SCRIPTNAME -?

\nTo Turn ALL Lights Either ON or OFF:

\nUSAGE: SSAidentify.ksh [-v] [on] [off]

EXAMPLE: SSAidentify.ksh -v on

\nWill turn ON ALL of the system’s currently VARIED ON

SSA identify lights. NOTE: The default is all DEFINED SSA disks

\nTo Turn SPECIFIC LIGHTS Either ON or OFF Using EITHER

the pdisk#(s) AND/OR the hdisk#(s):

\nUSAGE: SSAidentify.ksh [on] [off] pdisk{#1} [hdisk{#2}]...

EXAMPLE: SSAidentify.ksh on hdisk36 pdisk44 pdisk47

\nWill turn ON the lights to all of the associated pdisk#(s)

that hdisk36 translates to and PDISKS pdisk44 and pdisk47.

\nNOTE: Can use all pdisks, all hdisks or BOTH hdisk

Listing 20.9 SSA identify.ksh shell script listing. (continued)

508 Chapter 20

and pdisk together if you want...”

exit 1

}

##

function man_page

{

MAN_FILE=”/tmp/man_file.out”

>$MAN_FILE

Text for the man page...

echo “\n\t\tMAN PAGE FOR SSAidentify.ksh SHELL SCRIPT\n

This script is used to turn on, or off, the system’s SSA disk drive

identification lights. You can use this script in the following ways:\n

To turn on/off ALL DEFINED SSA drive identification lights, ALL VARIED-

ON SSA

drive identification lights (-v switch), AN INDIVIDUAL SSA drive

identification

light or A LIST OF SSA drive identification lights.\n

SSA disk drives can be specified by EITHER the pdisk OR the hdisk, or

a COMBINATION OF BOTH. The script translates all hdisks into the

associated pdisk(s) using the system’s /usr/sbin/ssaxlate command and

turns

the SSA identification light on/off using the system’s

/usr/sbin/ssaidentify

command.\n

This script has four switches that control its action:\n

-? - Displays this man page.\n

on - Turns the SSA identify light(s) ON.\n

off - Turns the SSA identify light(s) OFF.\n

-v - Specifies to only act on SSA disks that are in currently varied-on

volume groups. The default action is to act on ALL DEFINED SSA disks.\n

NOTE: This switch is ignored for turning on/off individual SSA drive

lights,

only valid when turning on/off ALL lights. This option is very helpful

in an

HACMP environment because ALL DEFINED, the default action, will turn

on/off all

of the SSA drive lights even if the SSA disk is in a volume group that

is not

currently varied-on. This can be confusing in an HA cluster.\n

Using this script is very straight forward. The following examples show

the

Listing 20.9 SSA identify.ksh shell script listing. (continues)

Turning On/Off SSA Identification Lights 509

Free & Share & Open

correct use of this script:\n” >> $MAN_FILE

echo “\nUSAGE: SSAidentify.ksh [-v] [on] [off] [pdisk#/hdisk#]

[pdisk#/hdisk# list]

\n\nTo Turn ALL Lights Either ON or OFF:

\nUSAGE: SSAidentify.ksh [-v] [on] [off]

\nEXAMPLE: $SCRIPTNAME on

\nWill turn ON ALL of the system’s DEFINED SSA identify lights.

This is the default.

EXAMPLE: SSAidentify.ksh -v on

\nWill turn ON ALL of the system’s currently VARIED-ON

SSA identify lights. OVERRIDES THE DEFAULT ACTION OF ALL DEFINED SSA

DISKS

\nTo Turn SPECIFIC LIGHTS Either ON or OFF Using EITHER

the pdisk#(s) AND/OR the hdisk#(s):

\nUSAGE: $SCRIPTNAME [on] [off] pdisk{#1} [hdisk{#2}]...

\nEXAMPLE: $SCRIPTNAME on hdisk36 pdisk44 pdisk47

\nWill turn ON the lights to all of the associated pdisk#(s)

that hdisk36 translates to and PDISKS pdisk44 and pdisk47.

\nNOTE: Can use all pdisks, all hdisks or BOTH hdisk

and pdisk together if you want...\n\n” >> $MAN_FILE

more $MAN_FILE

End of man_page function

}

##

function cleanup

{

echo “\n...Exiting on a trapped signal...EXITING STAGE LEFT...\n”

kill $TWIRL_PID

End of cleanup function

}

##

function twirl

{

TCOUNT=”0” # For each TCOUNT the line twirls one increment

while : # Loop forever...until you break out of the loop

do

TCOUNT=$(expr ${TCOUNT} + 1) # Increment the TCOUNT

case ${TCOUNT} in

Listing 20.9 SSA identify.ksh shell script listing. (continued)

510 Chapter 20

“1”) echo ‘-’”\b\c”

sleep 1

;;

“2”) echo ‘\\’”\b\c”

sleep 1

;;

“3”) echo “|\b\c”

sleep 1

;;

“4”) echo “/\b\c”

sleep 1

;;

*) TCOUNT=”0” ;; # Reset the TCOUNT to “0”, zero.

esac

done

End of twirl function

}

##

function all_defined_pdisks

{

TURN ON/OFF ALL LIGHTS:

Loop through each of the system’s pdisks by using the “lsdev”

command with the “-Cc pdisk” switch while using “awk” to extract

out the actual pdisk number. We will either

turn the identifier lights on or off specified by the

$SWITCH variable:

#

Turn lights on: -y

Turn lights off: -n

#

as the $SWITCH value to the “ssaidentify” command, as used below...

echo “\nTurning $STATE ALL of the system’s pdisks...Please Wait...\n”

for PDISK in $(lsdev -Cc pdisk -s ssar -H | awk ‘{print $1}’ | grep

pdisk)

do

echo “Turning $STATE ==> $PDISK”

ssaidentify -l $PDISK -${SWITCH} || echo “Turning $STATE $PDISK

Failed”

done

echo “\n...TASK COMPLETE...\n”

}

##

Listing 20.9 SSA identify.ksh shell script listing. (continues)

Turning On/Off SSA Identification Lights 511

Free & Share & Open

function all_varied_on_pdisks

{

trap ‘kill -9 $TWIRL_PID; return 1’ 1 2 3 15

cat /dev/null > $HDISKFILE

echo “\nGathering a list of Varied on system SSA disks...Please

wait...\c”

VG_LIST=$(lsvg -o) # Get the list of Varied ON Volume Groups

for VG in $(echo $VG_LIST)

do

lspv | grep $VG >> $HDISKFILE # List of Varied ON PVs

done

twirl & # Gives the user some feedback during long processing times...

TWIRL_PID=$!

echo “\nTranslating hdisk(s) into the associated pdisk(s)...Please

Wait... \c”

for DISK in $(cat $HDISKFILE) # Translate hdisk# into pdisk#(s)

do

Checking for an SSA disk

/usr/sbin/ssaxlate -l $DISK # 2>/dev/null 1>/dev/null

if (($? == 0))

then

/usr/sbin/ssaxlate -l $DISK >> $PDISKFILE # Add to pdisk List

fi

done

kill -9 $TWIRL_PID # Kill the user feedback function...

echo “\b “

echo “\nTurning $STATE all VARIED-ON system pdisks...Please Wait...\n”

for PDISK in $(cat $PDISKFILE)

do # Act on each pdisk individually...

echo “Turning $STATE ==> $PDISK”

/usr/sbin/ssaidentify -l $PDISK -${SWITCH} || echo “Turning $STATE

$PDISK Failed”

Listing 20.9 SSA identify.ksh shell script listing. (continued)

512 Chapter 20

done

echo “\n\t...TASK COMPLETE...\n”

}

##

function list_of_disks

{

TURN ON/OFF INDIVDUAL LIGHTS:

Loop through each of the disks that was passed to this script

via the positional parameters greater than $1, i.e., $2, $3, $4...

We first determine if each of the parameters is a pdisk or an hdisk.

For each hdisk passed to the script we first need to translate

the hdisk definition into a pdisk definition. This script has

been set up to accept a combination of hdisks and pdisks.

#

We will either turn the identifier lights on or off specified by

the $SWITCH variable for each pdisk#:

#

Turn lights on: -y

Turn lights off: -n

#

as the $SWITCH value to the “ssaidentify” command.

echo “\n”

The disks passed to this script can be all hdisks, all pdisks

or a combination of pdisks and hdisks; it just does not matter.

We translate each hdisk into the associated pdisk(s).

echo “\nTurning $STATE individual SSA disk lights...\n”

for PDISK in $(echo $PDISKLIST)

do

Is it a real pdisk??

if [-c /dev/${PDISK}] 2>/dev/null

then # Yep - act on it...

/usr/sbin/ssaidentify -l $PDISK -${SWITCH}

if [$? -eq 0]

then

/usr/bin/ssaxlate -l $PDISK -${SWITCH}

if (($? == 0))

Listing 20.9 SSA identify.ksh shell script listing. (continues)

Turning On/Off SSA Identification Lights 513

Free & Share & Open

then

echo “Light on $PDISK is $STATE”

else

echo “Turning $STATE $PDISK Failed”

fi

fi

else

echo “\nERROR: $PDISK is not a defined device on $THISHOST\n”

fi

done

echo “\n...TASK COMPLETE...\n”

}

##

############# BEGINNING OF MAIN ############

##

Set a trap...

Remember...Cannot trap a “kill -9” !!!

trap ‘cleanup;exit 1’ 1 2 3 15

##

Check for the correct number of arguments (1)

if (($# == 0))

then

usage

fi

##

See if the system has any pdisks defined before proceeding

PCOUNT=$(lsdev -Cc pdisk -s ssar | grep -c pdisk)

if ((PCOUNT == 0))

then

echo “\nERROR: This system has no SSA disks defined\n”

echo “\t\t...EXITING...\n”

Listing 20.9 SSA identify.ksh shell script listing. (continued)

514 Chapter 20

exit 1

fi

##

Make sure that the ssaidentify program is

executable on this system...

if [! -x /usr/sbin/ssaidentify]

then

echo “\nERROR: /usr/sbin/ssaidentify is NOT an executable”

echo “program on $THISHOST”

echo “\n...EXITING...\n”

exit 1

fi

##

Make sure that the ssaxlate program is

executable on this system...

if [! -x /usr/sbin/ssaxlate]

then

echo “\nERROR: /usr/sbin/ssaxlate is NOT an executable”

echo “program on $THISHOST”

echo “\n...EXITING...\n”

exit 1

fi

##

##

#

Okay, we should have valid data at this point

Let’s do a light show.

#

##

##

Always use the UPPERCASED value for the $STATE, $MODE,

and $PASSED variables...

typeset -u MODE

Listing 20.9 SSA identify.ksh shell script listing. (continues)

Turning On/Off SSA Identification Lights 515

Free & Share & Open

MODE=”DEFINED_DISKS”

typeset -u STATE

STATE=UNKNOWN

typeset -u PASSED

Use lowercase for the argument list

typeset -l ARGUMENT

Grab the system hostname

THISHOST=$(hostname)

Define the hdisk and pdisk FILES

HDISKFILE=”/tmp/disklist.out”

>$HDISKFILE

PDISKFILE=”/tmp/pdisklist.identify”

>$PDISKFILE

Define the hdisk and pdisk list VARIABLES

HDISKLIST=

PDISKLIST=

Use getopts to parse the command-line arguments

while getopts “:v V” ARGUMENT 2>/dev/null

do

case $ARGUMENT in

v|V) MODE=”VARIED_ON”

;;

\?) man_page

;;

esac

done

##

Decide if we are to turn the lights on or off...

(echo $@ | grep -i -w on >/dev/null) && STATE=ON

(echo $@ | grep -i -w off >/dev/null) && STATE=OFF

case $STATE in

ON)

Listing 20.9 SSA identify.ksh shell script listing. (continued)

516 Chapter 20

Turn all of the lights ON...

SWITCH=”y”

;;

OFF)

Turn all of the lights OFF...

SWITCH=”n”

;;

*)

Unknown Option...

echo “\nERROR: Please indicate the action to turn lights ON or

OFF\n”

usage

exit 1

;;

esac

##

##

########## PLAY WITH THE LIGHTS ##############

##

##

if (($# == 1)) && [[$MODE = “DEFINED_DISKS”]]

then

This function will turn all lights on/off

all_defined_pdisks

elif [[$MODE = “VARIED_ON”]] && (($# = 2))

then

This function will turn on/off SSA disk lights

in currently varied-on volume groups only

all_varied_on_pdisks

Now check for hdisk and pdisk arguments

elif [$MODE = DEFINED_DISKS] && (echo $@ | grep disk >/dev/null) \

&& (($# >= 2))

then

If we are here we must have a list of hdisks

and/or pdisks

Look for hdisks and pdisks in the command-line arguments

for DISK in $(echo $@ | grep disk)

do

case $DISK in

Listing 20.9 SSA identify.ksh shell script listing. (continues)

Turning On/Off SSA Identification Lights 517

Free & Share & Open

hdisk*) HDISKLIST=”$HDISKLIST $DISK”

;;

pdisk*) PDISKLIST=”$PDISKLIST $DISK”

;;

*) : # No-Op - Do nothing

;;

esac

done

if [[! -z “$HDISKLIST”]] # Check for hdisks to convert to pdisks

then

We have some hdisks that need to be converted to pdisks

so start converting the hdisks to pdisks

Give the user some feedback

echo “\nConverting hdisks to pdisk definitions”

echo “\n ...Please be patient...\n”

Start converting the hdisks to pdisks

for HDISK in $(echo $HDISKLIST)

do

PDISK=$(ssaxlate -l $HDISK)

if (($? == 0))

then

echo “$HDISK translates to ${PDISK}”

else

echo “ERROR: hdisk to pdisk translation FAILED

for $HDISK”

fi

Build a list of pdisks

Add pdisk to the pdisk

list

PDISKLIST=”$PDISKLIST $PDISK”

done

fi

if [[-z “$PDISKLIST”]]

then

echo “\nERROR: You must specify at least one hdisk or

pdisk\n”

man_page

exit 1

Listing 20.9 SSA identify.ksh shell script listing. (continued)

518 Chapter 20

else

Turn on/off the SSA identification lights

list_of_disks

fi

fi

##

END OF SCRIPT

##

Listing 20.9 SSA identify.ksh shell script listing. (continued)

Let’s start at the “Beginning of Main” in Listing 20.9. The very first thing that we do
is set a trap. This trap is set for exit codes 1, 2, 3, 5, and 15. On any of these captured sig-
nals the cleanup function is executed, and then the shell script exits with a return
code of 1. It is nice to be able to clean up before the shell script just exits.

In the next series of tests we first make sure that there is at least one argument
present on the command line. If no arguments are given, then the script presents the
usage function, which displays proper usage and exits. If we pass the argument test
then I thought it would be a good idea to see if the system has any SSA disks defined
on the system. For this step we use the PCOUNT=$(lsdev -Cc pdisk -s ssar | grep -c
pdisk). The grep -c returns the count of SSA disks found on the system and assigns the
value to the PCOUNT variable. If the value is zero there are no SSA disks, so inform
the user and exit. If we do have some SSA disks, the next thing we do is make sure that
the ssaidentify and ssaxlate commands exist and are executable on this system. At this
point we know we are in an SSA environment so we define and initialize all of the
script’s variables.

Then we get to use the getopts function to parse the command-line arguments. We
expect and recognize just two arguments, -v and -V, to specify varied-on volume
groups only. Any other argument, specified by a preceding hyphen, -, displays the
man_page function. Anything else on the command line is ignored by the getopts
function, which is a shell built-in function.

On the command line we must have either on or off present, or we do not have
enough information to do anything. We check the command-line arguments by echo-
ing out the full list and grepping for on and off. At the next case statement the $STATE
variable is tested. If on or off was not found, the usage function is displayed and the
script exits. If we get past this point we know that we have the minimal data to do
some work.

When we start playing with the lights we have to do some tests to decide what
action we need to take and on what set of SSA disks. The first one is simple. If we have
only one command-line argument and it is either on or off, then we know to turn on or

Turning On/Off SSA Identification Lights 519

Free & Share & Open

off all defined SSA disk identification lights on the system without regard to volume
group status. So, here we run the all_defined_pdisks function. If we have two
arguments on the command line and one of them is -v or -V, then we know to act only
on SSA disks in currently varied-on volume groups by turning every one of the SSA
identification lights on or off.

The last option is to have hdisks or pdisks listed on the command line. For this
option we know to act on only the disks that the user specified and to turn on or off
only these disks. Because we allow both hdisks and pdisks we need to convert every-
thing to pdisk definitions before we call the list_of_disks function. To do this we
echo the entire list of command-line arguments and grep for the word disk. Using this
list in a case statement, we can detect the presence of an hdisk or a pdisk. For each one
found it is added to either the HDISKLIST or the PDISKLIST variables. After the test
we check to see if the HDISKLIST variable has anything assigned, which means that
the variable is not null. If there are entries, then we convert each hdisk to its associated
pdisk and build up the pdisk list in the PDISKLIST variable. When the list is complete,
and it is not an empty list, we call the list_of_disks function. That is it for this shell
script.

Other Things to Consider

I cannot always fit all of the options into a chapter, and this chapter is no exception.
Here are a few things to consider to modify this shell script.

Error Log
When I created this shell script it was for a personal need because I have so many SSA
disk trays. For my purposes I did not need an error log, but you may find one neces-
sary. In the places that I sent everything to the bit bucket, especially standard error, or
file descriptor 2, redirect this output to append to an error log. This may help you find
something in the system that you missed.

Cross-Reference
Because it is rare for the hdisk and pdisk associations to match by numbers you may
find that a shell script to cross-reference the numbers beneficial. You should be able to
knock this out in about one hour. Look through the code where I first test the hdisk to
see if it is an SSA disk and then do the translation. Using these few lines of code you
can build a nice little cross-reference sheet for your staff.

Root Access and sudo
Both of the SSA commands need root privilege to execute. If your systems have strict
root access rules you may just want to define this shell script in your /etc/sudoers
file. Please never directly edit this file! There is a special wrapper program around the

520 Chapter 20

vi editor in the /usr/local/sbin directory called visudo. This command starts a vi
session and opens up the /etc/sudoers file automatically. When you are finished
editing and save the file, this program checks the /etc/sudoers file for errors.

Summary

In this chapter we learned a few new things about controlling the SSA subsystem on an
AIX machine. These principles apply to any other Unix system utilizing SSA. As
always, there are many different ways to write a shell script, and some are lean and
mean with no comments. I like to make the shell scripts easier to understand and main-
tain. But I do have a few things that you may want to consider.

I hope you learned something in this chapter. In the next chapter we will look at
pseudo-random number generators. See you in the next chapter!

Turning On/Off SSA Identification Lights 521

Free & Share & Open

523

In writing shell scripts we sometimes run into a situation where we are creating files
faster than we can make the filenames unique. Most of the time a date/time stamp can
be added as a suffix to the filename to make the filename unique, but if we are creating
more than one file per second we end up overwriting the same file during a single
second. To get around this problem we can create pseudo-random numbers to append to
the filename after the date/time stamp. You may recall that in Chapter 10 we studied
creating pseudo-random passwords by using the computer generated numbers as
pointers to array elements that contained keyboard characters. A more thorough dis-
cussion of randomness is presented in this chapter.

What Makes a Random Number?

It is very difficult to create a true random number in a computer system. The problem
is repeatability and predictability of the number. When you start researching random
numbers you quickly enter the realm of heavy mathematical theory, and many of the
researchers have varying opinions of randomness. The only true random numbers that
I know of are the frequency variations of radioactive decay events and the frequency
variations of white noise. Radioactive decay events would have to be detected in some
way, and because we do not want to have any radioactive material hanging around we
can use built-in computer programs called pseudo-random number generators. Some

Pseudo-Random
Number Generation

C H A P T E R

21

Free & Share & Open

computer techniques are able to create numbers that are suitable for encryption keys
and for cryptographic secure communication links. Some of these techniques include
measuring the time between keystrokes and use this measured value as a memory
address to read the contents.

A popular Unix technique is to use a special Unix character device called /dev/
random. If you search the Internet for /dev/random you will find more information
than you could imagine on the topic of randomness. Randomness is a discussion topic
with many experts in the field having widely varying viewpoints. I am not an expert on
randomness, and this topic is beyond the scope of this book. We are going to concentrate
on creating pseudo-random numbers to make unique filenames in this chapter.

The numbers that we will create are not sufficiently random for any type of encryp-
tion because they are repeatable and cyclical in nature, but they will create unique
filenames. The Korn shell provides an environment variable called—you guessed it—
RANDOM. This pseudo-random number generator uses a seed as a starting point to
create all future numbers in the sequence. After the initial seed is used to create a
pseudo-random number, this resulting number is used for the next seed to create the
next random number, and so on. As you would expect, if you always start generating
your numbers with the same seed each time, you will get the exact same number
sequence each time. To change the repeatability we need to have a mechanism to vary
the initial seed each time we start generating numbers. I like to use the current process
ID (PID) because this number will vary widely and is an easy way to change the seed
value each time we start generating numbers.

The Methods

In this chapter we are going to look at three techniques to generate pseudo-random
numbers:

■■ Create numbers between zero and the maximum number allowed by the
system (32,767)

■■ Create numbers between one and a user-defined maximum

■■ Create fixed-length numbers between one and a user-defined maximum with
leading zeros added if needed

Each method is valid for a filename extension, but you may have other uses that
require either a range of numbers or a fixed number of digits with leading zeros. In any
case the basic concept is the same.

We start out by initializing the RANDOM environment variable to the current PID:

RANDOM=$$

The double dollar signs ($$) specify the PID of the current system process. The PID
will vary, so this is a good way to initialize the RANDOM variable so that we do not
always repeat the same number sequence. Once the RANDOM environment variable is
initialized we can use RANDOM just like any other variable. Most of the time we will use

524 Chapter 21

the echo command to print the next pseudo-random number. An example of using the
RANDOM environment variable is shown in Listing 21.1.

RANDOM=$$

echo $RANDOM

23775

echo $RANDOM

3431

echo $RANDOM

12127

echo $RANDOM $RANDOM

2087 21108

Listing 21.1 Using the RANDOM environment variable.

By default the RANDOM variable will produce numbers between 0 and 32767. Notice
the last entry in Listing 21.1. We can produce more than one number at a time if we
need to by adding more $RANDOM entries to our echo command. In showing our three
methods in this chapter we are going to create three functions and then create a shell
script that will use one of the three methods depending on the user-supplied input.
The last step is to write a shell script that will create unique filenames using a date/
time stamp and a random number.

Method 1: Creating Numbers between 0 and 32,767
Creating pseudo-random numbers using this default method is the simplest way to use
the RANDOM environment variable. The only thing that we need to do is to initialize the
RANDOM environment variable to an initial seed value and use the echo command to
display the new number. The numbers will range from 0 to 32767, which is the maxi-
mum for the RANDOM variable. You do not have control over the number of digits,
except that the number of digits will not exceed five, and you cannot specify a maxi-
mum value for the number in this first method. The function get_random_number is
shown in Listing 21.2.

function get_random_number

{

This function gets the next random number from the

$RANDOM variable. The range is 0 to 32767.

echo “$RANDOM”

}

Listing 21.2 get_random_number function listing.

Pseudo-Random Number Generation 525

Free & Share & Open

As you can see, the function is just one line, and we are assuming that the RANDOM
environment variable is initialized in the main body of the calling shell script.

Method 2: Creating Numbers between
1 and a User-Defined Maximum
We often want to limit the range of numbers to not exceed a user-defined maximum.
An example is creating lottery numbers between 1 and the maximum number, which
might be 36. We are going to use the modulo arithmetic operator to reduce all numbers
to a fixed set of numbers between [0..N-1], which is called modulo N arithmetic.

For our number range we need a user-supplied maximum value, which we will
assign to a variable called UPPER_LIMIT. The modulo operator is the percent sign (%),
and we use this operator the same way that you use the forward slash (/) in division.
We still use the RANDOM environment variable to get a new pseudo-random number.
This time, though, we are going to use the following equation to limit the number to
not exceed the user-defined maximum modulo N arithmetic.

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

Notice that we added one to the equation.
Using the preceding equation will produce a pseudo-random number between

1 and the user-defined $UPPER_LIMIT. The function using this equation is
in_range_random_number and is shown in Listing 21.3.

function in_range_random_number

{

Create a pseudo-random number less than or equal

to the $UPPER_LIMIT value, which is user defined

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

echo “$RANDOM_NUMBER”

}

Listing 21.3 in_range_random_number function listing.

The function in Listing 21.3 assumes that the RANDOM variable seed has been initial-
ized in the main body of the calling shell script and that a user-defined UPPER_LIMIT
variable has been set. This function will produce numbers between 1 and the user-
defined maximum value, but the number of digits will vary as the numbers are
produced.

526 Chapter 21

Method 3: Fixed-Length Numbers between
1 and a User-Defined Maximum
In both of the previous two examples we had no way of knowing how many digits the
new number would contain. When we are creating unique filenames it would be nice
to have filenames that are consistent in length. We can produce fixed-length numbers
by padding the number with leading zeros for each missing digit. As an example we
want all of our numbers to have four digits. Now let’s assume that the number that is
produced is 24. Because we want 24 to have four digits, we need to pad the number
with two leading zeros, which will make the number 0024. To pad the number we need
to know the length of the character string that makes up the number. The Korn shell
uses the pound operator (#) preceding the variable enclosed within curly braces ({}), as
shown here.

RN_LENGTH=$(echo ${#RANDOM_NUMBER})

If the RANDOM_NUMBER variable has 24 assigned as an assigned value, then the
result of the previous command is 2 (this RN_LENGTH variable points to the value 2),
indicating two digits. We will also need the length of the UPPER_LIMIT value, and we
will use the difference to know how many zeros to use to pad the pseudo-random
number output. Take a close look at the code in Listing 21.4 where you will find the
function in_range_fixed_length_random_number.

function in_range_fixed_length_random_number

{

Create a pseudo-random number less than or equal

to the $UPPER_LIMIT value, which is user defined.

This function will also pad the output with leading

zeros to keep the number of digits consistent.

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

Find the length of each character string

RN_LENGTH=$(echo ${#RANDOM_NUMBER})

UL_LENGTH=$(echo ${#UPPER_LIMIT})

Calculate the difference in string length

((LENGTH_DIFF = UL_LENGTH - RN_LENGTH))

Pad the $RANDOM_NUMBER value with leading zeros

Listing 21.4 in_range_fixed_length_random_number function. (continues)

Pseudo-Random Number Generation 527

Free & Share & Open

to keep the number of digits consistent.

case $LENGTH_DIFF in

0) echo “$RANDOM_NUMBER”

;;

1) echo “0$RANDOM_NUMBER”

;;

2) echo “00$RANDOM_NUMBER”

;;

3) echo “000$RANDOM_NUMBER”

;;

4) echo “0000$RANDOM_NUMBER”

;;

5) echo “00000$RANDOM_NUMBER”

;;

*) echo “$RANDOM_NUMBER”

;;

esac

}

Listing 21.4 in_range_fixed_length_random_number function. (continued)

In Listing 21.4 we use the same technique from Listing 21.3 to set an upper limit to
create our numbers, but we add in code to find the string length of both the
UPPER_LIMIT and RANDOM_NUMBER values. By knowing the length of both strings
we subtract the random-number length from the upper-limit length and use the differ-
ence in a case statement to add the correct number of zeros to the output.

Because this is a function, we again need to assume that the UPPER_LIMIT is
defined and the RANDOM environment variable is initialized in the main body of the
calling shell script. The resulting output is a fixed-length pseudo-random number
padded with leading zeros if the output string length is less than the upper limit string
length. Example output is shown in Listing 21.5 for an UPPER_LIMIT value of 9999.

0024

3145

9301

0328

0004

4029

2011

0295

0159

4863

Listing 21.5 Sample output for fixed-length random numbers.

528 Chapter 21

Why Pad the Number with Zeros the Hard Way?

An easier, and much cleaner, way to pad a number with leading zeros is to typeset the
variable to a fixed length. The following command works for any length number:

typeset -Z5 FIXED_LENGTH

FIXED_LENGTH=25

echo $FIXED_LENGTH

00025

Listing 21.6 Using the typeset command to fix the length of a variable.

In the example in Listing 21.6 we used the typeset command to set the length of the
FIXED_LENGTH variable to five digits. Then we assigned the value 25 to it. When we
use the echo command to show the value assigned to the variable the result is 00025,
which is fixed to five digits. Let’s modify the function in Listing 21.4 to use this tech-
nique as shown in Listing 21.7.

function in_range_fixed_length_random_number_typeset

{

Create a pseudo-random number less than or equal

to the $UPPER_LIMIT value, which is user defined.

This function will also pad the output with leading

zeros to keep the number of digits consistent using

the typeset command.

Find the length of each character string

UL_LENGTH=$(echo ${#UPPER_LIMIT})

Fix the length of the RANDOM_NUMBER variable to

the length of the UPPER_LIMIT variable, specified

by the $UL_LENGTH variable.

typeset -Z$UL_LENGTH RANDOM_NUMBER

Create a fixed length pseudo-random number

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

Return the value of the fixed length $RANDOM_NUMBER

echo $RANDOM_NUMBER

}

Listing 21.7 Using the typeset command in a random number function.

Pseudo-Random Number Generation 529

Free & Share & Open

As you can see in Listing 21.7, we took all of the complexity out of fixing the length
of a number. The only value we need to know is the length of the UPPER_LIMIT vari-
able assignment. As an example, if the upper limit is 9999 then the length is 4. We use 4
to typeset the RANDOM_NUMBER variable to four digits.

Now that we have four functions that will create pseudo-random numbers, we can
proceed with a shell script that will use one of the three methods depending on the
command-line arguments supplied to the shell script.

Shell Script to Create Pseudo-Random Numbers

Using the three functions from Listings 21.2, 21.3, and 21.7 we are going to create a
shell script that, depending on the command-line arguments, will use one of these
three functions. We first need to define how we are going to use each function.

With the usage definitions from Table 21.1 let’s create a shell script. We already have
the functions to create the numbers so we will start with BEGINNING OF MAIN in the
shell script.

For the usage function we will need the name of the shell script. We never want to
hard-code the name of a shell script because someone may rename the shell script for
one reason or another. To query the system for the actual name of the shell script we
use the basename $0 command. This command will return the name of the shell script,
specified by the $0 argument, with the directory path stripped out. I like to use either
of the following commands to create a SCRIPT_NAME variable.

SCRIPT_NAME=`basename $0`

or

SCRIPT_NAME=$(basename $0)

Table 21.1 random_number.ksh Shell Script Usage

SHELL SCRIPT USAGE FUNCTION USED TO CREATE THE NUMBER

random_number.ksh Without argument will use get_random_number

random_number.ksh 9999 With one numeric argument will use
in_range_random_number

random_number.ksh -f 9999 With -f as the first argument followed
by a numeric argument will use
in_range_fixed_length_random_number_typeset

530 Chapter 21

The result of both command substitution commands is the same. Next we need to
initialize the RANDOM environment variable. As we described before, we are going to
use the current process ID as the initial seed for the RANDOM variable.

RANDOM=$$

The SCRIPT_NAME and the RANDOM variables are the only initialization needed
for this shell script. The rest of the script is a case statement that uses the number of
command-line arguments ($#) as a value to decide which random number function we
will use. We also do some numeric tests to ensure that “numbers” are actually numeric
values. For the numeric tests we use the regular expression +([0-9]) in a case state-
ment. If the value is a number, then we do nothing, which is specified by the no-op
character, colon (:).

The entire shell script is shown in Listing 21.8.

#!/usr/bin/ksh

#

AUTHOR: Randy Michael

SCRIPT: random_number.ksh

DATE: 11/12/2001

REV: 1.2.P

#

PLATFORM: Not Platform Dependent

#

EXIT CODES:

0 - Normal script execution

1 - Usage error

#

REV LIST:

#

#

set -x # Uncomment to debug

set -n # Uncomment to check syntax without any command execution

#

##

########## DEFINE FUNCTIONS HERE ###################

##

function usage

{

echo “\nUSAGE: $SCRIPT_NAME [-f] [upper_number_range]”

echo “\nEXAMPLE: $SCRIPT_NAME”

echo “Will return a random number between 0 and 32767”

echo “\nEXAMPLE: $SCRIPT_NAME 1000”

echo “Will return a random number between 1 and 1000”

echo “\nEXAMPLE: $SCRIPT_NAME -f 1000”

Listing 21.8 random_number.ksh shell script listing. (continues)

Pseudo-Random Number Generation 531

Free & Share & Open

echo “Will add leading zeros to a random number from”

echo “1 to 1000, which keeps the number of digits consistant\n”

}

##

function get_random_number

{

This function gets the next random number from the

$RANDOM variable. The range is 0 to 32767.

echo “$RANDOM”

}

##

function in_range_random_number

{

Create a pseudo-random number less than or equal

to the $UPPER_LIMIT value, which is user defined

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

echo “$RANDOM_NUMBER”

}

##

function in_range_fixed_length_random_number_typeset

{

Create a pseudo-random number less than or equal

to the $UPPER_LIMIT value, which is user defined.

This function will also pad the output with leading

zeros to keep the number of digits consistent using

the typeset command.

Find the length of each character string

UL_LENGTH=$(echo ${#UPPER_LIMIT})

Fix the length of the RANDOM_NUMBER variable to

the length of the UPPER_LIMIT variable, specified

Listing 21.8 random_number.ksh shell script listing. (continued)

532 Chapter 21

by the $UL_LENGTH variable.

typeset -Z$UL_LENGTH RANDOM_NUMBER

Create a fixed length pseudo-random number

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

Return the value of the fixed length $RANDOM_NUMBER

echo $RANDOM_NUMBER

}

##

############## BEGINNING OF MAIN ###################

##

SCRIPT_NAME=`basename $0`

RANDOM=$$ # Initialize the RANDOM environment variable

using the PID as the initial seed

case $# in

0) get_random_number

;;

1) UPPER_LIMIT=”$1”

Test to see if $UPPER_LIMIT is a number

case $UPPER_LIMIT in

+([0-9])) : # Do Nothing...It’s a number

NOTE: A colon (:) is a no-op in Korn shell

;;

*) echo “\nERROR: $UPPER_LIMIT is not a number...”

usage

exit 1

;;

esac

We have a valid UPPER_LIMIT. Get the number.

in_range_random_number

Listing 21.8 random_number.ksh shell script listing. (continues)

Pseudo-Random Number Generation 533

Free & Share & Open

;;

2) # Check for the -f switch to fix the length.

if [[$1 = ‘-f’]] || [[$1 = ‘-F’]]

then

UPPER_LIMIT=”$2”

Test to see if $UPPER_LIMIT is a number

case $UPPER_LIMIT in

+([0-9])) : # Do Nothing...It’s a number

NOTE: A colon (:) is a no-op in Korn shell

;;

*) echo “\nERROR: $UPPER_LIMIT is not a number...”

usage

exit 1

;;

esac

in_range_fixed_length_random_number_typeset

else

echo “\nInvalid argument $1, see usage below...”

usage

exit 1

fi

;;

*) usage

exit 1

;;

esac

End of random_number.ksh Shell Script

Listing 21.8 random_number.ksh shell script listing. (continued)

Notice in Listing 21.8 that we will allow only zero, one, or two command-line
arguments. More than three arguments produces an error, and nonnumeric values,
other than -f or -F in argument one, will produce a usage error. Output using the
random_number.ksh shell script is shown in Listing 21.9.

534 Chapter 21

yogi@/scripts# random_number.ksh 32000

10859

yogi@/scripts# random_number.ksh -f 32000

14493

yogi@/scripts# ./random_number.ksh -f 32000

05402

yogi@/scripts# ./random_number.ksh -f

ERROR: -f is not a number...

USAGE: random_number.ksh [-f] [upper_number_range]

EXAMPLE: random_number.ksh

Will return a random number between 0 and 32767

EXAMPLE: random_number.ksh 1000

Will return a random number between 1 and 1000

EXAMPLE: random_number.ksh -f 1000

Will add leading zeros to a random number from

1 to 1000, which keeps the number of digits consistent

Listing 21.9 random_number.ksh shell script in action.

The last part of Listing 21.9 is a usage error. Notice that we give an example of each
of the three uses for the random_number.ksh shell script as well as state why the
usage error occurred.

Now that we have the shell script to produce pseudo-random numbers, we need to
move on to creating unique filenames.

Creating Unique Filenames

The goal of this chapter is to write a shell script that will produce unique filenames
using a date/time stamp with a pseudo-random number as an extended suffix. When
I create these unique filenames I like to keep the length of the filenames consistent so
we are going to use only one of the random number functions, in_range_fixed_
length_random_number_typeset.

We have a few new pieces to put into this new shell script. First we have to assume
that there is some program or shell script that will be putting data into each of the
unique files. To take care of executing the program or shell script we can add a function

Pseudo-Random Number Generation 535

Free & Share & Open

that will call the external program, and we will redirect our output to the new unique
filename on each loop iteration. The second piece is that we need to ensure that we
never use the same number during the same second. Otherwise, the filename is not
unique and the data will be overwritten. We need to keep a list of each number that we
use during each second and reset the USED_NUMBERS list to null on each new second.
In addition we need to grep the list each time we create a new number to see if it has
already been used. If the number has been used we just create a new number and check
for previous usage again.

The procedure to step through our new requirements is not difficult to understand
once you look at the code. The full shell script is shown in Listing 21.10, and an exam-
ple of using the shell script is shown in Listing 21.11. Please study the script carefully,
and we will go through the details at the end.

#!/usr/bin/ksh

#

AUTHOR: Randy Micahel

SCRIPT: mk_unique_filename.ksh

DATE: 11/12/2001

REV: 1.2.P

#

PLATFORM: Not Platform Dependent

#

EXIT CODES:

0 - Normal script execution

1 - Usage error

#

REV LIST:

#

#

set -x # Uncomment to debug

set -n # Uncomment to debug without any execution

#

##

########## DEFINE FUNCTIONS HERE ###################

##

function usage

{

echo “\nUSAGE: $SCRIPT_NAME base_file_name\n”

exit 1

}

##

function get_date_time_stamp

{

DATE_STAMP=$(date +’%m%d%y.%H%M%S’)

Listing 21.10 mk_unique_filename.ksh shell script listing.

536 Chapter 21

echo $DATE_STAMP

}

##

function get_second

{

THIS_SECOND=$(date +%S)

echo $THIS_SECOND

}

##

function in_range_fixed_length_random_number_typeset

{

Create a pseudo-random number less than or equal

to the $UPPER_LIMIT value, which is user defined.

This function will also pad the output with leading

zeros to keep the number of digits consistent using

the typeset command.

Find the length of each character string

UL_LENGTH=$(echo ${#UPPER_LIMIT})

Fix the length of the RANDOM_NUMBER variable to

the length of the UPPER_LIMIT variable, specified

by the $UL_LENGTH variable.

typeset -Z$UL_LENGTH RANDOM_NUMBER

Create a fixed length pseudo-random number

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

Return the value of the fixed length $RANDOM_NUMBER

echo $RANDOM_NUMBER

}

##

function my_program

{

Listing 21.10 mk_unique_filename.ksh shell script listing. (continues)

Pseudo-Random Number Generation 537

Free & Share & Open

Put anything you want to process in this function. I

recommend that you specify an external program of shell

script to execute.

echo “HELLO WORLD - $DATE_ST” > $UNIQUE_FN &

: # No-Op - Does nothing but has a return code of zero

}

##

################ BEGINNING OF MAIN #################

##

SCRIPT_NAME=$(basename $0) # Query the system for this script name

Check for the correct number of arguments - exactly 1

if (($# != 1))

then

echo “\nERROR: Usage error...EXITING...”

usage

fi

What filename do we need to make unique?

BASE_FN=$1 # Get the BASE filename to make unique

RANDOM=$$ # Initialize the RANDOM environment variable

with the current process ID (PID)

UPPER_LIMIT=32767 # Set the UPPER_LIMIT

CURRENT_SECOND=99 # Initialize to a nonsecond

LAST_SECOND=98 # Initialize to a nonsecond

USED_NUMBERS= # Initialize to null

PROCESSING=”TRUE” # Initialize to run mode

while [[$PROCESSING = “TRUE”]]

do

DATE_ST=$(get_date_time_stamp) # Get the current date/time

CURRENT_SECOND=$(get_second) # Get the current second

RN=$(in_range_fixed_length_random_number_typeset) # Get a new number

Check to see if we have already used this number this second

if ((CURRENT_SECOND == LAST_SECOND))

Listing 21.10 mk_unique_filename.ksh shell script listing. (continued)

538 Chapter 21

then

UNIQUE=FALSE # Initialize to FALSE

while [[“$UNIQUE” != “TRUE”]] && [[! -z “$UNIQUE”]]

do

Has this number already been used this second?

echo $USED_NUMBERS | grep $RN >/dev/null 2>&1

if (($? == 0))

then

Has been used...Get another number

RN=$(in_range_fixed_length_random_number)

else

Number is unique this second...

UNIQUE=TRUE

Add this number to the used number list

USED_NUMBERS=”$USED_NUMBERS $RN”

fi

done

else

USED_NUMBERS= # New second...Reinitialize to null

fi

Assign the unique filename to the UNIQUE_FN variable

UNIQUE_FN=${BASE_FN}.${DATE_ST}.$RN

echo $UNIQUE_FN # Comment out this line!!

LAST_SECOND=$CURRENT_SECOND # Save the last second value

We have a unique filename...

#

PROCESS SOMETHING HERE AND REDIRECT OUTPUT TO $UNIQUE_FN

#

my_program

#

IF PROCESSING IS FINISHED ASSIGN “FALSE” to the

PROCESSING VARIABLE

#

if [[$MY_PROCESS = “done”]]

then

PROCESSING=”FALSE”

fi

done

Listing 21.10 mk_unique_filename.ksh shell script listing. (continued)

We need five functions in this shell script. As usual, we need a function for correct
usage. We are expecting exactly one argument to this shell script, the base filename to
make into a unique filename. The second function is used to get a date/time stamp.

Pseudo-Random Number Generation 539

Free & Share & Open

The date command has a lot of command switches that allow for flexible date/time
stamps. We are using two digits for month, day, year, hour, minute, and second with a
period (.) between the date and time portions of the output. This structure is the first
part that is appended to the base filename. The date command has the following
syntax: date +/%m%d%y.%H%M%S'.

We also need the current second of the current minute. The current second is used
to ensure that the pseudo-random number that is created is unique to each second,
thus a unique filename. The date command is used again using the following syntax:
date +%S.

The in_range_fixed_length_random_number_typeset function is used to
create our pseudo-random numbers in this shell script. This function keeps the num-
ber of digits consistent for each number that is created. With the base filename, date/
time stamp, and the unique number put together, we are assured that every filename
has the same number of characters.

One more function is added to this shell script. The my_program function is used to
point to the program or shell script that needs all of these unique filenames. It is better
to point to an external program or shell script than trying to put everything in the inter-
nal my_program function and debugging the internal function on an already working
shell script. Of course, I am making an assumption that you will execute the external
program once during each loop iteration, which may not be the case. At any rate, this
script will show the concept of creating unique filenames while remaining in a tight
loop.

At the BEGINNING OF MAIN in the main body of the shell script we first query the
system for name of the shell script. The script name is needed for the usage function.
Next we check for exactly one command-line argument. This single command-line
argument is the base filename that we use to create further unique filenames. The next
step is to assign our base filename to the variable BASE_FN for later use.

The RANDOM environment variable is initialized with an initial seed, which we
decided to be the current process ID (PID). This technique helps to ensure that the ini-
tial seed changes each time the shell script is executed. For this shell script we want to
use the maximum value as the UPPER_LIMIT, which is 32767. If you need a longer or
shorter pseudo-random number, you can change this value to anything you want.
If you make this number longer than five digits the extra preceding digits will be
zeros. There are four more variables that need to be initialized. We initialize both
CURRENT_SECOND and LAST_SECOND to nonsecond values 99 and 98, respectively.
The USED_NUMBERS list is initialized to null, and the PROCESSING variable is initial-
ized to TRUE. The PROCESSING variable allows the loop to continue creating unique
filenames and to keep calling the my_process function. Any non-TRUE value stops
the loop and thus ends execution of the shell script.

A while loop is next in our shell script, and this loop is where all of the work is done.
We start out by getting a new date/time stamp and the current second on each loop
iteration. Next a new pseudo-random number is created and is assigned to the RN vari-
able. If the current second is the same as the last second, then we start another loop to
ensure that the number that we created has not been previously used during the cur-
rent second. It is highly unlikely that a duplicate number would be produced in such a
short amount of time, but to be safe we need to do a sanity check for any duplicate
numbers.

540 Chapter 21

When we get a unique number we are ready to put the new filename together. We
have three variables that together make up the filename: $BASE_FN, $DATE_ST, and
$RN. The next command puts the pieces together and assigns the filename to the vari-
able to the UNIQUE_FN variable.

UNIQUE_FN=${BASE_FN}.${DATE_ST}.$RN

Notice the use of the curly braces ({}) around the first two variables, BASE_FN and
DATE_ST. The curly braces are needed because there is a character that is not part of
the variable name without a space. The curly braces separate the variable from the
character to ensure that we do not get unpredictable output. Because the last variable,
$RN, does not have any character next to its name, the curly braces are not needed, but
it is not a mistake to add them.

The only thing left is to assign the $CURRENT_SECOND value to the LAST_SECOND
value and to execute the my_program function, which actually uses the newly created
filename. I have commented out the code that would stop the script’s execution. You
will need to edit this script and make it suitable for your particular purpose. The
mk_unique_filename.ksh shell script is in action in Listing 21.11.

yogi@/scripts# ./mk_unique_filename.ksh /tmp/myfilename

/tmp/myfilename.120601.131507.03038

/tmp/myfilename.120601.131507.15593

/tmp/myfilename.120601.131507.11760

/tmp/myfilename.120601.131508.08374

/tmp/myfilename.120601.131508.01926

/tmp/myfilename.120601.131508.07238

/tmp/myfilename.120601.131509.07554

/tmp/myfilename.120601.131509.12343

/tmp/myfilename.120601.131510.08496

/tmp/myfilename.120601.131510.18285

/tmp/myfilename.120601.131510.18895

/tmp/myfilename.120601.131511.16618

/tmp/myfilename.120601.131511.30612

/tmp/myfilename.120601.131511.16865

/tmp/myfilename.120601.131512.01134

/tmp/myfilename.120601.131512.19362

/tmp/myfilename.120601.131512.04287

/tmp/myfilename.120601.131513.10616

/tmp/myfilename.120601.131513.08707

/tmp/myfilename.120601.131513.27006

/tmp/myfilename.120601.131514.15899

/tmp/myfilename.120601.131514.18913

/tmp/myfilename.120601.131515.27120

/tmp/myfilename.120601.131515.23639

/tmp/myfilename.120601.131515.13096

/tmp/myfilename.120601.131516.19111

/tmp/myfilename.120601.131516.05964

Listing 21.11 mk_unique_filename.ksh shell script in action. (continues)

Pseudo-Random Number Generation 541

Free & Share & Open

/tmp/myfilename.120601.131516.07809

/tmp/myfilename.120601.131524.03831

/tmp/myfilename.120601.131524.21628

/tmp/myfilename.120601.131524.19801

/tmp/myfilename.120601.131518.13556

/tmp/myfilename.120601.131518.24618

/tmp/myfilename.120601.131518.12763

Listing of newly created files

yogi@/tmp# ls -ltr /tmp/myfilename.*

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131507.15593

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131507.03038

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131508.08374

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131508.01926

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131507.11760

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131509.12343

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131509.07554

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131508.07238

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131510.18285

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131510.08496

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131511.30612

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131511.16618

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131510.18895

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131512.19362

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131512.01134

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131511.16865

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131513.10616

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131513.08707

Listing 21.11 mk_unique_filename.ksh shell script in action. (continued)

542 Chapter 21

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131512.04287

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131514.18913

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131514.15899

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131513.27006

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131515.27120

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131515.23639

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131515.13096

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131516.19111

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131516.05964

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131524.21628

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131524.03831

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131516.07809

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131518.24618

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131518.13556

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131524.19801

-rw-r--r-- root system Dec 06 13:15

/tmp/myfilename.120601.131518.12763

Listing 21.11 mk_unique_filename.ksh shell script in action. (continued)

Summary

In this chapter we stepped through some different techniques of creating pseudo-
random numbers and then used this knowledge to create unique filenames. Of
course these numbers are not suitable for any security-related projects because of the
predictability and cyclical nature of computer generated numbers using the RANDOM
variable. Play around with these shell scripts and functions and modify them for your

Pseudo-Random Number Generation 543

Free & Share & Open

needs. In Chapter 10 we used pseudo-random numbers to create pseudo-random pass-
words. If you have not already studied Chapter 10, I suggest that you break out of
sequence and study this chapter next.

In the next chapter we move into a little floating point mathematics and introduce
you to the bc utility. Floating point math is not difficult if you use some rather simple
techniques. Of course you can make mathematics as difficult as you wish. I hope you
gained a lot of knowledge in this chapter and I will see you in the next chapter!

544 Chapter 21

545

Have you ever had a need to do some floating-point math in a shell script? If the
answer is yes, then you’re in luck. On Unix machines there is a utility called bc that is
an interpreter for arbitrary-precision arithmetic language. The bc command is an inter-
active program that provides arbitrary-precision arithmetic. You can start an interac-
tive bc session by typing bc on the command line. Once in the session you can enter
most complex arithmetic expressions as you would in a calculator. The bc utility can
handle more than I can cover in this chapter, so we are going to keep the scope limited
to simple floating-point math in shell scripts.

In this chapter we are going to create shell scripts that add, subtract, multiply,
divide, and average a list of numbers. With each of these shell scripts the user has the
option of specifying a scale, which is the number of significant digits to the right of the
decimal point. If no scale is specified, then an integer value is given in the result.
Because the bc utility is an interactive program, we are going to use a here document to
supply input to the interactive bc program. We will cover using a here document in
detail throughout this chapter.

Syntax

By now you know the routine: We need to know the syntax before we can create a shell
script. Depending on what we are doing we need to create a mathematical statement to

Floating-Point Math
and the bc Utility

C H A P T E R

22

Free & Share & Open

present to bc for a here document to work. A here document works kind of like a label
in other programming languages. The syntax that we are going to use in this chapter
will have the following form:

VARIABLE=$(bc <<LABEL

scale=$SCALE

($MATH_STATEMENT)

LABEL)

The way a here document works is some label name, in this case LABEL, is added
just after the bc command. This LABEL has double redirection for input into the
interactive program, bc <<LABEL. From this starting label until the same label is
encountered again everything in between is used as input to the bc program. By doing
this we are automating an interactive program. We can also do this automation using
another technique. We can use echo, print, and printf to print all of the data for the
math statement and pipe the output to bc. It works like the following commands.

VARIABLE=$(print ‘scale = 10; 104348/33215’ | bc)

or

VARIABLE=$(print ‘scale=$SCALE; ($MATH_STATEMENT)’ | bc)

In either case we are automating an interactive program. This is the purpose of a
here document. It is called a here document because the required input is here, as
opposed to somewhere else, such as user input from the keyboard. When all of the
required input is supplied here, it is a here document.

Creating Some Shell Scripts Using bc

We have the basic syntax, so let’s start with a simple shell script to add numbers
together. The script is expecting a list of numbers as command-line arguments. Addi-
tionally, the user may specify a scale if the user wants the result calculated as a floating-
point number to a set precision. If a floating point number is not specified, then the
result is presented as an integer value.

Creating the float_add.ksh Shell Script
The first shell script that we are going to create is float_add.ksh. The idea of this
shell script is to add a list of numbers together that the user provides as command-line
arguments. The user also has the option of setting a scale for the precision of floating-
point numbers. Let’s take a look at the float_add.ksh shell script in Listing 22.1,
and we will go through the details at the end.

546 Chapter 22

#!/usr/bin/ksh

#

SCRIPT: float_add.ksh

AUTHOR: Randy Michael

DATE: 03/01/2001

REV: 1.1.A

#

PURPOSE: This shell script is used to add a list of numbers

together. The numbers can be either integers or floating-

point numbers. For floating-point numbers the user has

the option of specifying a scale of the number of digits to

the right of the decimal point. The scale is set by adding

a -s or -S followed by an integer number.

#

EXIT CODES:

0 ==> This script completed without error

1 ==> Usage error

2 ==> This script exited on a trapped signal

#

REV. LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

#

##

############## DEFINE VARIABLE HERE ####################

##

SCRIPT_NAME=$(basename $0) # The name of this shell script

SCALE=”0” # Initialize the scale value to zero

NUM_LIST= # Initialize the NUM_LIST variable to NULL

COUNT=0 # Initialize the counter to zero

MAX_COUNT=$# # Set MAX_COUNT to the total number of

command-line arguments.

##

################ FUNCTIONS #############################

##

function usage

{

echo “\nPURPOSE: Adds a list of numbers together\n”

echo “USAGE: $SCRIPT_NAME [-s scale_value] N1 N2...Nn”

Listing 22.1 float_add.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 547

Free & Share & Open

echo “\nFor an integer result without any significant decimal places...”

echo “\nEXAMPLE: $SCRIPT_NAME 2048.221 65536 \n”

echo “OR for 4 significant decimal places”

echo “\nEXAMPLE: $SCRIPT_NAME -s 4 8.09838 2048 65536 42.632”

echo “\n\t...EXITING...\n”

}

##

function exit_trap

{

echo “\n...EXITING on trapped signal...\n”

}

##

################# START OF MAIN ########################

##

Set a Trap

trap ‘exit_trap; exit 2’ 1 2 3 15

##

Check for at least two command-line arguments

if [$# -lt 2]

then

echo “\nERROR: Please provide a list of numbers to add”

usage

exit 1

fi

Parse the command-line arguments to find the scale value, if present.

while getopts “:s:S:” ARGUMENT

do

case $ARGUMENT in

s|S) SCALE=$OPTARG

;;

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -c1) = ‘-’]] \

Listing 22.1 float_add.ksh shell script listing. (continued)

548 Chapter 22

&& [$TST_ARG != ‘-s’ -a $TST_ARG != ‘-S’]

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

;;

+([-0-9].[0-9]))

: # No-op, do nothing

;;

+([-.0-9])) : # No-op, do nothing

;;

*) echo “\nERROR: Invalid argument on the command

line”

usage

exit 1

;;

esac

fi

done

;;

esac

done

##

Parse through the command-line arguments and gather a list

of numbers to add together and test each value.

while ((COUNT < MAX_COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1 # Grab a command line argument on each loop iteration

case $TOKEN in # Test each value and look for a scale value.

-s|-S) shift 2

((COUNT = COUNT + 1))

;;

-s${SCALE}) shift

;;

-S${SCALE}) shift

;;

*) # Add the number ($TOKEN) to the list

NUM_LIST=”${NUM_LIST} $TOKEN”

((COUNT < MAX_COUNT)) && shift

;;

esac

done

##

Listing 22.1 float_add.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 549

Free & Share & Open

Ensure that the scale is an integer value

case $SCALE in

Test for an integer

+([0-9])) : # No-Op - Do Nothing

;;

*) echo “\nERROR: Invalid scale - $SCALE - Must be an

integer”

usage

exit 1

;;

esac

##

Check each number supplied to ensure that the “numbers”

are either integers or floating-point numbers.

for NUM in $NUM_LIST

do

case $NUM in

+([0-9])) # Check for an integer

: # No-op, do nothing.

;;

+([-0-9])) # Check for a negative whole number

: # No-op, do nothing

;;

+([0-9]|[.][0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

+(+[0-9][.][0-9]))

Check for a positive floating point number

with a + prefix

: # No-op, do nothing

;;

+(-[0-9][.][0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+([-.0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+([+.0-9]))

Check for a positive floating point number

Listing 22.1 float_add.ksh shell script listing. (continued)

550 Chapter 22

: # No-op, do nothing

;;

*) echo “\nERROR: $NUM is NOT a valid number”

usage

exit 1

;;

esac

done

##

Build the list of numbers to add

ADD= # Initialize the ADD variable to NULL

PLUS= # Initialize the PLUS variable to NULL

Loop through each number and build a math statement that

will add all of the numbers together.

for X in $NUM_LIST

do

If the number has a + prefix, remove it!

if [[$(echo $X | cut -c1) = ‘+’]]

then

X=$(echo $X | cut -c2-)

fi

ADD=”$ADD $PLUS $X”

PLUS=”+”

done

##

Do the math here by using a here document to supply

input to the bc command. The sum of the numbers is

assigned to the SUM variable.

SUM=$(bc <<EOF

scale = $SCALE

(${ADD})

EOF)

##

Present the result of the addition to the user.

echo “\nThe sum of: $ADD”

echo “\nis: ${SUM}\n”

Listing 22.1 float_add.ksh shell script listing. (continued)

Floating-Point Math and the bc Utility 551

Free & Share & Open

Let’s take it from the top. We start the shell script in Listing 22.1 by defining some
variables. These five variables, SCRIPT_NAME, SCALE, NUM_LIST, COUNT, and
MAX_COUNT are predefined for later use. The SCRIPT_NAME variable assignment
extracts the filename of the script from the system using the basename $0 command,
and SCALE is used to define the precision of floating-point numbers that are calcu-
lated. The NUM_LIST variable is used to hold valid numbers that are to be calculated,
where the command switch and the switch-argument are removed from the list. The
COUNT and MAX_COUNT variables are used to scan all of the command-line arguments
to find the numbers..

In the next section we define the functions. This shell script has two functions,
usage and exit_trap. The usage function shows the user how to use the script, and
the exit_trap function is executed only when a trapped exit signal is captured. Of
course, you cannot trap a kill -9. At the START OF MAIN the first thing that we do is
to set a trap. A trap allows us to take some action when the trapped signal is captured.
For example, if the user presses CTRL-C we may want to clean up some temporary
files before the script exits. A trap allows us to do this.

A trap has the form of trap '{command; command; ... ; exit 2' 1 2 3 15. We first enclose
the commands that we want to execute within tic marks (single quotes) and then give
a list of exit signals that we want to capture. As I said before, it is not possible to cap-
ture a kill -9 signal because the system really just yanks the process out of the process
table and it ceases to exist.

After setting the trap we move on to verifying that each of the command-line argu-
ments is valid. To do this verification we do five tests. These five tests consist of check-
ing for at least two command-line arguments, using getopts to parse the command-line
switches, test for invalid switches, and assign switch-arguments to variables for use in
the shell script. The next step is to scan each argument on the command line and
extract the numbers that we need to do our calculations. Then the $SCALE value is
checked to ensure that it points to an integer value, and the final test is to check the
“numbers” that we gathered from the command-line scan and ensure that each one is
either an integer or a floating-point number.

Testing for Integers and Floating-Point Numbers
I want to go over the integer and floating-point test before we move on. At this point in
the script we have a list of “numbers”—at least they are supposed to be numbers—and
this list is assigned to the NUM_LIST variable. Our job is to verify that each value in the
list is either an integer or a floating-pointing number. Look at the code segment shown
in Listing 22.2.

Check each number supplied to ensure that the “numbers”

are either integers or floating-point numbers.

for NUM in $NUM_LIST

do

case $NUM in

Listing 22.2 Testing for integers and floating-point numbers.

552 Chapter 22

+([0-9])) # Check for an integer

: # No-op, do nothing.

;;

+(-[0-9])) # Check for a negative whole number

: # No-op, do nothing

;;

+([0-9]|[.][0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

+(+[0-9]|[.][0-9]))

Check for a positive floating point number

with a + prefix

: # No-op, do nothing

;;

+(-[0-9][.][0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+([-.0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+([+.0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

*) echo “\nERROR: $NUM is NOT a valid number”

usage

exit 1

;;

esac

done

Listing 22.2 Testing for integers and floating-point numbers. (continued)

We use a for loop to test each value in the NUM_LIST. On each loop iteration the cur-
rent value in the $NUM_LIST is assigned to the NUM variable. Within the for loop we
have set up a case statement. For the tests we use regular expressions to indicate a
range, or type of value, that we are expecting. If the value does not meet the criteria
that we defined, the * is matched and we execute the usage function before exiting the
shell script.

The regular expressions for testing for integers and floating point numbers include
+([0-9]), +(-[0-9]), +([0-9]|.[0-9], +(+[0-9].[0-9], +(-[0-9].[0-9],
+([-.0-9]), +([+.0-9]). The first two tests are for integers and negative whole
numbers. The last five tests are for positive and negative floating point numbers.

Floating-Point Math and the bc Utility 553

Free & Share & Open

Notice the use of the plus sign (+), minus sign (-), and the decimal point (.). The place-
ment of the plus sign, minus sign, and the decimal point are important when testing
the string. Because a floating point number, both positive and negative, can be repre-
sented in many forms we need to test for all combinations. Floating point numbers are
one of the more difficult tests to make as you can see by the number of tests that are
required.

Building a Math Statement for the bc Command
Once we are sure that all of the data is valid we proceed to building the actual math
statement that we are sending to the bc utility. To build this statement we are going to
loop through our newly confirmed $NUM_LIST of numbers and build a string with a
plus sign (+) between each of the numbers in the $NUM_LIST. This is a neat trick. We
first initialize two variables to NULL, as shown here.

ADD=

PLUS=

As we build the math statement, the ADD variable will hold the entire statement as it
is added to. The PLUS variable will be assigned the + character inside of the for loop on
the first loop iteration. This action prevents the + sign showing up as the first character
in the string we are building. Let’s look at this code segment here.

ADD= # Initialize the ADD variable to NULL

PLUS= # Initialize the PLUS variable to NULL

Loop through each number and build a math statement that

will add all of the numbers together.

for X in $NUM_LIST

do

if [[$(echo $X | cut -c1) = ‘+’]]

then

X=$(echo $X | cut -c2-)

fi

ADD=”$ADD $PLUS $X”

PLUS=”+”

done

On the first loop iteration only the first number in the $NUM_LIST is assigned to the
ADD variable. On each of the following loop iterations a plus sign (+) is added followed
by the next number in the $NUM_LIST, specified by the X variable on each loop itera-
tion, until all of the numbers and plus signs have been assigned to the ADD variable. As
an example, we have the following list of numbers:

12 453.766 223.6 3.145927 22

Also notice that we added a test for the number beginning with a + sign. We need to
strip this character out so that we do not have two plus signs together when we present

554 Chapter 22

the equation to the bc program or an error will occur. As we build the math statement
the following assignments are made to the ADD variable on each loop iteration:

ADD=”12”

ADD=”12 + 453.766”

ADD=”12 + 453.766 + 223.6”

ADD=”12 + 453.766 + 223.6 + 3.145927”

ADD=”12 + 453.766 + 223.6 + 3.145927 + 22”

Using a Here Document
When the looping finishes we have built the entire math statement and have it
assigned to the ADD variable. Now we are ready to create the here document to add all
of the numbers together with the bc utility. Let’s take a look at the here document
shown here.

Do the math here by using a here document to supply

input to the bc command. The sum of the numbers is

assigned to the SUM variable.

SUM=$(bc <<EOF

scale=$SCALE

(${ADD})

EOF)

For this here document the label is the EOF character string (you will see this used a
lot in shell scripts). The bc command has its input between the first EOF and the end-
ing EOF. The first EOF label starts the here document, and the second EOF label ends
the here document. Each line between the two labels is used as input to the bc com-
mand. There are a couple of requirements for a here document. The first requirement
is that the starting label must be preceded by double input redirection (<<EOF). The
second requirement is that there are never any blank spaces at the beginning of any line
in the here document. If even one blank space is placed in column one, then strange
things may begin to happen. Depending on what you are doing, and the interactive
program you are using, the here document may work, but it may not! This is one of the
most difficult programming errors to find when you are testing, or using, a shell script
with a here document. To be safe, just leave out any beginning spaces.

The final step is to display the result to the user. Listing 22.3 shows the
float_add.ksh shell script in action.

[root:yogi]@/scripts# ./float_add.ksh -s 8 2 223.545 332.009976553

The sum of: 2 + 223.545 + 332.009976553

to a scale of 8 is 557.554976553

Listing 22.3 float_add.ksh shell script in action.

Floating-Point Math and the bc Utility 555

Free & Share & Open

Notice that the scale is set to 8, but the output has 9 decimal places. For this shell
script the scale has absolutely no impact on the final result. This is just how the bc pro-
gram works. It is not an error to add in a scale but the result does not use it in this case.
The man page for the bc program can provide you with more details on this effect. We
will see how the scale works in some of the other shell scripts later in this chapter.

That is it for the addition shell script, but we still have four more shell scripts to go
in this chapter. Each of the following shell scripts is very similar to the script in Listing
22.1. With this being the case I am going to cover different aspects of each of the fol-
lowing scripts and also show where the differences lie. Please keep reading to catch a
few more shell programming tips.

Creating the float_subtract.ksh Shell Script
As the float_add.ksh shell script performed addition on a series of numbers, this
section studies the technique of subtraction. Because this shell script is very similar to
the shell script in Listing 22.1 we are going to show the shell script and study the
details at the end. The float_subtract.ksh shell script is shown in Listing 22.4.

#!/usr/bin/ksh

#

SCRIPT: float_subtract.ksh

AUTHOR: Randy Michael

DATE: 02/23/2001

REV: 1.1.A

#

PURPOSE: This shell script is used to subtract a list of numbers.

The numbers can be either integers or floating- point

numbers. For floating- point numbers the user has the

option to specify a scale of the number of digits to

the right of the decimal point. The scale is set by

adding a -s or -S followed by an integer number.

#

EXIT STATUS:

0 ==> This script completed without error

1 ==> Usage error

2 ==> This script exited on a trapped signal

#

REV. LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

#

##

############## DEFINE VARIABLE HERE ####################

##

Listing 22.4 float_subtract.ksh shell script listing.

556 Chapter 22

SCRIPT_NAME=`basename $0` # The name of this shell script

SCALE=”0” # Initialize the scale value to zero

NUM_LIST= # Initialize the NUM_LIST to NULL

COUNT=0 # Initialize the counter to zero

MAX_COUNT=$# # Set MAX_COUNT to the total number of

command-line arguments

##

################ FUNCTIONS #############################

##

function usage

{

echo “\nPURPOSE: Subtracts a list of numbers\n”

echo “USAGE: $SCRIPT_NAME [-s scale_value] N1 N2...Nn”

echo “\nFor an integer result without any significant decimal places...”

echo “\nEXAMPLE: $SCRIPT_NAME 2048.221 65536 \n”

echo “OR for 4 significant decimal places”

echo “\nEXAMPLE: $SCRIPT_NAME -s 4 8.09838 2048 65536 42.632”

echo “\n\t...EXITING...\n”

}

##

function exit_trap

{

echo “\n...EXITING on trapped signal...\n”

}

##

################ START OF MAIN #########################

##

Set a Trap

trap ‘exit_trap; exit 2’ 1 2 3 15

########################

Check for at least two command-line arguments

if (($# < 2))

then

echo “\nERROR: Please provide a list of numbers to subtract”

usage

exit 1

fi

Listing 22.4 float_subtract.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 557

Free & Share & Open

Parse the command-line arguments to find the scale value, if present.

while getopts “:s:S:” ARGUMENT

do

case $ARGUMENT in

s|S) SCALE=$OPTARG

;;

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -c1) = ‘-’]] \

&& [$TST_ARG != ‘-s’ -a $TST_ARG != ‘-S’]

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

;;

+([-0-9].[0-9]))

: # No-op, do nothing

;;

+([-.0-9])) : # No-op, do nothing

;;

*) echo “\nERROR: Invalid argument on the command

line”

usage

exit 1

;;

esac

fi

done

;;

esac

done

##

Parse through the command-line arguments and gather a list

of numbers to subtract.

while ((COUNT < MAX_COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case $TOKEN in

-s|-S) shift 2

((COUNT = COUNT + 1))

;;

Listing 22.4 float_subtract.ksh shell script listing. (continued)

558 Chapter 22

-s${SCALE}) shift

;;

-S${SCALE}) shift

;;

*) NUM_LIST=”${NUM_LIST} $TOKEN”

((COUNT < MAX_COUNT)) && shift

;;

esac

done

##

Ensure that the scale is an integer value

case $SCALE in

+([0-9])) : # No-Op - Do Nothing

;;

*) echo “\nERROR: Invalid scale - $SCALE - Must be an

integer”

usage

exit 1

;;

esac

##

Check each number supplied to ensure that the “numbers”

are either integers or floating- point numbers.

for NUM in $NUM_LIST

do

case $NUM in

+([0-9])) # Check for an integer

: # No-op, do nothing.

;;

+([-0-9])) # Check for a negative whole number

: # No-op, do nothing

;;

+([0-9]|[.][0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

+(+[0-9]|[.][0-9]))

Check for a positive floating point number

with a + prefix

: # No-op, do nothing

;;

+([-0-9]|.[0-9]))

Listing 22.4 float_subtract.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 559

Free & Share & Open

Check for a negative floating point number

: # No-op, do nothing

;;

+(-[.][0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+([+.0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

*) echo “\nERROR: $NUM is NOT a valid number”

usage

exit 1

;;

esac

done

##

Build the list of numbers to subtract

SUBTRACT= # Initialize the SUBTRACT variable to NULL

MINUS= # Initialize the MINUS variable to NULL

Loop through each number and build a math statement that

will subtract the numbers in the list.

for X in $NUM_LIST

do

If the number has a + prefix, remove it!

if [[$(echo $X | cut -c1) = ‘+’]]

then

X=$(echo $X | cut -c2-)

fi

SUBTRACT=”$SUBTRACT $MINUS $X”

MINUS=’-’

done

##

Do the math here by using a here document to supply

input to the bc command. The difference of the numbers is

assigned to the DIFFERENCE variable.

DIFFERENCE=$(bc <<EOF

scale=$SCALE

(${SUBTRACT})

Listing 22.4 float_subtract.ksh shell script listing. (continued)

560 Chapter 22

EOF)

##

Present the result of the subtraction to the user.

echo “\nThe difference of: $SUBTRACT”

echo “\nis: ${DIFFERENCE}\n”

Listing 22.4 float_subtract.ksh shell script listing. (continued)

The parts of the float_subtract.ksh shell script, shown in Listing 22.4, that
remain unchanged from Listing 22.1 include the following sections: variable defini-
tions and the usage function, which is unchanged except that the references to addi-
tion are changed to subtraction. Additionally, all of the same tests are performed on the
user-provided data to ensure the data integrity. When we get to the end of the shell
script where the math statement is created and the here document performs the calcu-
lation, we get into some changes.

Using getopts to Parse the Command Line
Let’s first cover parsing the command line for the -s and -S switches and these switch-
arguments that we use to define the floating-point precision with the getopts com-
mand. Using getopts for command-line parsing is the simplest method. It sure beats
trying to program all of the possibilities inside the shell script. The first thing to note
about getopts is that this command does not care what is on the command line! The
getopts is interested in only command switches, which must begin with a hyphen (-),
such as -s and -S for this shell script. Let’s look at the getopts code segment and see
how it works.

Parse the command-line arguments to find the scale value, if present.

while getopts “:s:S:” ARGUMENT

do

case $ARGUMENT in

s|S) SCALE=$OPTARG

;;

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -c1) = ‘-’]] \

&& [$TST_ARG != ‘-s’ -a $TST_ARG != ‘-S’]

Floating-Point Math and the bc Utility 561

Free & Share & Open

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

;;

+([-0-9].[0-9]))

: # No-op, do nothing

;;

+([-.0-9])) : # No-op, do nothing

;;

*) echo “\nERROR: $TST_ARG is an invalid argument\n”

usage

exit 1

;;

esac

fi

done

esac

done

A getopts statement starts with a while loop. To define valid command-line
switches for a shell script you add the list of characters that you want to use for com-
mand-line switches just after the while getopts part of the while statement. It is a good
practice to enclose the list of command-line switches in double quotes (“list”). The
next thing that you need to notice is the use of the colons (:) in the list of valid
switches. The placement and usage of the colons is important. Specifically, if the list
starts with a colon, then any undefined command-line switch that is located will be
assigned the question mark (?) character. The question mark character is then assigned
to the ARGUMENT variable (which can actually be any variable name). Whenever the ?
is matched it is a good idea to exit the script or send an error message to the user, and
show the user the correct usage of the shell script before exiting. This ability of catch-
ing usage errors is what makes getopts a very nice and powerful tool to use.

But, in our case when we encounter the ? we may just have a negative number!
Therefore, any time we encounter a hyphen (-) on the command line we need to test for
a negative number before we tell the user that the input is invalid. This piece of code is
in the case statement after the ?.

The other colon (:) used in the list specifies that the switch character that appears
immediately before the colon requires a switch-argument. Looking at the following
getopts example statement may help to clarify the colon usage.

while getopts “:s:S:rtg:” ARGUMENT

In this getopts statement the list begins with a colon so any command-line switch
other than -s, -S, -r, -t, and -g will cause the ARGUMENT variable to be assigned the ?
character, indicating a usage error. When any defined command-line argument is located
on the command line it is assigned to the ARGUMENT variable (you can use any variable
name here). When any undefined command-line switch is located, and the valid switch
list begins with a colon, then the question mark character is assigned to the ARGUMENT
variable. If the switch list does not begin with a colon, then the undefined switch
is ignored. In our shell script we do not want to ignore any invalid command-line

562 Chapter 22

argument but we also do not want a negative number to be considered invalid input.
This is where we do the extra test on the command-line.

Looking at each of the individually defined switches in the previous example, -s,
and -S each require a switch-argument. The -r and -g switches do not have an argument
because they do not have a colon after them in the definition list. When a switch is
encountered that requires a switch-argument, the switch-argument is assigned to a
variable called OPTARG. In our case the switch-argument to -s or -S is the value of the
scale for precision floating-point arithmetic, so we make the following assignment:
SCALE=$OPTARG in the case statement inside the while loop. As with the
float_add.ksh shell script, the scale does not give the results that you expect. The
use of the scale is in this shell script as a learning experience and you will see expected
results in the following shell scripts in this chapter.

Just remember when using getopts to parse command-line arguments for valid
switches that getopts could care less what is on the command line. It is up to you to
verify that all of the data that you use is valid for your particular purpose. This is why
we make so many tests of the data that the user inputs on the command line.

Building a Math Statement String for bc
Next we move on to the end of the shell script where we build the math statement for
the bc command. In building the math statement that we use in the here document we
now use the SUBTRACT and MINUS variables in the for loop. Take a look at the code
segment listed here to build the math statement.

Build the list of numbers to subtract

SUBTRACT= # Initialize the SUBTRACT variable to NULL

MINUS= # Initialize the MINUS variable to NULL

Loop through each number and build a math statement that

will subtract the numbers in the list.

for X in $NUM_LIST

do

If the number has a + prefix, remove it!

if [[$(echo $X | cut -c1) = ‘+’]]

then

X=$(echo $X | cut -c2-)

fi

SUBTRACT=”$SUBTRACT $MINUS $X”

MINUS=’-’

done

Notice that we initialize the SUBTRACT and MINUS variables to NULL. We do this
because on the first loop iteration we do not want a minus sign (-) included. The minus
sign is defined within the for loop. The SUBTRACT variable is initialized to NULL
because we want to begin with an empty statement string. As we start the for loop,
using the valid list of numbers that we so painstakingly verified, we add only the first

Floating-Point Math and the bc Utility 563

Free & Share & Open

number in the $NUM_LIST. On the second loop iteration, and continuing until all of
the numbers in the $NUM_LIST have been exhausted, we add a minus sign to the math
statement, followed by the next number in the list. Additionally, we took the extra step
of removing any plus sign (+) that may be a prefix to any positive number. This step is
required because we do not want the + in the equation or an error will occur because
there will be a - and a + between two numbers. During this for loop the entire math
statement is assigned to the SUBTRACT variable. The statement is built in the following
manner, assuming that we have the following numbers to work with.

12 453.766 -223.6 3.145927 22

As we build the math statement the following assignments are made to the
SUBTRACT variable:

SUBTRACT=”12”

SUBTRACT=”12 - 453.766”

SUBTRACT=”12 - 453.766 - -223.6”

SUBTRACT=”12 - 453.766 - -223.6 - 3.145927”

SUBTRACT=”12 - 453.766 - -223.6 - 3.145927 - 22”

Here Document and Presenting the Result
I want to cover a here document one more time because it is important to know what
you can and cannot do with this technique. With the math statement created we are
ready to create the here document to add all of the numbers together with the bc utility.
Let’s take a look at the here document shown here.

Do the math here by using a here document to supply

input to the bc command. The difference of the numbers is

assigned to the DIFFERENCE variable.

DIFFERENCE=$(bc <<EOF

scale=$SCALE

(${SUBTRACT})

EOF)

Just like the here document in Listing 22.1, float_add.ksh, this here document
label is the EOF character string. The bc command has its input between the starting
EOF label and the ending EOF label. The first label starts the here document, and the
second EOF label ends the here document. Each line between the two labels is used as
input to the bc command. There are a couple of requirements for a here document. The
first requirement is that the starting label must be preceded by double input redirection
(<<EOF). The second requirement is that there are never any blank spaces at the begin-
ning of any line in the here document. If even one blank space is placed in column one,
then strange things may begin to happen with the calculation. This is the cause of a lot
of frustration when programming here documents. This blank-space problem is one of
the most difficult programming errors to find when you are testing, or using, a shell
script with a here document.

564 Chapter 22

The final step is to display the result to the user. Listing 22.5 shows the float
_subtract.ksh shell script in action.

[root:yogi]@/scripts# float_subtract.ksh -s 4 8.09838 2048 65536 42.632

The difference of: 8.09838 - 2048 - 65536 - 42.632

to a scale of 4 is -67618.53362

Listing 22.5 float_subtract.ksh shell script in action.

The float_subtract.ksh shell script is very similar to the float_add.ksh
shell script. Again, notice that the scale had no effect on the result of this calculation.
The man page for bc has more information on using scale. The next three shell scripts
have some variations also. With this commonality I am going to deviate and cover
some of the different aspects of each of the following scripts and show where the dif-
ferences lie.

Creating the float_multiply.ksh Shell Script
This time we are going to multiply a list of numbers. Using the same front end, for the
most part, this shell script changes the building of the math statement and has a new
here document. I want to cover the technique that we use to scan the command-line
arguments to find the nonswitch-arguments and their associated switch-arguments.
What remains after the command-line argument scan should be only a list of numbers,
which is assigned to the NUM_LIST variable. Of course, we do test each number with
regular expressions just as before. Let’s look at the float_multiply.ksh shell script
shown in Listing 22.6 and study the details at the end.

#!/usr/bin/ksh

#

SCRIPT: float_multiply.ksh

AUTHOR: Randy Michael

DATE: 02/23/2001

REV: 1.1.P

#

PURPOSE: This shell script is used to multiply a list of numbers

together. The numbers can be either integers or floating-

point numbers. For floating-point numbers the user has

the option of specifying a scale of the number of digits to

the right of the decimal point. The scale is set by adding

a -s or -S followed by an integer number.

#

EXIT STATUS:

Listing 22.6 float_multiply.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 565

Free & Share & Open

0 ==> This script/function exited normally

1 ==> Usage or syntax error

2 ==> This script/function exited on a trapped signal

#

REV. LIST:

#

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

#

##

############## DEFINE VARIABLE HERE ####################

##

SCRIPT_NAME=$(basename $0) # The name of this shell script

SCALE=”0” # Initialize the scale value to zero

NUM_LIST= # Initialize the NUM_LIST to NULL

COUNT=0 # Initialize the counter to zero

MAX_COUNT=$# # Set MAX_COUNT to the total number of

command-line arguments

##

################ FUNCTIONS #############################

##

function usage

{

echo “\nPURPOSE: Multiplies a list of numbers together\n”

echo “USAGE: $SCRIPT_NAME [-s scale_value] N1 N2...Nn”

echo “\nFor an integer result without any significant decimal places...”

echo “\nEXAMPLE: $SCRIPT_NAME 2048.221 65536 \n”

echo “OR for 4 significant decimal places”

echo “\nEXAMPLE: $SCRIPT_NAME -s 4 8.09838 2048 65536 42.632”

echo “\n\t...EXITING...\n”

}

##

function exit_trap

{

echo “\n...EXITING on trapped signal...\n”

}

##

################# START OF MAIN ########################

##

Set a Trap

Listing 22.6 float_multiply.ksh shell script listing. (continued)

566 Chapter 22

trap ‘exit_trap; exit 2’ 1 2 3 15

##

Check for at least two command-line arguments

if (($# < 2))

then

echo “\nERROR: Please provide a list of numbers to multiply”

usage

exit 1

fi

##

Parse the command-line arguments to find the scale value, if present.

while getopts “:s:S:” ARGUMENT

do

case $ARGUMENT in

s|S) SCALE=$OPTARG

;;

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -c1) = ‘-’]] \

&& [$TST_ARG != ‘-s’ -a $TST_ARG != ‘-S’]

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

;;

+([-0-9].[0-9]))

: # No-op, do nothing

;;

+([-.0-9])) : # No-op, do nothing

;;

*) echo “\nERROR: $TST_ARG is an invalid argument\n”

usage

exit 1

;;

esac

fi

done

;;

esac

Listing 22.6 float_multiply.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 567

Free & Share & Open

done

##

Parse through the command-line arguments and gather a list

of numbers to multiply together.

while ((COUNT < MAX_COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case $TOKEN in

-s|-S) shift 2

((COUNT = COUNT + 1))

;;

-s${SCALE}) shift

;;

-S${SCALE}) shift

;;

*) NUM_LIST=”${NUM_LIST} $TOKEN”

((COUNT < MAX_COUNT)) && shift

;;

esac

done

##

Ensure that the scale is an integer value

case $SCALE in

+([0-9])) : # No-Op - Do Nothing

;;

*) echo “\nERROR: Invalid scale - $SCALE - Must be an

integer”

usage

exit 1

;;

esac

##

Check each number supplied to ensure that the “numbers”

are either integers or floating-point numbers.

for NUM in $NUM_LIST

do

case $NUM in

+([0-9])) # Check for an integer

: # No-op, do nothing.

Listing 22.6 float_multiply.ksh shell script listing. (continued)

568 Chapter 22

;;

+([-0-9])) # Check for a negative whole number

: # No-op, do nothing

;;

+([0-9]|[.][0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

+(+[0-9]|[.][0-9]))

Check for a positive floating point number

with a + prefix

: # No-op, do nothing

;;

+([-0-9]|.[0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+(-.[0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+([+.0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

*) echo “\nERROR: $NUM is NOT a valid number”

usage

exit 1

;;

esac

done

##

Build the list of numbers to multiply

MULTIPLY= # Initialize the MULTIPLY variable to NULL

TIMES= # Initialize the TIMES variable to NULL

Loop through each number and build a math statement that

will multiply all of the numbers together.

for X in $NUM_LIST

do

If the number has a + prefix, remove it!

if [[$(echo $X | cut -c1) = ‘+’]]

then

X=$(echo $X | cut -c2-)

fi

Listing 22.6 float_multiply.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 569

Free & Share & Open

MULTIPLY=”$MULTIPLY $TIMES $X”

TIMES=’*’

done

##

Do the math here by using a here document to supply

input to the bc command. The product of the multiplication

of the numbers is assigned to the PRODUCT variable.

PRODUCT=$(bc <<EOF

scale=$SCALE

$MULTIPLY

EOF)

##

Present the result of the multiplication to the user.

echo “\nThe product of: $MULTIPLY”

echo “\nto a scale of $SCALE is ${PRODUCT}\n”

Listing 22.6 float_multiply.ksh shell script listing. (continued)

As you can see in Listing 22.6, most of the previous two shell scripts have been car-
ried over for use here. Now I want to cover in a little more detail how the scanning of
the command-line arguments works when we extract the command switches, and the
associated switch-arguments, from the entire list of arguments.

Parsing the Command Line for Valid Numbers
To start the extraction process we use the two previously initialized variables, COUNT
and MAX_COUNT. The COUNT variable is incremented during the processing of the
while loop, and the MAX_COUNT has been initialized to the value of $#, which specifies
the total number of command-line arguments given by the user. The while loop runs
until the COUNT variable is greater than or equal to the MAX_COUNT variable.

Inside of the while loop the COUNT variable is incremented by one, so on the first
loop iteration the COUNT equals 1, one, because it was initialized to 0, zero. Next is the
TOKEN variable. The TOKEN variable always points to the $1 positional parameter
throughout the while loop execution. Using the current value of the $1 positional
parameter, which is pointed to by the TOKEN variable, as the case statement argument
we test to see if $TOKEN points to a known value. The current known values on the
command line are the -s and -S switches that are used to define the scale for floating-
point arithmetic, if a scale was given, and the integer value of the SCALE. There are
only two options for the value of the scale:

570 Chapter 22

-s{Scale Integer}

-s {Scale Integer}

Because these are the only possible scale values (we also allow an uppercase -S) for
the command line, we can test for this condition easily in a case statement. Remember
that I said the $TOKEN variable always points to the $1 positional parameter? To move
the other positional parameters to the $1 position we use the shift command. The shift
command alone will shift the $2 positional parameter to the $1 position. What if you
want to move the $3 positional parameter to the $1 position? We have two options: Use
two shift commands in series, or add an integer as an argument to the shift command.
Both of the following commands move the $3 positional parameter to the $1 position.

shift; shift

OR

shift 2

Now you may be wondering what happens to the previous $1, and in this case $2,
positional parameter values. Well, anything that is shifted from the $1 position goes to
the bit bucket! But this is the result that we want here.

If the value of the positional parameter in the $1 position is the -s or -S switch alone,
then we shift two positions. We do this double shift because we know that there should
be an integer value after the -s or -S switch, which is the integer switch-argument that
defines the scale. On the other hand, if the user did not place a space between the -s or -S
switch and the switch-argument, then we shift only once. Let’s say that the user entered
either of the following command statements on the command line:

[root:yogi]@/scripts# float_multiply.ksh -s 4 8.09838 2048 65536 42.632

OR

[root:yogi]@/scripts# float_multiply.ksh -s4 8.09838 2048 65536 42.632

Notice in the first command the user added a space between the switch and the
switch-argument (-s 4). In this situation our test will see the -s as a single argument so
we need to shift two places to move past the switch-argument, which is 4. In the sec-
ond command statement the user did not add a space between the switch and the
switch-argument (-s4). This time we shift only one position because the switch and the
switch-argument are together in the $1 positional parameter, which is what $TOKEN
points to.

There is one more thing that I want to point out. On each loop iteration the COUNT is
incremented by 1, one, as you would expect. But if we shift two times, then we need to
increment the COUNT by 1, one, a second time so we do not count past the number of
arguments on the command line. This is very important! If you leave this extra counter
incrementation out, the shell script errors out. Every little piece of this loop has a
reason for being there. Speaking of the loop, please study the while loop in the code
segment shown in Listing 22.7.

Floating-Point Math and the bc Utility 571

Free & Share & Open

Parse through the command-line arguments and gather a list

of numbers to multiply together.

while ((COUNT < MAX_COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case $TOKEN in

-s|-S) shift 2

((COUNT = COUNT + 1))

;;

-s${SCALE}) shift

;;

-S${SCALE}) shift

;;

*) NUM_LIST=”${NUM_LIST} $TOKEN”

((COUNT < MAX_COUNT)) && shift

;;

esac

done

Listing 22.7 Code to parse numbers from the command line.

The techniques to build the math statement and to do the calculations with a here
document using the bc command are changed only slightly. Of course, because we are
multiplying a string of numbers instead of adding or subtracting, we changed the
build code to add a *, instead of a + or -. The here document is exactly the same
except that the result is assigned to the PRODUCT variable. Please look closely at the
float_multiply.ksh shell script shown in Listing 22.6 and study the subtle
changes from the previous two shell scripts in Listing 22.1 and Listing 22.3.

The float_multiply.ksh shell script is shown in action in Listing 22.8. Notice in
this output that the scale setting still has no effect on the output.

[root:yogi]@/scripts# float_multiply.ksh -s 4 8.09838 2048 65536 42.632

The product of: 8.09838 * 2048 * 65536 * 42.632

is 46338688867.08584

Listing 22.8 float_multiply.ksh shell script in action.

In the next section we move on to study division. We had to do some creative
engineering to change the previous shell script to work with only two numbers. Keep
reading—I think you will pick up a few more pointers.

572 Chapter 22

Creating the float_divide.ksh Shell Script
For the division script we had to do some changes because we are dealing with only two
numbers, as opposed to an unknown string of numbers. The float_divide
.ksh shell script starts out the same as the previous three scripts, with the same variables
and a modified usage function. The first test is for the correct number of command-
line arguments. In this shell script we can handle from two to four arguments, with the
option to specify a scale value for precision of floating-point numbers, which by the
way does work for division.

In the getopts statement we perform the same test to parse out the scale switch, -s
or -S, and the switch-argument. When however, we get to parsing the entire list of
command-line arguments to gather the numbers for the division, we do things a little
differently. The while loop is the same with the counter and the TOKEN variable always
pointing to the $1 positional parameter, which we use as we shift command-line argu-
ments to the $1 position. It is in the case statement that we do our modification. For
division we need a dividend and a divisor, which has the form in a division statement of
((QUOTIENT = $DIVIDEND / $DIVISOR)). As we parse the command-line argu-
ments we assign the first number to the DIVIDEND variable and the second number to
the DIVISOR. Look at the code segment in Listing 22.9, and we will go into the details
at the end.

Parse through the command-line arguments and gather a list

of numbers to subtract.

TOTAL_NUMBERS=0

while ((COUNT < MAX_COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case $TOKEN in

-s|-S) shift 2

((COUNT = COUNT + 1))

;;

-s${SCALE}) shift

;;

-S${SCALE}) shift

;;

*) ((TOTAL_NUMBERS = TOTAL_NUMBERS + 1))

if ((TOTAL_NUMBERS == 1))

then

DIVIDEND=$TOKEN

elif ((TOTAL_NUMBERS == 2))

then

DIVISOR=$TOKEN

else

echo “ERROR: Too many numbers to divide”

usage

Listing 22.9 Code to extract the dividend and divisor. (continues)

Floating-Point Math and the bc Utility 573

Free & Share & Open

exit 1

fi

NUM_LIST=”$NUM_LIST $TOKEN”

((COUNT < MAX_COUNT)) && shift

;;

esac

done

Listing 22.9 Code to extract the dividend and divisor. (continued)

In the case statement in Listing 22.9 notice the boldface text. When a number is
encountered we use a variable called TOTAL_NUMBERS to keep track of how many
numbers are on the command-line. If $TOTAL_NUMBERS is equal to 1, one, we assign
the value of the $TOKEN variable to the DIVIDEND variable, the number on the top in
a division math statement. When $TOTAL_NUMBERS is equal to 2 we assign the value
of the $TOKEN variable to the DIVISOR variable. If the $TOTAL_NUMBERS counter
variable exceeds 2, then we print an error message to the screen, execute the usage
function, and exit the script with a return code of 1, which is a normal usage error for
this shell script.

Notice that we are also keeping the NUM_LIST variable. We use the $NUM_LIST to
verify that each “number” is actually an integer or a floating-point number by using
the regular expressions that we covered previously in this chapter.

Notice in the shell script in Listing 22.10 that we omitted the step of building the
math statement. In this script it is not necessary because we have the dividend and
divisor captured in the code segment in Listing 22.9. Check out the shell script in
Listing 22.10, and pay close attention to the boldface text.

#!/usr/bin/ksh

#

SCRIPT: float_divide.ksh

AUTHOR: Randy Michael

DATE: 02/23/2001

REV: 1.1.A

#

PURPOSE: This shell script is used to divide two numbers.

The numbers can be either integers or floating point

numbers. For floating point numbers the user has the

option to specify a scale of the number of digits to

the right of the decimal point. The scale is set by

adding a -s or -S followed by an integer number.

Listing 22.10 float_divide.ksh shell script listing.

574 Chapter 22

#

EXIT STATUS:

0 ==> This script exited normally

1 ==> Usage or syntax error

2 ==> This script exited on a trapped signal

#

REV. LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to debug without any command execution

#

##

############## DEFINE VARIABLE HERE ####################

##

SCRIPT_NAME=`basename $0`

SCALE=”0” # Initialize the scale value to zero

NUM_LIST= # Initialize the NUM_LIST to NULL

COUNT=0 # Initialize the counter to zero

MAX_COUNT=$# # Set MAX_COUNT to the total number of

command-line arguments

##

################ FUNCTIONS #############################

##

function usage

{

echo “\nPURPOSE: Divides two numbers\n”

echo “USAGE: $SCRIPT_NAME [-s scale_value] N1 N2”

echo “\nFor an integer result without any significant decimal places...”

echo “\nEXAMPLE: $SCRIPT_NAME 2048.221 65536 \n”

echo “OR for 4 significant decimal places”

echo “\nEXAMPLE: $SCRIPT_NAME -s 4 2048.221 65536”

echo “\n\t...EXITING...\n”

}

##

function exit_trap

{

echo “\n...EXITING on trapped signal...\n”

}

##

################ START OF MAIN #########################

##

Listing 22.10 float_divide.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 575

Free & Share & Open

Set a Trap

trap ‘exit_trap; exit 2’ 1 2 3 15

########################

Check for at least two command-line arguments

and not more than four

if (($# < 2))

then

echo “\nERROR: Too few command line arguments”

usage

exit 1

elif (($# > 4))

then

echo “\nERROR: Too many command line arguments”

usage

exit 1

fi

Parse the command-line arguments to find the scale value, if present.

while getopts “:s:S:” ARGUMENT

do

case $ARGUMENT in

s|S) SCALE=$OPTARG

;;

\?) # Because we may have negative numbers we need

to test to see if the ARGUMENT that begins with a

hyphen (-) is a number, and not an invalid switch!!!

for TST_ARG in $*

do

if [[$(echo $TST_ARG | cut -c1) = ‘-’]] \

&& [$TST_ARG != ‘-s’ -a $TST_ARG != ‘-S’]

then

case $TST_ARG in

+([-0-9])) : # No-op, do nothing

;;

+([-0-9].[0-9]))

: # No-op, do nothing

;;

+([-.0-9])) : # No-op, do nothing

;;

*) echo “\nERROR: $TST_ARG is an invalid argument\n”

usage

Listing 22.10 float_divide.ksh shell script listing. (continued)

576 Chapter 22

exit 1

;;

esac

fi

done

;;

esac

done

##

Parse through the command-line arguments and gather a list

of numbers to subtract.

TOTAL_NUMBERS=0

while ((COUNT < MAX_COUNT))

do

((COUNT = COUNT + 1))

TOKEN=$1

case $TOKEN in

-s|-S) shift 2

((COUNT = COUNT + 1))

;;

-s${SCALE}) shift

;;

-S${SCALE}) shift

;;

*) ((TOTAL_NUMBERS = TOTAL_NUMBERS + 1))

if ((TOTAL_NUMBERS == 1))

then

DIVIDEND=$TOKEN

elif ((TOTAL_NUMBERS == 2))

then

DIVISOR=$TOKEN

else

echo “ERROR: Too many numbers to divide”

usage

exit 1

fi

NUM_LIST=”$NUM_LIST $TOKEN”

((COUNT < MAX_COUNT)) && shift

;;

esac

done

##

Ensure that the scale is an integer value

Listing 22.10 float_divide.ksh shell script listing. (continues)

Floating-Point Math and the bc Utility 577

Free & Share & Open

case $SCALE in

+([0-9])) : # No-op - Do Nothing

;;

*) echo “\nERROR: Invalid scale - $SCALE - Must be an integer”

usage

exit 1

;;

esac

##

Check each number supplied to ensure that the “numbers”

are either integers or floating point numbers.

for NUM in $NUM_LIST

do

case $NUM in

+([0-9])) # Check for an integer

: # No-op, do nothing.

;;

+([-0-9])) # Check for a negative whole number

: # No-op, do nothing

;;

+([0-9]|[.][0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

+(+[0-9]|[.][0-9]))

Check for a positive floating point number

with a + prefix

: # No-op, do nothing

;;

+([-0-9]|.[0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+(-.[0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+([+.0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

*) echo “\nERROR: $NUM is NOT a valid number”

usage

exit 1

;;

Listing 22.10 float_divide.ksh shell script listing. (continued)

578 Chapter 22

esac

done

##

Do the math here by using a here document to supply

input to the bc command. The quotient of the division is

assigned to the QUOTIENT variable.

QUOTIENT=$(bc <<EOF

scale=$SCALE

$DIVIDEND / $DIVISOR

EOF)

##

Present the result of the division to the user.

echo “\nThe quotient of: $DIVIDEND / $DIVISOR”

echo “\nto a scale of $SCALE is ${QUOTIENT}\n”

Listing 22.10 float_divide.ksh shell script listing. (continued)

Let’s look at the here document that we feed input into the bc utility at the end of
Listing 22.10. We already have extracted the dividend and divisor directly from the
command line so we skipped building the math statement. Using command substitu-
tion we use double input redirection with a label (<<EOF), which defines the beginning
of a here document, to set the scale of the precision of floating-point numbers and to
divide the two numbers. If no scale was given on the command line, then the scale is 0,
zero. The here document ends with the final label (EOF) to end the here document and
exit the bc utility, which is an interactive program. The final step is to present the result
to the user. In Listing 22.11 you can see the float_divide.ksh shell script in action.

[root:yogi]@/scripts# float_divide.ksh -s 6 .3321 -332.889

The quotient of: .3321 / -332.889

to a scale of 6 is -.000997

Listing 22.11 float_divide.ksh shell script in action.

Notice that the scale worked with the division script! We have completed shell
scripts for addition, subtraction, multiplication, and division. I want to present one
more variation in the next section.

Floating-Point Math and the bc Utility 579

Free & Share & Open

Creating the float_average.ksh Shell Script
Using the addition shell script from Listing 22.1 we can make a couple of minor modi-
fications and take the average of a series of numbers. I am not going to show the entire
shell script, only the modifications that I made to the float_add.ksh shell script to
average the series of numbers.

The first addition to Listing 22.1 is the addition of the variable TOTAL_NUMBERS. To
average a list of numbers we need to know how many numbers are in the list so we can
divide the SUM by the total number of numbers. The counter is added in the sanity
check of the $NUM_LIST numbers, where we are ensuring that the numbers are either
integers or floating point. This modification is shown in Listing 22.12.

TOTAL_NUMBERS=0

for NUM in $NUM_LIST

do

((TOTAL_NUMBERS = TOTAL_NUMBERS + 1))

case $NUM in

+([0-9])) # Check for an integer

: # No-op, do nothing.

;;

+([-0-9])) # Check for a negative whole number

: # No-op, do nothing

;;

+([0-9]|[.][0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

+(+[0-9]|[.][0-9]))

Check for a positive floating point number

with a + prefix

: # No-op, do nothing

;;

+([-0-9]|.[0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+(-.[0-9]))

Check for a negative floating point number

: # No-op, do nothing

;;

+([+.0-9]))

Check for a positive floating point number

: # No-op, do nothing

;;

*) echo “\nERROR: $NUM is NOT a valid number”

usage

exit 1

Listing 22.12 Code segment to keep a running total of numbers.

580 Chapter 22

;;

esac

done

Listing 22.12 Code segment to keep a running total of numbers. (continued)

The two lines of modification are highlighted in boldface text in Listing 22.12. The
only other modifications are with the here document, where we added a division to the
$ADD by the $TOTAL_NUMBERS, and the code to present the result to the user. This
code modification is shown in the code segment in Listing 22.13.

Do the math with a here document for the bc command

AVERAGE=$(bc <<EOF

scale=$SCALE

(${ADD}) / $TOTAL_NUMBERS

EOF)

Present the result to the user

echo “\nThe average of: $(echo $ADD | sed s/+//g)”

echo “\nto a scale of $SCALE is ${AVERAGE}\n”

Listing 22.13 Code segment to average a list of numbers.

In Listing 22.13 notice how the averaging of the numbers is done. In a previous code
section an addition math statement was created and assigned to the ADD variable. Now
we use this ADD variable as input to the bc command in the here document and divide
the result of the addition by the total number of numbers given on the command line,
$TOTAL_NUMBERS. The result is an average of the numbers.

In the next step we present the result to the user. Notice the sed statement that is in
boldface text. This sed statement is replacing every occurrence of the plus sign (+) with
a blank space. The result is a list of the numbers only. We could have just as easily used
the $NUM_LIST variable, but I wanted to slip a sed statement into this chapter some-
where. The float_average.ksh shell script is in action in Listing 22.14.

[root:yogi]@/scripts# float_average.ksh -s 8 .22389 65 -32.778 -.221

The average of: .22389 65 -32.778 -.221

to a scale of 8 is 8.05622250

Listing 22.14 float_average.ksh shell script in action.

Floating-Point Math and the bc Utility 581

Free & Share & Open

The float_average.ksh shell script listing is not shown in the book, but it is on
the Web site that accompanies this book.

Other Options to Consider

As always, these scripts can be improved, just as any shell script can be improved. As
you saw in each of the shell scripts in this chapter, we did a lot of tests to verify the
integrity of the data the user entered on the command-line. You may be able to com-
bine some of these tests, but I still like to separate each piece so that whoever comes
along in the future can follow the shell script easily. Sure, some of these can be done in
three lines of code, but this does not allow for data verification, and the user would
have to rely on the cryptic system error messages that do not always tell where the data
error is located.

Remove the Scale from Some of the Shell Scripts
Since the scale was only valuable when we did division you may as well remove all of
scale references in the addition, subtraction, and multiplication shell scripts. The divi-
sion and average shell scripts use the scale since both use division to get the answer.

Create More Functions
As an exercise for this chapter, replace each of the data tests with functions. This is easy
to do! All that is required is that the function must be defined before it can be used. So,
put these new functions at the top of the shell scripts in the DEFINE FUNCTIONS HERE
section. When you extract a code segment, from the main body of the shell script, make
a comment to yourself that “XYZ Function goes here.” Then use one of the following
techniques to make the code segment into a function.

function my_new_function_name

{

Place Code Segment Here

}

OR

my_new_function_name ()

{

Place Code Segment Here

}

Both techniques produce the same result, but I prefer the first method because it is
more intuitive to new shell programmers. Remember where the scope of your vari-
ables can be seen. A variable in the main body of the shell script is a global variable,
which can be seen by all functions. A variable inside of a function has limited scope

582 Chapter 22

and can be seen in the function and any function that the current function calls, but not
in the calling shell script. There are techniques that we have covered in this book to get
around these scope limitations, so I hope you have read the whole book. Experiment!
That is how you learn.

I hope you enjoyed studying this chapter. Please explore the other options that are
available in the bc command; you will be surprised by what you can do.

Summary

We have covered a lot of material in this chapter. I hope that you will now find that
math is not difficult in a shell script and that it can be done to the precision required.
The bc command is very powerful, and we only touched the surface of the ability of bc
here. For more information on bc look at the man page, man bc.

In the next chapter we are moving on to changing numbers between numbers bases.
We start with the basics and move to a shell script that converts any number in any
number base to any other number base. See you in the next chapter!

Floating-Point Math and the bc Utility 583

Free & Share & Open

585

On many occasions in computer science you need to convert numbers between differ-
ent number bases. For example, you may need to translate a hexadecimal number into
an octal representation, or if you are a software developer you may want to license the
software you create for a specific machine. One way of creating a machine-specific
license key is to use the IP address of the machine to create a hexadecimal character
string, which will allow the software to execute only on that specific machine. The first
example here is a common occurrence, but the latter one is a little more obscure.

In this chapter we are going to present some number base conversion techniques
and also show how to create a shell script that produces a license key, as in our second
example. Converting between number bases is very straightforward, and we are going
to go through each step. Before we can write a shell script we need the correct com-
mand syntax. In this case we add setting up the proper environment for the system to
do all of the hard work automatically.

Syntax

By far, the easiest way to convert a number from one base to another is to use the type-
set command with the -ibase option. The typeset command is used a lot in this book,
mostly to force a character string to uppercase or lowercase and to classify a variable as

Scripts for Number
Base Conversions

C H A P T E R

23

Free & Share & Open

an integer value. This time we are adding to the integer setting, specified by typeset -i
VAR_NAME, by adding the number base that the variable is to maintain. For example,
if the variable BASE_16_NUM is to always contain a hexadecimal number, then the next
command will set the variable’s environment:

typeset -i16 BASE_16_NUM

After the BASE_16_NUM variable is typeset to base 16, then any value assigned to
this variable is automatically converted to hexadecimal. We can also typeset a variable
after a number has been assigned. This applies not only to base 10 numbers, but also to
any base number up to the system limit, which is at least base 36. Let’s look at some
examples of converting between bases.

Example 23.1: Converting from Base 10 to Base 16
[root@yogi:/scripts]> typeset -i16 BASE_16_NUM

[root@yogi:/scripts]> BASE_16_NUM=47295

[root@yogi:/scripts]> echo $BASE_16_NUM

16#b8bf

Notice the output in Example 23.1. The output starts out by setting the number base
that is represented, which is base 16 here. The string after the pound sign (#) is the
hexadecimal number, b8bf. Next we want to convert from base 8, octal, to base 16,
hexadecimal. We use the same technique, except this time we must specify the number
base of the octal number in the assignment, as shown in Example 23.2.

Example 23.2: Converting from Base 8 to Base 16
[root@yogi:/scripts]> typeset -i16 BASE_16_NUM

[root@yogi:/scripts]> BASE_16_NUM=8#472521

[root@yogi:/scripts]> echo $BASE_16_NUM

16#735c9

In Example 23.2 notice that we assigned the octal number 472521 to the
BASE_16_NUM variable by specifying the number base followed by the base 8 number,
BASE_16_NUM=8#472521. When this base 8 number is assigned to the
BASE_16_NUM variable it is automatically converted to base 16. As you can see, the
system can do the hard work for us.

In Unix there is never just one way to accomplish a task, and number base conver-
sions are no exception. We can also use the printf command to convert between num-
ber bases. The printf command accepts base 10 integer values and converts the
number to the specified number base. The following options are available:

■■ o Accepts a base 10 integer and prints the number in octal

■■ x Accepts a base 10 integer and prints the number in hexadecimal

Let’s look at two examples of using the printf command.

586 Chapter 23

Example 23.3 Converting Base 10 to Octal
[root@yogi:/scripts]> printf %o 20398

47656

In Example 23.3 notice the added percent sign (%) before the printf command
option. This % tells the printf command that the following lowercase o is a number
base conversion to octal.

Example 23.4 Converting Base 10 to Hexadecimal
[root@yogi:/scripts]> printf %x 20398

4fae

Although not as flexible as the typeset command the printf command allows you to do
base conversions from base 10 to base 8 and base 16. I like the extra flexibility of the type-
set command, so this is the conversion method that we are going to use in this chapter.

Scripting the Solution

The most common number base conversion that computer science people use is con-
versions between base 2, 8, 10, and 16. We want to be able to convert back and forth
between these, and other, bases in this chapter. To do this conversion we are going to
create four shell scripts to show the flexibility, and use, of number base conversions.
The following shell scripts are covered:

■■ Base 2 (binary) to base 16 (hexadecimal) shell script

■■ Base 10 (decimal) to base 16 (hexadecimal) shell script

■■ Script to create a software key based on the hexadecimal representation of an IP
address

■■ Script to translate between any number base

We have a lot to cover in this chapter, but these shell scripts are not too difficult to
follow. I hope you pick up a few tips and techniques in this chapter, as well as the
whole book.

Base 2 (Binary) to Base 16 (Hexadecimal) Shell Script
This is the first conversion that most computer science students learn in school. It is
easy enough to do this conversion with a pencil and paper, but, hey, we want automa-
tion! This shell script to convert from binary to hexadecimal uses the typeset technique,
as all of these scripts use. You know the basic principle of the conversion, so let’s
present the shell script and cover the details at the end. The equate_base_2_to_16
.ksh shell script is shown in Listing 23.1.

Scripts for Number Base Conversions 587

Free & Share & Open

#!/usr/bin/ksh

#

SCRIPT: equate_base_2_to_16.ksh

AUTHOR: Randy Michael

DATE: 07/07/2002

REV: 1.2.P

#

PURPOSE: This script is used to convert a base 2 number

to a base 16 hexadecimal representation.

This script expects that a base 2 number

is supplied as a single argument.

#

EXIT CODES:

0 - Normal script execution

1 - Usage error

#

REV LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

#

SCRIPT_NAME=`basename $0`

function usage

{

echo “\nUSAGE: $SCRIPT_NAME {base 2 number}”

echo “\nEXAMPLE: $SCRIPT_NAME 1100101101”

echo “\nWill return the hexadecimal base 16 number 32d”

echo “\n\t ...EXITING...\n”

}

Check for a single command-line argument

if (($# != 1))

then

echo “\nERROR: A base 2 number must be supplied...”

usage

exit 1

fi

Check that this single command-line argument is a binary number!

case $1 in

+([0-1])) BASE_2_NUM=$1

;;

*) echo “\nERROR: $1 is NOT a base 2 number”

usage

exit 1

Listing 23.1 equate_base_2_to_16.ksh shell script listing.

588 Chapter 23

;;

esac

Assign the base 2 number to the BASE_16_NUM variable

BASE_16_NUM=$((2#${BASE_2_NUM}))

Now typeset the BASE_16_NUM variable to base 16.

This step converts the base 2 number to a base 16 number.

typeset -i16 BASE_16_NUM

Display the resulting base 16 representation

echo $BASE_16_NUM

Listing 23.1 equate_base_2_to_16.ksh shell script listing. (continued)

In Listing 23.1 all of the real work is done with three commands. The rest of the code
is for testing the user input and providing the correct usage message when an error is
detected. Two tests are performed on the user input. First, the number of command-
line arguments is checked to ensure that exactly one argument is supplied on the com-
mand line. The second test is to ensure that the single command-line argument is a
binary number. Let’s look at these two tests.

The $# shell variable shows the total number of command-line arguments, with the
command itself being in the $0 position, and the single command-line argument rep-
resented by the positional parameter $1. For this shell script the value $# shell variable
must be equal to 1, one. This test is done using the mathematical test shown here.

if (($# != 1))

then

echo “\nERROR: A base 2 number must be supplied...”

usage

exit 1

fi

The second test is to ensure that a base 2 number is given on the command line. For
this test we use a good ole regular expression. You have to love the simplicity of mak-
ing this type of test. Because a binary number can consist only of 0, zero, or 1, one, it is
an easy test with a regular expression. The idea is to specify a valid range of characters
that can make up a binary number. The tests for decimal and hexadecimal are similar.
The regular expression that we use is used in the case statement shown here.

case $1 in

+([0-1])) BASE_2_NUM=$1

;;

Scripts for Number Base Conversions 589

Free & Share & Open

*) echo “\nERROR: $1 is NOT a base 2 number”

usage

exit 1

;;

esac

The regular expression shown here has the form +([0-1]) and is used as a test for
the specified valid range of numbers 0 through 1. If the range is valid, then we assign
the binary number to the BASE_2_NUM variable. We will look at more regular expres-
sions later in this chapter.

When we are satisfied that we have valid data we are ready to do the number base
conversion. The first step is to assign the binary number that was supplied on the com-
mand line to the BASE_16_NUM variable. Notice that thus far we have not typeset any
of the variables, so the variable can contain any character string. It is how we assign the
binary number to the BASE_16_NUM variable that is important. When the binary value
is assigned to the variable the current number base is specified, as shown here.

BASE_16_NUM=$((2#${BASE_2_NUM}))

Notice in this assignment that the BASE_2_NUM variable is preceded by the number
base, which is base 2 in this case. This allows for the number to be assigned to the
BASE_16_NUM as a base 2 number. The base translation takes place in the next step
where we typeset the variable to base 16, as shown here.

typeset -i16 BASE_16_NUM

With the BASE_16_NUM variable typeset to base 16, specified by the -i16 argu-
ment, the binary number is translated to hexadecimal. We could just as easily typeset
the BASE_16_NUM variable at the top of the shell script, but it really does not matter.

Base 10 (Decimal) to Base 16 (Hexadecimal) Shell Script
This shell script is very similar to the shell script in the previous section. We are really
changing just the tests and the conversion values. Other than these few changes the two
shell scripts are identical. Again, I want to present the shell script and cover the details
at the end. The equate_base_10_to_16.ksh shell script is shown in Listing 23.2.

#!/usr/bin/ksh

#

SCRIPT: equate_base_10_to_16.ksh

AUTHOR: Randy Michael

DATE: 07/07/2002

REV: 1.2.P

#

PURPOSE: This script is used to convert a base 10 number

to a base 16 hexadecimal representation.

Listing 23.2 equate_base_10_to_16.ksh shell script listing.

590 Chapter 23

This script expects that a base 10 number

is supplied as a single argument.

#

EXIT CODES:

0 - Normal script execution

1 - Usage error

#

REV LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

#

#

SCRIPT_NAME=`basename $0`

function usage

{

echo “\nUSAGE: $SCRIPT_NAME {base 10 number}”

echo “\nEXAMPLE: $SCRIPT_NAME 694”

echo “\nWill return the hexadecimal number 2b6”

echo “\n\t...EXITING...\n”

}

Check for a single command-line argument

if (($# != 1))

then

echo “\nERROR: A base 10 number must be supplied...”

usage

exit 1

fi

Check that this single command-line argument is a base 10 number!

case $1 in

+([0-9])) BASE_10_NUM=$1

;;

*) echo “\nERROR: $1 is NOT a base 10 number”

usage

exit 1

;;

esac

Assign the base 10 number to the BASE_16_NUM variable

BASE_16_NUM=$((10#${BASE_10_NUM}))

Now typeset the BASE_16_NUM variable to base 16.

Listing 23.2 equate_base_10_to_16.ksh shell script listing. (continues)

Scripts for Number Base Conversions 591

Free & Share & Open

This step converts the base 10 number to a base 16 number.

typeset -i16 BASE_16_NUM

Display the resulting base 16 number representation

echo $BASE_16_NUM

This following code is optional. It removes the number base

prefix. This may be helpful if using this script with

other programs and scripts.

#

Strip out the base prefix and the pound sign (#). (Optional)

#

echo $BASE_16_NUM | grep -q “#”

#

if (($? == 0))

then

echo $BASE_16_NUM | awk -F ‘#’ ‘{print $2}’

else

echo $BASE_16_NUM

fi

Listing 23.2 equate_base_10_to_16.ksh shell script listing. (continued)

In Listing 23.2 we have a few things to point out. First, notice the usage function
and how we use the extracted name of the shell script directly from the system, speci-
fied by SCRIPT_NAME=`basename $0`. This is command substitution using back
tics, which are located in the upper left corner of a standard keyboard under the ESC-
key. Using this technique is equivalent to using the dollar parentheses method, specified
by $(command), as we use in most chapters in this book. Notice in the assignment that
the basename $0 command holds the name of the shell script. We always want to
query the system for a script name in the main body of the shell script, before it is used
in a usage function. If we use the basename $0 command in the function the response
would be the name of the function, not the name of the shell script. We never want to
hard-code the script name because someone may change the name of the shell script in
the future.

The next thing that I want to point out is the change made to the regular expression.
Before, we were testing for a binary number, which can consist of only 0 and 1. This
time we are testing for a decimal number, which can consist of only numbers 0 through
9. The new regular expression is shown here.

case $1 in

+([0-9])) BASE_10_NUM=$1

;;

*) echo “\nERROR: $1 is NOT a base 10 number”

usage

592 Chapter 23

exit 1

;;

esac

In this case statement we are testing the ARG[1] variable, represented by the $1 posi-
tional parameter. This regular expression will assign $1 to the BASE_10_NUM variable
only if the characters are numbers between 0 and 9. If any other character is found in
this character string, then an ERROR message is displayed and the usage function is
called before the script exits with a return code of 1, one.

In the assignment of the base 10 number to the BASE_16_NUM variable notice the
change in the variable assignment as shown here.

BASE_16_NUM=$((10#${BASE_10_NUM}))

Notice that the ${BASE_10_NUM} variable is preceded by number base representa-
tion, 10#. Because this is a decimal number we really did not need to do this, but to be
consistent it was added.

The last thing that I want to point out is the optional code at the end of the shell
script in Listing 23.2. If you are using this shell script with other programs or shell
scripts to produce number base conversions, then this optional code strips out the
number base prefix. Look at the code segment shown here.

Strip out the base prefix and the pound sign (#). (Optional)

#

echo $BASE_16_NUM | grep -q “#”

#

if (($? == 0))

then

echo $BASE_16_NUM | awk -F ‘#’ ‘{print $2}’

else

echo $BASE_16_NUM

fi

This code is commented out, but let’s look at what it does. The purpose is to remove
the base number prefix and leave only the number alone, which implies that you must
have some built-in logic to know the number base in which the number is represented.
The first step is to test for the existence of a pound sign (#). We do this by printing the
variable with the echo command and piping the output to a grep statement, using the
quiet option -q. This command does not produce any output to the screen, but we test
the return code to see if a pattern match was made. If the return code is 0, zero, then a
match was made and there is a pound sign in the string. Because we want to display
everything after the pound sign (#) we use this pound sign as a field separator. To split
the string and leave only the number, which will be in the second field now, we can use
either cut or awk. Let’s use awk for a change of pace. To do field separation with awk
we use the -F switch, followed by the character(s) that represent a separation of the
fields, which is the # here. Then we just print the second field, specified by the $2 posi-
tional parameter, and we are left with the number alone. If you use this optional code
segment, always remember to keep track of the current number base and comment out
the echo statement that precedes this code block.

Scripts for Number Base Conversions 593

Free & Share & Open

Script to Create a Software Key Based on the
Hexadecimal Representation of an IP Address
With the techniques learned in the last two shell scripts let’s actually do something that
is useful. In this section we are going to create a shell script that will create a software
license key based on the IP address of the machine. To tie the license key to the machine
and the software we are going to convert each set of numbers in the machine’s IP
address from decimal to hexadecimal. Then we are going to combine all of the hexa-
decimal numbers together to make a license key string. This is pretty primitive, but it
is a good example for using base conversions. Again, let’s look at the code and go
through the details at the end. The mk_swkey.ksh shell script is shown in Listing 23.3.

#!/usr/bin/ksh

#

SCRIPT: mk_swkey.ksh

AUTHOR: Randy Michael

DATE: 07/07/2002

REV: 1.2.P

#

PURPOSE: This script is used to create a software

license key based on the IP address of the

system that this shell script is executed on.

The system is queried for the system’s IP

address. The IP address is stripped of the

dots (.), and each number is converted to

hexadecimal. Then each hex string is combined

into a single hex string, which is the software

license key.

#

REV LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to check command syntax without any execution

#

###

############### DEFINE FUNCTIONS HERE #######################

###

function convert_base_10_to_16

{

set -x # Uncomment to debug this function

typeset -i16 BASE_16_NUM

BASE_10_NUM=$1

BASE_16_NUM=$((10#${BASE_10_NUM}))

Listing 23.3 mk_swkey.ksh shell script listing.

594 Chapter 23

Strip the number base prefix from the hexadecimal

number. This prefix is not needed here.

echo $BASE_16_NUM | grep -q ‘#’

if (($? == 0))

then

echo $BASE_16_NUM | awk -F ‘#’ ‘{print $2}’

else

echo $BASE_16_NUM

fi

}

###

################## BEGINNING OF MAIN ########################

###

Query the system for the IP address using the “host $(hostname)”

command substitution.

IP=$(host $(hostname) | awk ‘{print $3}’ | awk -F ‘,’ ‘{print $1}’)

Field delimit the IP address on the dots (.) and assign each

number to a separate variable in a “while read” loop.

echo $IP | awk -F ‘.’ ‘{print $1, $2, $3, $4}’ | while read a b c d junk

do

Convert each of the numbers in the IP address

into hexadecimal by calling the “convert_base_10_to 16”

function.

FIRST=$(convert_base_10_to_16 $a)

SECOND=$(convert_base_10_to_16 $b)

THIRD=$(convert_base_10_to_16 $c)

FORTH=$(convert_base_10_to_16 $d)

done

Combine all of the hexadecimal strings into a single

hexadecimal string, which represents the software key.

echo “${FIRST}${SECOND}${THIRD}${FORTH}”

Listing 23.3 mk_swkey.ksh shell script listing. (continued)

In the script in Listing 23.3 we are actually doing something useful—at least if you
license your own software this script is useful. To start this shell script off we converted
the base 10 to base 16 code into a function called convert_base_10_to_16. This
allows us to call the function four times, one for each piece of the IP address. In this

Scripts for Number Base Conversions 595

Free & Share & Open

function I want you to notice that we typeset the BASE_16_NUM variable to base 16 at
the top of the function, as opposed to the bottom in the previous shell script. It does not
make any difference where it is set as long as it is set before the value is returned to the
main body of the shell script, or displayed.

Also, the optional code segment that was commented out on Listing 23.2 is now
used in this shell script. In this case we know that we are converting to a hexadecimal
number, and we do not want the number base prefix to appear in the software license
key. We use the following code segment to remove the prefix from the output.

Strip the number base prefix from the hexadecimal

number. This prefix is not needed here.

echo $BASE_16_NUM | grep -q ‘#’

if (($? == 0))

then

echo $BASE_16_NUM | awk -F ‘#’ ‘{print $2}’

else

echo $BASE_16_NUM

fi

Notice the silent execution of the grep command using the -q command switch.
Then, if a pound sign is found, the awk statement uses the # as a field delimiter by
specifying the -F ‘#’ switch, and then the second field is extracted. This is the value
that is returned back to the main body of the shell script from the conversion function.

At the BEGINNING_OF_MAIN we start out by querying the system for the system’s
IP address using the following command:

IP=$(host $(hostname) | awk ‘{print $3}’ | awk -F ‘,’ ‘{print $1}’)

Let’s step through each part of this command. On my system I pulled an IP address
out of the air for this demonstration. On the yogi machine the command substitution
host $(hostname) results in the following output:

[root:yogi]@/scripts# host $(hostname)

yogi is 163.155.204.42,

From this output you can see that the fictional IP address is located in the third field,
163.155.204.42,. Notice that I have an extra comma (,) tacked on to the end of the
IP address, which we do not want included. After we extract the third field from the com-
mand output we pipe this result to an awk statement (the cut command will do the same
thing here). In the awk part of the statement we set the field delimiter to the comma (,)
that we want to get rid of, using the -F ‘,’ notation. Now that the string is field delim-
ited on the comma we just extract the first field, which is the IP address alone. This result
is then assigned to the IP variable using command substitution.

Now that we have the whole IP address we can chop it up into a series of four
numbers. Once we have four individual numbers we can convert each of the decimal
numbers into their hexadecimal equivalent. To separate the IP address into separate
individual numbers we can use cut, sed, or awk. For consistency let’s keep using awk.
This time we field delimit the string, which is an IP address, using the dots (.) and then

596 Chapter 23

use the print argument for the awk command to print each of the four fields. At this
point we are left with the following four numbers:

163 155 204 42

Now we have some numbers to work with. Because we want to work on each
number individually, we pipe this output to a while read loop and assign each of the
four numbers to a separate variable. Then, inside of the loop, we convert each decimal
number into hexadecimal. The entire command statement is shown here.

echo $IP | awk -F ‘.’ ‘{print $1, $2, $3, $4}’ | while read a b c d junk

Notice the final variable at the end of the while statement, junk. I added this as a
catch-all for anything that may be tacked on to the previous pipe outputs. It does not
matter if there is anything to capture, but if there are “extra” field(s) the junk variable
will catch everything remaining in the output. Other than this, each of the four fields is
stored in the variables a, b, c, and d.

Inside of the while read loop we call the conversion function four times, once for
each variable, as shown here:

FIRST=$(convert_base_10_to_16 $a)

SECOND=$(convert_base_10_to_16 $b)

THIRD=$(convert_base_10_to_16 $c)

FOURTH=$(convert_base_10_to_16 $d)

The result of these four function calls is the assignment of the hexadecimal values to
four new variables, FIRST, SECOND, THIRD, and FOURTH. Now that we have the hexa-
decimal values all we need to do now is combine the hex strings into a single string.
The combination is shown here.

echo “${FIRST}${SECOND}${THIRD}${FOURTH}”

The resulting output from the IP address that I pulled out of the air for temporary
use (163.155.204.42) is shown next.

[root:yogi]@/scripts# ./mk_swkey.ksh

a39bcc2a

This hexadecimal string is the software license that is tied to the IP address.

Script to Translate between Any Number Base
So far we have been working in a restricted environment with limited ability to switch
between number bases. This script will convert any number to any number base within
the limits of the system. The base conversions availability is to base 36 at least, and
some systems may go higher. I am not sure what you would do with a base 36 number,
but you can make one if you want to.

In this script we rely on two command-line switches, each requiring an argument,
and the “number” to convert. The two switches are -f {Starting Number Base, or

Scripts for Number Base Conversions 597

Free & Share & Open

From:} and -t {Ending Number Base, or To:}. These two parameters tell the shell script
what number base we are converting from and what number base we want to convert
the number to, which is where the -f and -t command-line switches came from. This is
another shell script that needs to be presented first, and we will cover the details at the
end. The equate_any_base.ksh shell script is shown in Listing 23.4.

#!/usr/bin/ksh

#

SCRIPT: equate_any_base.ksh

AUTHOR: Randy Michael

DATE: 07/07/2002

REV: 1.2.P

#

PURPOSE: This script is used to convert a number to any

supported number base, which is at least base 36.

This script requires that two command-line

arguments and the “number” to be converted

are present on the command line. An example

number base conversion is shown here:

#

equate_any_base.ksh -f16 -t2 e245c

2#11100010010001011100

#

This example converts the base 16 number, e245c, to

the base 2 equivalent, 2#11100010010001011100.

The 2#, which precedes the binary number, shows

the base of the number represented.

#

EXIT CODES:

0 - Normal script execution

1 - Usage error

#

set -x # Uncomment to debug this shell script

set -n # Uncomment to check syntax without any execution

#

##

############### DEFINE VARIABLES HERE ################

##

SCRIPT_NAME=$(basename $0)

COUNT=0

MAX_COUNT=$#

##

############### DEFINE FUNCTIONS HERE ################

##

function usage

{

Listing 23.4 equate_any_base.ksh shell script listing.

598 Chapter 23

echo “\n\t***USAGE ERROR***”

echo “\nPURPOSE: This script converts between number bases”

echo “\nUSAGE: $SCRIPT_NAME -f{From base#} -t{To base#} NUMBER”

echo “\nEXAMPLE: $SCRIPT_NAME -f16 -t10 fc23”

echo “\nWill convert the base 16 number fc23 to its”

echo “decimal equivalent base 10 number 64547”

echo “\n\t ...EXITING...\n”

}

##

######### CHECK COMMAND LINE ARGUMENTS HERE ##########

##

The maximum number of command line arguments is five

and the minimum number is three.

if (($# > 5))

then

echo “\nERROR: Too many command line arguments\n”

usage

exit 1

elif (($# < 3))

then

echo “\nERROR: Too few command line arguments\n”

usage

exit 1

fi

Check to see if the command line switches are present

echo $* | grep -q ‘\-f’ || (usage; exit 1)

echo $* | grep -q ‘\-t’ || (usage; exit 1)

Use getopts to parse the command line arguments

while getopts “:f:t:” ARGUMENT

do

case $ARGUMENT in

f) START_BASE=”$OPTARG”

;;

t) END_BASE=”$OPTARG”

;;

\?) usage

exit 1

;;

esac

done

Ensure that the START_BASE and END_BASE variables

Listing 23.4 equate_any_base.ksh shell script listing. (continues)

Scripts for Number Base Conversions 599

Free & Share & Open

are not NULL.

if [-z “$START_BASE”] || [“$START_BASE” = ‘’] \

|| [-z “$END_BASE”] || [“$END_BASE” = ‘’]

then

echo “\nERROR: Base number conversion fields are empty\n”

usage

exit 1

fi

Ensure that the START_BASE and END_BASE variables

have integer values for the number base conversion.

case $START_BASE in

+([0-9])) : # Do nothing - Colon is a no-op.

;;

*) echo “\nERROR: $START_BASE is not an integer value”

usage

exit 1

;;

esac

case $END_BASE in

+([0-9])) : # Do nothing - Colon is a no-op.

;;

*) echo “\nERROR: $END_BASE is not an integer value”

usage

exit 1

;;

esac

##

################ BEGINNING OF MAIN ###################

##

Begin by finding the BASE_NUM to be converted.

Count from 1 to the max number of command line arguments

while ((COUNT < MAX_COUNT))

do

((COUNT == COUNT + 1))

TOKEN=$1

case $TOKEN in

-f) shift; shift

((COUNT == COUNT + 1))

;;

-f${START_BASE}) shift

;;

Listing 23.4 equate_any_base.ksh shell script listing.

600 Chapter 23

-t) shift; shift

((COUNT == COUNT + 1))

;;

-t${END_BASE}) shift

;;

*) BASE_NUM=$TOKEN

break

;;

esac

done

Typeset the RESULT variable to the target number base

typeset -i$END_BASE RESULT

Assign the BASE_NUM variable to the RESULT variable

and add the starting number base with a pound sign (#)

as a prefix for the conversion to take place.

NOTE: If an invalid number is entered a system error

will be displayed. An example is inputting 1114400 as

a binary number, which is invalid for a binary number.

RESULT=”${START_BASE}#${BASE_NUM}”

Display the result to the user or calling program.

echo “$RESULT”

End of script...

Listing 23.4 equate_any_base.ksh shell script listing. (continued)

Please stay with me here! This script in Listing 23.4 is really not as difficult as it
looks. Because we are requiring the user to provide command-line arguments we need
to do a lot of testing to ensure that we have good data to work with. We also need to
give the user good and informative feedback if a usage error is detected. Remember,
always let the user know what is going on. Keeping the user informed is just good
script writing!

Let’s start at the top of the equate_any_base.ksh shell script and work our way
through the details. The first thing we do is to define three variables. The
$SCRIPT_NAME variable points to the name of this shell script. We need to query the
system for this script name for two reasons. First, the name of the script may change in
the future; second, the SCRIPT_NAME variable is used in the usage function. If we had
executed the basename $0 command inside of the usage function we would get the
name of the function instead of the name of the shell script. This is an important point to
make. We need to know where the scope lies when referring to positional parameters,

Scripts for Number Base Conversions 601

Free & Share & Open

$0 in this case. When we refer to positional parameters in the main body of a shell script
then the position parameters are command-line arguments, including the name of the
shell script. When we refer to positional parameters inside of a function then the scope
of the positional parameters lies with the arguments supplied to the function, not the
shell script. In either case, the name of the shell script, or function, can be referenced by
the basename $0 command.

The next two variables definitions, COUNT=0 and MAX_COUNT=$#, are to be used to
parse through each of the shell scripts command-line arguments, where $# represents
the total number of command-line arguments of the shell script. We will go into more
detail on these two variables a little later.

In the next section we define any functions that we need for this shell script. For this
shell script we need just a usage function. If you look at this usage function, though,
we have a good deal of information to describe how to use the shell script in Listing
23.4. We state the purpose of the shell script followed by the USAGE statement. Then
we supply an example of using the shell script. This really helps users who are not
familiar with running this script.

As I stated before, we need to do a lot of checking because we are relying on the user
to supply command-line arguments for defining the execution behavior. We are going
to do seven independent tests to ensure that the data we receive is good data that we
can work with.

The first two tests are to ensure that we have the correct number of command-line
arguments. For the equate_any_base.ksh shell script the user may supply as few
as three arguments and as many as five arguments. This variation may sound a little
strange, but when we go to the getopts command it will be intuitively obvious. For
testing the number of arguments we just use an if..then..elif..fi structure where we test
the $# shell parameter to make sure that the value is not greater than five and is not less
than three, as shown here.

if (($# > 5))

then

echo “\nERROR: Too many command-line arguments\n”

usage

exit 1

elif (($# < 3))

then

echo “\nERROR: Too few command-line arguments\n”

usage

exit 1

fi

Using getopts to Parse the Command Line
Now we get to use getopts to parse through each command-line switch and its argu-
ments. The getopts command recognizes a command switch as any character that is
preceded by a hyphen (-)—for example, -f and -t. The getopts command really does
not care what is on the command line, unless it is a command switch or its argument.
Let’s look at a couple of examples of command-line arguments so I can clear the mud.

602 Chapter 23

Example 23.5 Correct Usage of the
equate_any_base.ksh Shell Script

[root:yogi]@/scripts# ./equate_any_base.ksh -f 2 -t16 10110011110101

Notice in Example 23.5 the use of the two command switches, -f 2 and -t16. Both
of these are valid because getopts does not care if there is a space or no space between
the switch and the switch-argument, and the order of appearance does not matter
either. As you can see in Example 23.5, we can have as few as three command-line
arguments if no spaces are used or as many as five if both command switches have a
space between the command switch and the switch-argument.

Example 23.6 Incorrect Usage of the
equate_any_base.ksh Shell Script

[root:yogi]@/scripts# ./equate_any_base.ksh -i -f 2 -t 16 10110011110101

In Example 23.6 we have an error condition in two different ways. The first error is
that there are six command-line arguments given to the equate_any_base.ksh
shell script. The second error is that there is an undefined command switch, -i, given
on the command line. This is a good place to go through using getopts to parse a
defined set of command-line switches and arguments.

The purpose of the getopts command is to process command-line arguments and
check for valid options. The getopts command is used with a while loop and has an
enclosed case statement to let you take action for each correct and incorrect argument
found on the command line. We can define command-line switches to require an argu-
ment, or the switch can be defined as a standalone command switch. The order of the
switch does not matter, but if the switch is defined to require an argument then the
switch-argument must follow the switch, either with or without a space. When getopts
finds a switch that requires an argument, the argument is always assigned to a variable
called OPTARG. This variable allows you to assign the switch argument value to a use-
ful variable name to use in the shell script. Let’s look at the getopts definition that is
used in this shell script.

while getopts “:f:t:” ARGUMENT

do

case $ARGUMENT in

f) START_BASE=”$OPTARG”

;;

t) END_BASE=”$OPTARG”

;;

\?) usage

exit 1

;;

esac

done

Scripts for Number Base Conversions 603

Free & Share & Open

There are two parts to the getopts definition. The first is the while loop that contains
the getopts statement, and the second is the case statement that allows you to do some-
thing when a valid or invalid switch is found. In the while loop we have defined two
valid command switches, -f and -t. When you define these you do not add the hyphen
(-) in the case statement, but it is required on the command-line. Notice the colons (:)
in the definitions. The beginning colon specifies that when an undefined switch is
found—for example, -i—then the invalid switch is matched with the question mark (?)
in the case statement. In our case we always run the usage function and immediately
exit the shell script with a return code of 1, one. Also notice that we escaped the ? with
a backslash (\?). By escaping the ? character (\?) we can use the ? as a regular char-
acter without any special meaning or function.

When a colon (:) is present after a switch definition it means that the switch must
have an argument associated with it. If the switch definition does not have a colon after
it, then the switch has no argument. For example, the statement getopts ":t:f:i" defines
-t and -f as command-line switches that require an argument and -i as a switch that has
no argument associated with it.

When a switch is found, either defined or undefined, it is assigned to the ARGUMENT
variable (you can use any variable name here), which is used by the case statement. For
defined variables we need a matching match in the case statement, but for undefined
switches the ARGUMENT is assigned ? if the getopts definition begins with a colon (:).
Additionally, when a defined switch is found that requires an argument then the
argument to the switch is assigned to the OPTARG variable (you cannot change this
variable name) during the current loop iteration. This is the mechanism that we use to
get our from and to number base definitions, START_BASE and END_BASE, for the
equate_any_base.ksh shell script.

Continuing with the Script
As I stated before, getopts does not care what is on the command line if it is not a com-
mand switch or a switch argument. So, we need more sanity checks. The next test is to
ensure that both -f and -t command-line switches are present on the command-line as
arguments. We must also check to ensure that the START_BASE and END_BASE vari-
ables are not empty and also make sure that the values are integers. We can do all of
these sanity checks with the code segment in Listing 23.5.

Check to see if the command line switches are present

echo $* | grep -q ‘\-f’ || (usage; exit 1)

echo $* | grep -q ‘\-t’ || (usage; exit 1)

Use getopts to parse the command line arguments

while getopts “:f:t:” ARGUMENT

do

case $ARGUMENT in

Listing 23.5 Code segment to verify number base variables.

604 Chapter 23

f) START_BASE=”$OPTARG”

;;

t) END_BASE=”$OPTARG”

;;

\?) usage

exit 1

;;

esac

done

Ensure that the START_BASE and END_BASE variables

are not NULL.

if [-z “$START_BASE”] || [“$START_BASE” = ‘’] \

|| [-z “$END_BASE”] || [“$END_BASE” = ‘’]

then

echo “\nERROR: Base number conversion fields are empty\n”

usage

exit 1

fi

Ensure that the START_BASE and END_BASE variables

have integer values for the number base conversion.

case $START_BASE in

+([0-9])) : # Do nothing - Colon is a no-op.

;;

*) echo “\nERROR: $START_BASE is not an integer value”

usage

exit 1

;;

esac

case $END_BASE in

+([0-9])) : # Do nothing - Colon is a no-op.

;;

*) echo “\nERROR: $END_BASE is not an integer value”

usage

exit 1

;;

esac

Listing 23.5 Code segment to verify number base variables. (continued)

Starting at the top in Listing 23.5 we first check to ensure that both -f and -t are
present as command-line arguments. Next the getopts statement parses the command
line and populates the START_BASE and END_BASE variables. After getopts we test
the START_BASE and END_BASE variables to ensure that they are not NULL. When

Scripts for Number Base Conversions 605

Free & Share & Open

you do have NULL value tests always remember to use double quotes (“$VAR_NAME”)
around the variable names, or you will get an error if they are actually empty. This is
one of those hard-to-find errors that can take a long time to track down.

In the next two case statements we use a regular expression to ensure that the
$START_BASE and $END_BASE variables are pointing to integer values. If either one
of these variables is not an integer we give the user an informative error message, show
the correct usage by running the usage function, and exit the shell script with a return
code of 1, one.

Beginning of Main
At this point we have confirmed that the data that was entered on the command line is
valid so let’s do our number base conversion. Because we have all of the command
switches and switch-arguments on the command line, we actually need to find the
“number” that is to be converted between bases. To find our number to convert we
need to scan all of the command-line arguments starting with the argument at $1 and
continuing until the number is found, or until the last argument, which is pointed to by
the $# shell variable.

Scanning the command-line arguments and trying to find the “number” is a little
tricky. First the “number” may be in any valid number base that the system supports, so
we may have alphanumeric characters. But we do have one thing going for us: We know
the command switches and the integer values of the $START_BASE and $END_BASE
variables. We still need to consider that there may or may not be spaces between the com-
mand switches and the switch-arguments. Let’s think about this a minute. If a single
command-line argument is one of the command switches, then we know that the user
placed a space between the command switch and the switch-argument. On the other
hand, if a single command-line argument is a command-line switch and its switch-
argument, then we know that the user does not place a space between the command
switch and the switch-argument. By using this logic we can use a simple case statement
to test for these conditions. When we get to a command-line argument that does not fit
this logic test we have found the “number” that we are looking for.

Look at the code segment in Listing 23.6, and we will go into a little more detail at
the end.

Count from 1 to the max number of command-line arguments

while ((COUNT < MAX_COUNT))

do

((COUNT == COUNT + 1))

TOKEN=$1

case $TOKEN in

-f) shift; shift

((COUNT == COUNT + 1))

;;

-f${START_BASE}) shift

;;

Listing 23.6 Code segment to parse the command line. (continues)

606 Chapter 23

-t) shift; shift

((COUNT == COUNT + 1))

;;

-t${END_BASE}) shift

;;

*) BASE_NUM=$TOKEN

break

;;

esac

done

Listing 23.6 Code segment to parse the command line. (continued)

Remember that at the beginning of the shell script we defined the variables
COUNT=0 and MAX_COUNT=$#. Now we get a chance to use them. I also want to intro-
duce the shift command. This Korn shell built-in allows us to always reference the $1
command-line argument to access any argument on the command line. To go to the
next command-line argument we use the shift command to make the next argument,
which is $2 here, shift over to the $1 position parameter. If we want to shift more than
one position then we can either execute multiple shift commands or just add an inte-
ger value to the shift command to indicate how many positions that we want to shift
to the $1 position. Both of the following commands shift positional parameters two
positions to the $1 argument.

shift; shift

shift 2

The idea in our case statement is to do one shift if a command-line switch with its
switch-argument is found at $1 and to shift two positions if a command-line switch is
found alone. We start with a while loop and increment a counter by one. Then we use
the TOKEN variable to always grab the value in the $1 position. We make the test to
check for a command-line switch alone or a command-line switch plus its switch argu-
ment. If the $1 positional parameter contains either of these, then we shift accordingly.
If the test is not matched, then we have found the number that we are looking for. So,
this is really not that difficult a test when you know what the goal is.

When we have found the “number,” which is assigned to the BASE_NUM variable,
we are ready to do the conversion between number bases. We do the conversion as we
did in the previous shell scripts in this chapter except that this time we use the variable
assignments of the START_BASE and END_BASE variable as number bases to start at
and to end with, as shown in the next command statement.

RESULT=”${START_BASE}#${BASE_NUM}”

Let’s assume that the $START_BASE variable points to the integer 2, and the
$BASE_NUM variable points to the binary number 1101101011. Then the following com-
mand statement is equivalent to the previous statement.

Scripts for Number Base Conversions 607

Free & Share & Open

RESULT=”2#1101101011”

The next step is to typeset the BASE_TO variable to the target number base. This is
also accomplished using the previously defined variable END_BASE, as shown here.

typeset -i$END_BASE RESULT

Now let’s assume that the target number base, $END_BASE, is 16. The following
command statement is equivalent to the preceding variable statement.

typeset -i16 RESULT

The only thing left to do is print the result to the screen. You can use echo, print, or
printf to display the result. I still like to use echo, so this is the final line of the shell
script.

echo $RESULT

Other Options to Consider

As with all of the scripts in this book, we can always make some changes to any shell
script to improve it or to customize the script to fit a particular need.

Software Key Shell Script
To make a software key more complicated you can hide the hexadecimal representa-
tion of the IP address within some pseudo-random numbers, which we studied in
Chapters 10 and 21. As an example, add five computer-generated pseudo-random
numbers as both a prefix and a suffix to the hexadecimal IP address representation.
Then to verify the license key in your software program you can extract the hex IP
address from the string. There are several techniques to do this verification, and I am
going to leave the details up to you as a little project.

This is the only modification that I can think of for this chapter.

Summary

We went through a lot of variations in this chapter, but we did hit the scripts from
different angles. Number base conversion can be used for many purposes, and we
wrote one script that takes advantage of the translation. Software keys are usually
more complicated than this script example, but I think you get the basic idea.

In the next chapter we are going to look at creating a menu that is suitable for your
operations staff because you rarely want the Operators to have access to the command
line. See you in the next chapter!

608 Chapter 23

609

Oh yes, we can never forget about the Operations staff! A lot of us traveled along this
road in the beginning; I know I did back in the 1980s. These guys still do the grunt
work, but most of the time you do not want a beginning Operator to get near a com-
mand prompt for everyday tasks. The chance for small mistakes is too great with the
newcomers, but we must give them the ability to do their job.

This ability is easily given to the Operators by a menu that has all of the functionality
that they need to get the job done, and we might as well make it a nice-looking menu.
Some of the more common operations tasks include managing the print queues, man-
aging the backup tapes, and changing user passwords. There are many more tasks, but
this short list will get us started.

First, let’s set some expectations. Normally, this type of shell script is put in the
user’s $HOME/.profile or other login configuration file, and when the user logs in
the menu is presented. When the user exits the menu the user is logged out immedi-
ately. Using this method we do our best not to let the user gain access to a command
prompt. Be careful! If a program like vi is in the menu, then all a user has to do is
escape out to a shell with a couple of key strokes and the user is at a command prompt.
Of course, if your Operators can find a way to get a command prompt, then just give it
to them!

Menu Program Suitable
for Operations Staff

C H A P T E R

24

Free & Share & Open

The techniques used in this chapter involve using reverse video, as we last saw in
Chapter 15 when we created the hgrep shell script. This time we will use reverse video
in a menu interface, again using the tput command options.

Reverse Video Syntax

To start off we want to give the menu a reverse video title bar across the top of the
screen. To refresh your memory, to turn on reverse video we use tput smso and to turn
off the highlight we use tput rmso. For this title bar we will use the system’s hostname
in the title. After the script is started we will remain in the menu until 99 (exit) is
entered as a menu selection. We also would like to highlight the menu options next to
the option label. The title bar is first.

clear # Clear the screen first

tput smso # Turn on reverse video

echo “ $(hostname)\c” # 33 spaces

echo “ “ # 39 spaces

tput rmso # Turn off reverse video

In the preceding code block we first clear the screen for the menu using the clear
command. The second line will turn on the reverse video using the tput smso com-
mand. An echo statement that executes the Unix command hostname, as command
substitution, follows this. In both echo statements the blank spaces are highlighted, which
results in a bar across the top of the screen with the system’s hostname in the middle,
displayed in reverse video. Notice that before the hostname there are 33 spaces and after
the hostname there are 39 more spaces. This allows up to 8 characters for the hostname
in the middle of the title bar. You can adjust this spacing easily to suit your needs.

Creating the Menu
The next thing we want to do is display the menu options. For this step we want to
make the selection options appear in reverse video to the left of the option label. We will
again use command substitution, but this time to turn on and off the highlight within an
echo statement. The block of code shown in Listing 24.1 will handle this nicely.

echo “$(tput smso)1$(tput rmso) - Tape Management”

echo “$(tput smso)2$(tput rmso) - Initialize New Tapes”

echo “$(tput smso)3$(tput rmso) - Dismount Tape Volume”

echo “$(tput smso)4$(tput rmso) - Query Volumes in Library”

echo “$(tput smso)5$(tput rmso) - Query Tape Volumes”

echo “$(tput smso)6$(tput rmso) - Audit Library/Check-in Scratch

Volumes”

echo “$(tput smso)7$(tput rmso) - Print Tape Volume Audit Report”

echo “\n\n” # Print two blank lines

Listing 24.1 Reverse video menu options.

610 Chapter 24

echo “$(tput smso)10$(tput rmso) - Change Password”

echo “$(tput smso)11$(tput rmso) - Enable all Print Queues

echo “\n\n\n\n\n\n”

echo “$(tput smso)99$(tput rmso) - Logout\n”

Listing 24.1 Reverse video menu options. (continued)

Notice how the command substitution works in the echo statements. Highlighting
is turned on, the menu selection number is displayed, and reverse video is turned off,
then the selection label is printed in plain text.

Creating a Message Bar for Feedback

Another nice thing to have in our menu is a message bar. This can be used to display a
message for an invalid option selection and also can be used to display a message if we
want to disable a menu option. For this we want to set the message up to assume an
invalid selection, and we will blank the message variable out if we have valid input. In
case we want to disable an option in the menu we can comment out the commands that
we want to disable and put a disabled option comment in the message variable. The next
few lines of code, shown in Listing 24.2, will work to display the message bar.

Draw a reverse video message bar across bottom of screen,

with the error message displayed, if there is a message.

tput smso # Turn on reverse video

echo “ ${MSG}\c” # 30 spaces

echo “ “ # 26 spaces

tput rmso # Turn off reverse video

Prompt for menu option.

echo “Selection: \c”

read OPTION

Assume the selection was invalid. Because a message is always

displayed we need to blank it out when a valid option

is selected.

MSG=”Invalid Option Selected.” # 24 spaces

Listing 24.2 Setting up the reverse video message bar.

Menu Program Suitable for Operations Staff 611

Free & Share & Open

This message bar works the same as the title bar. The text message pointed to by $MSG
is displayed in the middle of the message bar. Notice that we are assuming an invalid
option was entered as the default. If we have valid input we need to replace the text in
the $MSG variable with 24 blank spaces, for a total of 80 characters. This way we have
only a highlighted bar, without any text, across the screen. We do this in each option of
the case statement that is used to process the menu selections. The entire shell script is
shown in Listing 24.3. See how menu option 5 is disabled in the case statement.

#!/usr/bin/ksh

#

SCRIPT: operations_menu.ksh

AUTHOR: Randy Michael

DATE: 09-06-2001

REV 2.0.P

#

PLATFORM: Any Unix OS, with modifications

PURPOSE: This script gives the operations staff an easy-

to-follow menu to handle daily tasks, such

as managing the backup tapes and changing

their password

#

REV LIST:

#

#

set -n # Uncomment to check script syntax without any execution

set -x # Uncomment to debug this script

#

###

####### DEFINE FILES AND VARIABLES HERE #######

###

BINDIR=”/usr/local/bin”

PASSWORD_SERVER=”yogi”

THIS_HOST=$(hostname)

###

########## INITIALIZE VARIABLES HERE ##########

###

MSG=” “

OPT=” “ # Variable for menu selection

###

############## SET A TRAP HERE ################

Listing 24.3 operations_menu.ksh shell script listing.

612 Chapter 24

###

trap ‘echo “\nEXITING on a TRAPPED SIGNAL\n”; \

exit 1’ 1 2 3 15

###

############ BEGINNING OF MAIN ################

###

Loop until option 99 is Selected

We use 99 as a character instead of an integer

in case a user enters a non-integer selection,

which would cause the script to fail.

while [[$OPT != 99]]

do

Display a reverse video image bar across the top

of the screen with the hostname of the machine.

clear # Clear the screen first

tput smso # Turn on reverse video

echo “ ${THIS_HOST}\c”

echo “ “

tput rmso # Turn off reverse video

echo “\n” # Add one blank line of output

Show the menu options available to the user with the

numbered options highlighted in reverse video

#

$(tput smso) Turns ON reverse video

$(tput rmso) Turns OFF reverse video

echo “$(tput smso)1$(tput rmso) - Tape Management”

echo “$(tput smso)2$(tput rmso) - Label Tapes”

echo “$(tput smso)3$(tput rmso) - Query Volumes in Library”

echo “$(tput smso)4$(tput rmso) - Query Tape Volumes”

echo “$(tput smso)5$(tput rmso) - Audit/Check-in Scratch Volumes”

echo “$(tput smso)6$(tput rmso) - Print Tape Volume Audit Report”

echo “\n\n” # Print two new lines

echo “$(tput smso)7$(tput rmso) - Change Password”

echo “$(tput smso)8$(tput rmso) - Enable all Print Queues”

echo “\n\n\n\n”

Listing 24.3 operations_menu.ksh shell script listing. (continues)

Menu Program Suitable for Operations Staff 613

Free & Share & Open

echo “$(tput smso)99$(tput rmso) - Logout\n”

Draw a reverse video message bar across bottom of screen,

with the error message displayed, if there is a message.

tput smso # Turn on reverse video

echo “ ${MSG}\c”

echo “ “

tput rmso # Turn off reverse video

Prompt for menu option.

echo “Selection: \c”

read OPT

Assume the selection was invalid. Because a message is always

displayed we need to blank it out when a valid option

is selected.

MSG=”Invalid option selected.”

Process the Menu Selection

case $OPT in

1)

Option 1 - Tape Management

${BINDIR}/manage_tapes.ksh

MSG=” “

;;

2)

Option 2 - Tape Labeling

${BINDIR}/label_tapes.ksh

MSG=” “

;;

3)

Option 3 - Query Tape Volumes in Library

dsmadmc -ID=admin -Password=pass query libvol

print “Press ENTER to continue”

read

MSG=” “

;;

4)

Listing 24.3 operations_menu.ksh shell script listing.

614 Chapter 24

Option 4 - Query Tape Volumes

clear # Clear the screen

print “Enter Tape Volume to Query:”

read ANSWER

dsmadmc -ID=admin -PAssword=pass query vol $ANSWER \

format=detailed

if (($? == “11”)) # Check for “Not Found”

then

print “Tape Volume $ANSWER not found in database.”

print “Press ENTER to continue.”

read

fi

MSG=” “

;;

5)

Option 5 - Audit/Checkin Scratch Volumes

dsmadmc -ID=admin -PAssword=pass audit library mainmount

dsmadmc -ID=admin -PAssword=pass checkin libvol mainmount\

status=scratch search=yes

Not for Operations anymore!!!

MSG=” Option is disabled. “

;;

6)

Option 6 - Print Tape Volume Audit Report

${BINDIR}/print_audit_report.ksh

MSG=” “

;;

7)

Option 7 - Change Password

echo “Remote Shell into $PASSWORD_SERVER for Password Change”

echo “Press ENTER to continue: \c”

read KEY

rsh $PASSWORD_SERVER passwd

ssh $PASSWORD_SERVER passwd

MSG=” “

;;

8)

Option 8 - Enable all print queues

echo “Attempting to Enable all print queues...\c”

${BINDIR}/enable_all_queues.ksh

echo “\nQueue Enable Attempt Complete\n”

Listing 24.3 operations_menu.ksh shell script listing. (continues)

Menu Program Suitable for Operations Staff 615

Free & Share & Open

sleep 1

MSG=” “

;;

esac

End of Loop until 99 is selected

done

Erase menu from screen upon exiting with the “clear” command

clear

End of Script

Listing 24.3 operations_menu.ksh shell script listing. (continued)

From the Top
Let’s look at this script from the top. The first step is to define files and variables. In this
section we define three variables, our BINDIR directory, which is the location of all of
the shell scripts and programs that we call from the menu. The second variable is the
hostname of the password server. I use a single server to hold the master password list,
and every 15 minutes this master password file is pushed out to all of the other servers
in the landscape. This method just makes life much easier when you have a lot of
machines to manage. Of course you may use NIS or NIS+ for this functionality. The last
variable is the hostname of the machine running the menu, THIS_HOST.

Next we initialize two variables; one is for the message bar, and the other is for the
menu options, $MSG and $OPT. After initializing these two variables we set a trap. This
trap is just informational. All that we want to do if this shell script receives a trapped
signal is to let the user know that this program exited on a trapped signal, nothing more.

Now comes the fun stuff at the BEGINNING OF MAIN. For the menu we stay in a
loop until the user selects 99 as a menu option. Only an exit signal or a 99 user selec-
tion will exit this loop. The easiest way to create this loop is to use a while loop speci-
fying 99 as the exit criteria. Each time through the loop we first clear the screen. Then
we display the title bar, which has the hostname of this machine, specified by the
$THIS_HOST variable. Next we display the menu options. This current menu has 8
options, plus the 99 exit selection.

We preset the message bar to always assume an incorrect entry. If the entry is valid,
then we overwrite the $MSG variable with blank spaces. After the message bar is dis-
played we prompt the user for a menu selection. When a valid selection is made we
jump down to the case statement, which executes the selected menu option.

616 Chapter 24

Notice that the message string, $MSG, is always the same length, 24 characters. This
is a requirement to ensure that the message bar and the title bar are the same length;
assuming an eight character hostname. This is also true for the hostname in the title bar.
In each of the case statement options we process the menu selection and make the $MSG
all blank spaces, with the exception of item number 5. We disabled menu option 5 by
commenting out all of the code and changing the $MSG to read Option is Disabled. This
is an easy way to remove a menu option from being executed temporarily. The $MSG
will always be displayed in the message bar, whether the “message” is all blank spaces
or an actual text message. Both the title and message bars are always 80 characters long,
assuming a hostname of 8 characters. You may want to add some code to ensure that the
title bar is always 80 characters. This is a little project for you to resolve.

The 8 menu options include the following:

■■ Tape management

■■ Tape labeling

■■ Query tape volumes in the library

■■ Query tape volumes

■■ Audit/check-in scratch volumes

■■ Print tape volume audit report

■■ Change password

■■ Enable all print queues

■■ 99—exit

For each valid menu selection in this script either a local command is executed or an
external program or shell script is executed. You will have to modify this menu script
to suit your needs. Do not assume that the TSM commands listed as menu options in
this script will work without modification. These menu entries are just an example of
the types of tasks that you may want your operations staff to handle. Every environ-
ment is different and some operations staff members are more capable than others.

For safety I recommend that you add this shell script name to the end of the users’
$HOME/.profile and follow this script name with the exit command as the last entry
in the user’s .profile. This method allows the Operators to log in to run the tasks in
the menu. When 99 is selected the menu is exited and the user is logged out of the sys-
tem due to the exit command, without ever seeing a command prompt.

Other Options to Consider

This script, like any other shell script, can be improved. I can think of only a couple of
things that I might add depending on the environment. You may have better ideas on
how a menu should look and work, but this is one way to get the job done in an easily
readable script.

Menu Program Suitable for Operations Staff 617

Free & Share & Open

Shelling Out to the Command Line
Be extremely careful about the commands that you put into the menu. Some programs
are very easy to get to a shell prompt. The example I mentioned earlier was the vi
editor. With a couple of key strokes you can suspend vi and get to a shell prompt. You
can do this with many other programs, too.

Good Candidate for Using sudo
In Chapter 14 we went through installing and configuring sudo, which stands for super
user do. A menu is an excellent place to use sudo. One of the major advantages is that
you keep an audit trail of who did what and when the commands were executed. If a
problem arises this sudo log should be one of the first places to look.

Summary

In this chapter we covered the creation of a moderately complex menu shell script. This
one is not too difficult to read and understand, and I like to keep it that way. Some
administrators will try to put everything in a couple of lines of code that they under-
stand. When the menu needs to be modified, though, you really need an easy-to-
understand script. It is not if you will modify this shell script but when you will have to
modify the script.

You can place just about any task in a menu by using the proper method. As I men-
tioned before, sudo is excellent for keeping an audit trail. You can also add a logging
facility into this menu script by using the tee -a $LOGFILE command in a pipe after
each command. The tee -a $LOGFILE command displays everything on the screen and
also appends the output data to the specified file.

In the next chapter we are going to look at a technique to send pop-up messages to
Windows desktop using Samba. See you in the next chapter!

618 Chapter 24

619

There is a need in every shop for quick communications to the users in your environ-
ment. Getting a message out quickly when an application has failed is a good example.
In this chapter we are going to look at a method of sending “pop-up” messages to Win-
dows desktops. The only requirement for the Unix machines is that Samba must be
configured and running on the Unix sever. Samba is a freeware product with a lot of
uses; however, our focus in this chapter is sending pop-up messages using the
smbclient command.

I really like this shell script, and I use it a lot to tell my users of impending mainte-
nance, to notify users when a problem is to be corrected, and to give the status of an
ongoing maintenance procedure. In this chapter we will look at setting up a master
broadcast list and setting up individual group lists for sending messages, as well as
specifying where the message is to be sent as the script is executing.

About Samba and the smbclient Command

Samba is a suite of programs that allows for the sharing of resources between various
operating systems. We are interested in only the Unix-to-Windows part of Samba. The
part of the Samba suite of programs that we use in this chapter to broadcast a message
to one or more Windows clients is the smbclient command. The smbclient command
is a client that allows nodes to talk, and in our case to send messages. This chapter

Sending Pop-Up Messages
from Unix to Windows

C H A P T E R

25

Free & Share & Open

focuses on sending pop-up messages to Windows clients from our Unix machine. The
smbclient command has a lot more functionality than is covered in this chapter; so if
you want to know what else the smbclient command can do, see the Samba documen-
tation and the man pages.

We use a single switch in this chapter with the smbclient command. The -M switch
allows us to send messages using the Winpopup protocol. The receiving computer must
be running the Winpopup protocol, however, or the message is lost and no error noti-
fication is given. Even if we check the return code, which we always do, it is only a
nonzero return code when a node name cannot be resolved. For the Windows
machines in the following list, the receiving machine must copy Winpopup into the
startup group if the machine is to always have pop-up messages available:

■■ Windows for Workgroups

■■ Windows 95 and 98

Most other versions of Windows will accept pop-up messages by default. It is
always a good idea to work with the System Administrators in your Windows team to
test the correct usage and functionality; all Windows networks are not created equally.
The -M option of the smbclient command is expecting a NetBios name, which is the
standard in a Windows network. You can also use the -R command to set the name
resolution order to search. We also have the option of specifying an IP address by using
the -I option.

This shell script has been tested on the following Windows operating systems, and
the script delivered the message without any modification to the Windows systems:

■■ Windows NT

■■ Windows XP

■■ Windows 2000

Because this is the last chapter in the book, I’m sure that you know we are going to
cover the syntax for the proper usage.

Syntax

To send messages from Unix to Windows we need only the smbclient -M command.
The basic use of the command, especially for testing, is shown here.

NODELIST=”winhostA winhostB winhostC”

MESSAGE=”Hello World”

for NODE in $NODELIST

do

echo $MESSAGE | smbclient -M $NODE

done

620 Chapter 25

The only thing that we need is a list of nodes to send the message to and a message
to send. When we have these two elements then all that is required is echoing the
messaging and piping it to the smbclient command. Normally the smbclient com-
mand is an interactive command. By using the piped-in input we have the input ready,
which is the same result that a here document produces for interactive programs.

Building the broadcast.ksh Shell Script

When I started this chapter it was going to be about five pages. I kept coming up with
more ideas and options for broadcasting messages so I just had to expand this chapter
to fit these ideas into the mix. The basic idea is to send a message from a Unix system
to a specific Windows machine in the network. I started thinking about sending
messages to selected groups of users that all have a related purpose. For example,
we can have the following list of individual groups: Unix, DBA, ORACLE, DB2,
APPLICATION, and so on. Then we have a default list of ALL Windows machines in
the business, or at least in a department.

With all of these options in mind I started rewriting an already working shell script.
In the next sections we are going to put the pieces together and make a very flexible
shell script that you can tailor to suit your needs very easily. Let’s start with the default
behavior of sending a message to all users.

Sending a Message to All Users
The basics of the original shell script has a master list of nodes, which may be repre-
sented by a username in some shops and a node name in others. This list of nodes or
users is read one at a time in a for loop. As each node name is read it is placed in the
smbclient command statement. The message is sent to all nodes in a series of loop iter-
ations until all of the target nodes have been processed. For this basic functionality we
need only a file that contains the names of the nodes (or users) and a for loop to process
each node name in the file. This one is the simple version and forms the basis for send-
ing messages in this chapter. Study Listing 25.1, and pay attention to the boldface text.

Define the list file containing the list of nodes/users.

WINNODEFILE=”/usr/local/bin/WINlist”

Load the node list into the WINLIST variable, but ignore

any line in the file that begins with a pound sign (#).

WINLIST=$(cat $WINNODEFILE | grep -v ^# | awk ‘{print $1}’ | uniq)

Ask the user for the message to send

Listing 25.1 Code segment to broadcast a message. (continues)

Sending Pop-Up Messages from Unix to Windows 621

Free & Share & Open

echo “\nEnter the message to send (Press ENTER when finished)”

echo “\n\nMessage ==> \c”

read MESSAGE

for NODE in $WINLIST

do

echo “$MESSAGE” | smbclient -M $NODE

done

Listing 25.1 Code segment to broadcast a message. (continued)

In the code segment in Listing 25.1 we first define the list file containing the nodes
(or users) for which the message is intended. After the node list file is defined we load
the file’s contents into the WINLIST variable. We want to give the user the ability to
comment out entries in the $WINNODEFILE with a pound sign (#). We also want the
user to be able to make comments in the list file after the node/user name. With this
increased flexibility we added some filtering in the WINLIST variable assignment.
Notice in this assignment that we used grep and awk to do the filtering. First comes the
grep command. In this statement we have the entry:

grep -v ^#

The -v tells the grep command to list everything except what grep is pattern match-
ing on. The ^# is the notation for begins with a #. The caret (^) is a nice little option that
lets us do filtering on lines of data that begin with the specified pattern. To ignore blank
lines in a file use the cat $FILE | grep -v ^$ command statement.

Also notice the use of the uniq command. This command removes any duplicate
line in the file. Any time you need to remove exact duplicate entries you can pipe the
output to the uniq command.

In the next section we prompt the user for the message to send and read the entire
message into the MESSAGE variable. Because we are using a variable for the message the
length can not exceed 2048 characters. The smbclient command will truncate the text
string to 1600 characters, which should be more than enough for a pop-up message.

Now that we have the message and the destination nodes/users, we are ready to
loop through each destination in the $WINLIST using the for loop. Usually the
smbclient command is an interactive program. The method that we use to supply the
message is to echo the $MESSAGE and pipe the output to the smbclient command.
The full command statement for sending the message is shown here:

echo “$MESSAGE” | smbclient -M $NODE

The -M switch expects a NetBios node name, which is a typical Windows protocol.

622 Chapter 25

Adding Groups to the Basic Code
The code segment in Listing 25.1 forms the basis for the entire shell script. We are going to
build on the base code to allow us to send messages to specific groups of users by defining
the GROUPLIST variable. Each group that is added to the group list is a variable in itself
that points to a filename that contains a list of nodes/users, just like the WINNODEFILE
variable. By adding this new ability we need a way to tell the shell script that we want the
message sent to a particular group. This is where we need to use the getopts command to
parse the command line for command switches and switch-arguments. We have used
getopts in other chapters in this book so we will get to the details in a moment.

There are three steps in defining a group for this shell script. The first step is to add
the new group to the GROUPLIST variable assignment statement, which is toward the
top of the script. For this example we are adding three groups: UNIX, DBA, and APP-A.
The first step looks like the statement shown here.

GROUPLIST=”UNIX DBA APP-A”

The second step is to define a filename for each newly defined group. I like to define
a variable to point to the top-level directory, which is /usr/local/bin on my
machines. This method makes moving the location of the list files easy with a one-line
edit. The code segment is shown here.

GRP_DIR=”/usr/local/bin”

UNIX=”${GRP_DIR}/UNIXlist”

DBA=”${GRP_DIR}/DBAlist”

APP-A=”${GRP_DIR}/APPAlist”

Notice the use of the curly braces (${VAR}) in this code segment. The curly braces
are used to separate the variable from the next character if there is no space between
the variable name and the next character.

The third and final step is to create each of the files and enter the destination nodes
in the file with one entry on each line. The code in this shell script allows for you to
comment out entries with a pound sign (#) and to add comments after the node/user
definition in the file.

To use a group the user must specify one or more groups on the command line with
the -G switch, followed by one or more groups that are defined in the script. If more
than one group is specified, then the group list must be enclosed in double quotes. To
send a message to everyone in the Unix and DBA groups use the following command:

broadcast.ksh -G “UNIX DBA”

Adding the Ability to Specify Destinations Individually
With the code described thus far we are restricted to the users/nodes that are defined
in the list files that we created. Now let’s add the ability for a user to specify one or

Sending Pop-Up Messages from Unix to Windows 623

Free & Share & Open

more message destinations on the command line or by prompting the user for the des-
tination list. These two options require more command-line switches and, in one case,
a switch-argument.

We are going to add the following command-line switches to this script:

-M, -m Prompts the user for the message destination(s) and the message.

-H, -h, -N, -n Expects a destination list as a switch-argument. Each switch does
the same thing here.

The first switch, -M and -m, is the message switch. There is not a switch-argument for
this switch, but instead the user is prompted to enter one or more destination
nodes/users. The second set of switches each performs the exact same task, and a
switch-argument is required, which is a list of destination nodes/users. Some people
think of these destination machines as hosts, so I added the -h and -H switches. Other
people think of the destination machines as nodes, so I added the -n and -N switches.
This way both sets of users can have it their way.

Using getopts to Parse the Command Line

Now we have a bunch of command-line switches, and some of these switches require
a switch-argument. This is a job for getopts! As we have studied before, the getopts
command is used in a while loop statement. Within the while loop there is a case
statement that allows us to take some useful action when a command-line switch is
encountered. Whenever a switch is encountered that requires a switch-argument, the
argument that is found is assigned to the $OPTARG variable. This $OPTARG is a
variable that is build into the getopts command. Let’s look at the getopts command
statement and the code segment with the enclosed case statement in Listing 25.2.

Parse the command-line arguments for any switches. A command-

line switch must begin with a hyphen (-).

A colon (:) AFTER a variable (below) means that the switch

must have a switch-argument on the command line

while getopts “:mMh:H:n:N:g:G:” ARGUMENT

do

case $ARGUMENT in

m|M) echo “\nEnter One or More Nodes to Send This Message:”

echo “\nPress ENTER when finished \n\n”

echo “Node List ==> \c”

read WINLIST

;;

h|H|n|N) WINLIST=$OPTARG

;;

g|G) GROUP=$OPTARG # $OPTARG is the value of the switch-argument!

Listing 25.2 Using getopts to parse the command-line switches.

624 Chapter 25

Make sure that the group has been defined

for G in $GROUP

do

echo “$GROUPLIST” | grep -q $G || group_error $G

done

All of the groups are valid if you get here!

WINLIST= # NULL out the WINLIST variable

Loop through each group in the $GROUP

and build a list of nodes to send the message to.

for GRP in $GROUP

do

Use “eval” to show what a variable is pointing to!

Make sure that each group has a non-empty list file

if [-s $(eval echo \$”$GRP”)]

then

WINLIST=”$WINLIST $(eval cat \$”$GRP” |grep -v ^# \

| awk ‘{print $1}’)”

else

group_file_error $(eval echo \$”$GRP”)

fi

done

;;

\?) echo “\nERROR: Invalid Augument(s)!”

usage

exit 1

;;

esac

done

Listing 25.2 Using getopts to parse the command-line switches. (continued)

Don’t run away yet! The code segment in Listing 25.2 is not too hard to understand
when it is explained. In the getopts statement, shown here, we define the valid
switches and which switches require a switch-argument and which ones have a mean-
ing without a switch-argument.

while getopts “:mMh:H:n:N:g:G:” ARGUMENT

In this getopts statement the switch definitions list, “:mMh:H:n:N:g:G:”, begins
with a colon (:). This first colon has a special meaning. If an undefined switch is
encountered, which must begin with a hyphen (-), the undefined switch causes a ques-
tion mark (?) to be assigned to the ARGUMENT variable (you can use any variable name
here). This is the mechanism that finds the switch errors entered on the command line.

Sending Pop-Up Messages from Unix to Windows 625

Free & Share & Open

In the getopts statement the -m and -M switches do not have a switch argument and
the -h, -H, -n, -N, -g, and -G switches do require a switch-argument. Whether or not a
switch requires an argument is determined by the placement of colons in the definition
statement. If a colon (:) appears after the switch in the definition, then that switch
requires a switch-argument; if a switch does not have a colon after the switch defini-
tion, then the switch does not have a switch-argument. This is really all there is to using
the getopts command.

Inside the while loop we have an embedded case statement. It is in the case statement
that we do something useful with the command-line arguments that are switches. Just
remember, getopts does not care what is on the command line unless it has a hyphen (-).
This is why we need to test for valid arguments supplied on the command line.

In our case statement in Listing 25.2 we take action or make assignments when a
valid switch is encountered. When a -M, or -m, switch is found we prompt the user for
a list of one or more destination nodes to send the message. When a -h, -H, -n, or -N
switch is found, we assign the $OPTARG variable to the WINLIST, which is a list of tar-
get users/nodes. When getopts finds -g, or -G, we assign the $OPTARG variable to the
GROUP variable. When an undefined switch is found, a question mark (?) is assigned
to the ARGUMENT variable. In this situation we give the user an ERROR message, show
the usage function, and exit the shell script with a return code of 1, one.

Using the eval Function with Variables

Let’s go back to the GROUP variable in Listing 25.2 for a minute. Remember that we can
have group names assigned to the GROUPLIST variable. Each group assigned to the
GROUPLIST variable must have a filename assigned to it that contains a list of destina-
tion machines. Now if you think about this you should notice that we have to work
with a variable pointing to another variable, which points to a filename. The file con-
tains the list of destination machines. Just how do we point directly to the filename?
This is a job for the eval function. The eval function is a Korn shell built-in, and we use
it to solve our little dilemma.

The eval function works like this in our code. We have the GROUP variable that is one
or more groups that the user entered on the command line as a switch-argument to the
-G, or -g, switch. Each group that is assigned to the GROUP variable is a pointer to a file-
name that holds a list of destination machines. To directly access the filename we have
to use the eval function. Let’s look at the code segment that uses the eval function in
the getopts loop in Listing 25.3.

for GRP in $GROUP

do

Use “eval” to show the value of what a variable is pointing

to! Make sure that each group has a nonempty list file

if [-s $(eval echo \$”$GRP”)]

then

WINLIST=”$WINLIST $(eval cat \$”$GRP” |grep -v ^# \

Listing 25.3 Using eval to evaluate double pointing variables.

626 Chapter 25

| awk ‘{print $1}’ | uniq)”

else

group_file_error $(eval echo \$”$GRP”)

fi

done

Listing 25.3 Using eval to evaluate double pointing variables. (continued)

We first start a for loop to process each group assigned to the GROUP variable, which
is assigned to the GRP variable on each loop iteration. Inside the for loop we first test
to see if the group has a group file assigned and if this file size is greater than zero. To
do this we use the following command:

if [-s $(eval echo \$”$GRP”)]

The command substitution, $(eval echo \$”$GRP”), points directly to the file
name of the group. We could also use the command substitution, $(eval echo
‘$’$GRP), to directly access the filename. Both statements produce the same result. This
eval statement is saying “tell me what this other variable is pointing to, in this statement.”

Notice that we use eval two more times in Listing 25.3. We first use eval to assign the
destination machine listed in the list file to the WINLIST variable in the command
shown here.

WINLIST=”$WINLIST $(eval cat \$”$GRP” | grep -v ^# \

| awk ‘{print $1}’ | uniq)”

In this case we are listing the file with cat and then using grep and awk to filter the
output, and uniq to remove any duplicate entries. The next instance of eval is in
the error notification. The group_file_error function requires one argument, the
group list filename. In this step we are building a list of destination machines if more
than one group was given on the command line.

Testing User Input
For any shell script it is extremely important that the information provided by the user
is valid. In the broadcast.ksh shell script we have the opportunity to check a lot of
user input. Starting at BEGINNING OF MAIN several tests of data need to be made.

Testing and Prompting for WINLIST Data

The first test of user input is a test to ensure that the WINLIST variable is not empty, or
NULL. To make this test we use an until loop to prompt the user for a list of destination
nodes if the WINLIST is empty. I created a function called check_for_null_winlist

Sending Pop-Up Messages from Unix to Windows 627

Free & Share & Open

that is used as the loop criteria for prompting the user for a node list input. This function
is shown in Listing 25.4.

function check_for_null_winlist

{

if [[-z “$WINLIST” && “$WINLIST” = “”]]

then

return 1

else

return 0

fi

}

Listing 25.4 Function to check for a Null WINLIST variable.

The only thing that the check_for_null_winlist function in Listing 23.4 does is
return a 1, one, as a return code if the $WINLIST variable is empty, or NULL, and
return a 0, zero, if the $WINLIST has data assigned. Using this function as the loop cri-
teria in an until loop is easy to do, as shown in the code segment in Listing 25.5.

Ensure that at least one node is defined to send the message.

If not stay in this loop until one or more nodes are entered

on the command line

until check_for_null_winlist

do

echo “\n\nEnter One or More Nodes to Send This Message:”

echo “\n Press ENTER when finished \n\n”

echo “Node List ==> \c”

read WINLIST

done

Listing 25.5 Using an until loop with check_for_null_winlist.

This until loop will continue to execute until the user either enters data or presses
CTRL-C.

Testing and Prompting for Message Data

Like the WINLIST data, the MESSAGE variable must have at least one character to send
as a message, or we need to prompt the user for the message to send. We use the same
type of technique as we did for the WINLIST data. We created the check_for_null
_message function to test the MESSAGE variable to ensure that it is not empty, or

628 Chapter 25

NULL. This function returns a 1, one, if the MESSAGE variable is empty and returns a
0, zero, if the MESSAGE variable has data. Check out the function in Listing 25.6.

function check_for_null_message

{

if [[-z “$MESSAGE” && “$MESSAGE” = “”]]

then

return 1

else

return 0

fi

}

Listing 25.6 Function to check for a Null MESSAGE variable.

Using the check_for_null_message function in Listing 25.6 we can execute an
until loop until the MESSAGE variable has at least one character. The loop exits when
the function returns a 0, zero, for a return code. Look at the until loop in the code seg-
ment shown in Listing 25.7.

Prompt the user for a message to send. Loop until the

user has entered at least one character for the message

to send.

until check_for_null_message

do

echo “\nEnter the message to send:”

echo “\nPress ENTER when finished\n\n”

echo “Message ==> \c”

read MESSAGE

done

Listing 25.7 Using an until loop with check_for_null_message.

If the MESSAGE variable already has data assigned, then the until loop will not
prompt the user for any input. This is just a test to look for at least one character of data
in the $MESSAGE variable.

Sending the Message
At this point we have validated that we have a list of one or more nodes/users to send
the message and that the message is at least one character long. As stated before, the
$MESSAGE will be truncated at 1600 characters (1600 bytes), which should not be an
issue for a pop-up message. If the message is long, then an email is more appropriate.

Sending Pop-Up Messages from Unix to Windows 629

Free & Share & Open

We have already seen the basics of sending a message with the smbclient command,
which is part of the Samba suite of programs. We are going to use the same technique
here to send the message. Now we have the list of destination nodes assigned to the
WINLIST variable. Let’s look at the code segment to send the message in Listing 25.8.

echo “\nSending the Message...\n”

Loop through each host in the $WINLIST and send the pop-up message

for NODE in $WINLIST

do

echo “Sending to ==> $NODE”

echo $MESSAGE | $SMBCLIENT -M $NODE # 1>/dev/null

if (($? == 0))

then

echo “Sent OK ==> $NODE”

else

echo “FAILED to ==> $NODE Failed”

fi

done

echo “\n”

Listing 25.8 Code segment to send a message to a list of nodes.

We added a few lines of code to the for loop in Listing 25.8. Notice on each loop iter-
ation that the user is informed of the destination for the current loop iteration. When
we send the message using the smbclient command we check the return code to see if
the message was sent successfully. A 0, zero, return code does not guarantee that the
target machine received the message. For example, if the target is a Windows 95
machine and winpopup is not running, then the message is lost and no error message
is received back to let you know that the message was not displayed. You will receive
a nonzero return code if the machine is not powered up or if the destination machine-
name cannot be resolved.

Also notice the commented-out redirection to /dev/null, after the smbclient
command statement. This output redirection to the bit bucket is commented out so that
the user can see the result of sending each message. If there is a problem sending a mes-
sage, then the smbclient event notifications provide better information than a return
code for the smbclient command itself. If you want to hide this connection informa-
tion, uncomment this redirection to the bit bucket.

Putting It All Together
Now that we have covered most of the individual pieces that make up the
broadcast.ksh shell script, let’s look at the whole shell script and see how the pieces
fit together. The entire shell script is shown in Listing 25.9. Please pay particular atten-
tion to the boldface text.

630 Chapter 25

#!/bin/ksh

SCRIPT: broadcast.ksh

AUTHOR: Randy Michael

Systems Administrator

DATE: 1/12/2000

REV: 1.2.P

PLATFORM: Not platform dependent but requires Samba

#

PURPOSE: This script is used to broadcast a pop-up message to

Windows desktops. The Windows machines must be defined in

the $WINNODEFILE file, which is where the master list of

nodes is defined. The $WINNODELIST filename is defined in the

variable definitions section of this shell script.

You also have the ability of setting up individual GROUPS of

users/nodes by defining the group name to the GROUPLIST variable.

Then define the filename of the group. For example, to define a

Unix and DBA group the following entries need to be made in this

shell script:

#

GROUPLIST=”UNIX DBA”

UNIX=”/scripts/UNIXlist”

DBA=”/scripts/DBAlist”

#

Assuming that the filenames presented above are acceptable to you.

#

There are four options for sending a message:

1) Execute this script without any argument prompts for the

message to send and then send the message to all nodes

defined in the $WINNODEFILE.

2) Specify the “-M” switch if you want to send a message to a

specific node or a list of nodes. The user is prompted for

the message to send.

3) Specify the -N or -H switches to specify the specific nodes

to receive the message. Add the node list after the -N or

-H switch.

4) Specify the -G switch, followed by the group name, that the

message is intended be sent.

#

EXAMPLES:

To send a message to all nodes defined in the $WINNODEFILE:

#

broadcast.ksh

#

To send a message to only the “booboo” and “yogi” machines:

#

broadcast.ksh -H “booboo yogi”

Listing 25.9 broadcast.ksh shell script listing. (continues)

Sending Pop-Up Messages from Unix to Windows 631

Free & Share & Open

OR

broadcast.ksh -N “booboo yogi”

#

To send a message to specific machines without specifying

each one on the command line:

#

broadcast.ksh -M

#

To send a message to all users in the Unix and DBA

groups only:

#

broadcast.ksh -G “UNIX DBA”

#

Each switch is valid in uppercase or lowercase.

#

NOTE: This script uses SAMBA!!! SAMBA must be installed

and configured on this system for this shell script

to function!

#

EXIT CODES: 0 ==> Normal Execution

1 ==> Usage Error

2 ==> Missing Node List File

3 ==> The “smbclient” program is not in the $PATH

4 ==> The “smbclient” program is not executable

#

REV LIST:

#

#

set -x # Uncomment to debug this script

set -n # Uncomment to check syntax without any execution

#

##

####### DEFINE BROADCAST GROUPS AND GROUP FILES HERE #######

##

Define the file directory for this shell script.

GRP_DIR=”/usr/local/bin”

Define all valid groups to send messages

GROUPLIST=”UNIX SAP ORACLE DBA APPA APPB”

Define all of the Group files

UNIX=”${GRP_DIR}/Unixlist”

SAP=”${GRP_DIR}/SAPlist”

Listing 25.9 broadcast.ksh shell script listing.

632 Chapter 25

ORACLE=”${GRP_DIR}/ORACLElist”

DBA=”${GRP_DIR}/DBAlist”

APPA=”${GRP_DIR}/APPAlist”

APPB=”${GRP_DIR}/APPBlist”

File that contains the master list of nodes

WINNODEFILE=”${GRP_DIR}/WINlist”

##

################# DEFINE FUNCTIONS HERE ####################

##

function display_listfile_error

{

The function is used to inform the users that the

$WINNODEFILE file does not exist. The $WINNODEFILE

filename is defined in the main body of the shell script.

echo “\n\tERROR: ...MISSING NODE LIST FILE...”

echo “\nCannot find the $WINNODEFILE node list file!”

echo “\nThe $WINNODEFILE file is a file that contains a list of”

echo “nodes to broadcast a message. Create this file with”

echo “one node name per line and save the file.\n\n”

exit 2

}

##

function usage

{

echo “\nUSAGE: $THISSCRIPT [-M] [-H Host List] [-N Node List] \

[-G Group List]\n\n”

echo “EXAMPLES:”

echo “\nTo send a message to all nodes defined in the master list”

echo “$WINNODEFILE file enter the scriptname without any options:”

echo “\n$THISSCRIPT”

echo “\nTo send a message to one or more nodes only,”

echo “enter the following command:”

echo “\n$THISSCRIPT -M”

echo “\nTo specify the nodes to send the message to on”

echo “the command-line enter the following command:”

echo “\n$THISSCRIPT -H \”yogi booboo dino\” “

echo “\nTo send a message to one or more groups use the”

echo “following command syntax:”

echo “\n$THISSCRIPT -G \”UNIX DBA\” \n\n”

Listing 25.9 broadcast.ksh shell script listing. (continues)

Sending Pop-Up Messages from Unix to Windows 633

Free & Share & Open

}

function check_for_null_message

{

if [[-z “$MESSAGE” && “$MESSAGE” = “”]]

then

return 1

else

return 0

fi

}

##

function check_for_null_winlist

{

if [[-z “$WINLIST” && “$WINLIST” = “”]]

then

return 1

else

return 0

fi

}

##

function group_error

{

(($# != 1)) && (echo “ERROR: function group_error expects \

an argument”; exit 1)

GRP=$1

echo “\nERROR: Undefined Group - $GRP”

usage

exit 1

}

##

function group_file_error

{

(($# != 1)) && (echo “ERROR: function group_file_error expects \

an argument”; exit 1)

GPF=$1

echo “\nERROR: Missing group file - $GPF\n”

usage

Listing 25.9 broadcast.ksh shell script listing.

634 Chapter 25

exit 1

}

##

function check_for_smbclient_command

{

Check to ensure that the “smbclient” command is in the $PATH

SMBCLIENT=$(which smbclient)

If the $SMBCLIENT variable begins with “which:” or “no” for

Solaris and HP-UX then the command is not in the $PATH on

this system. A correct result would be something like:

“/usr/local/bin/smbclient” or “/usr/bin/smbclient”.

if [[$(echo $SMBCLIENT | awk ‘{print $1}’) = ‘which:’]] || \

[[$(echo $SMBCLIENT | awk ‘{print $1}’) = ‘no’]]

then

echo “\n\nERROR: This script requires Samba to be installed

and configure. Specifically, this script requires that the

\”sbmclient\” program is in the \$PATH. Please correct this problem

and send your message again.\n”

echo “\n\t...EXITING...\n”

exit 3

elif [! -x $SMBCLIENT]

then

echo “\nERROR: $SMBCLIENT command is not executable\n”

echo “Please correct this problem and try again\n”

exit 4

fi

}

##

################ DEFINE VARIABLES HERE #####################

##

THISSCRIPT=$(basename $0) # The name of this shell script

MESSAGE= # Initialize the MESSAGE variable to NULL

WINLIST= # Initialize the list of node to NULL

##

################ TEST USER INPUT HERE ######################

##

Listing 25.9 broadcast.ksh shell script listing. (continues)

Sending Pop-Up Messages from Unix to Windows 635

Free & Share & Open

Check for the “smbclient” command’s existence

check_for_smbclient_command

If no command-line arguments are present then test for

the master $WINNODEFILE, which is defined at the top

of this shell script.

if (($# == 0)) # No command-line arguments - Use the master list

then

[-s $WINNODEFILE] || display_listfile_error

Load the file data into the WINLIST variable ignoring

any line in the file that begins with a # sign.

WINLIST=$(cat $WINNODEFILE | grep -v ^# \

| awk ‘{print $1}’ | uniq)

else

Parse the command-line arguments for any switches. A command

line switch must begin with a hyphen (-).

A colon (:) AFTER a variable (below) means that the switch

must have a switch-argument on the command line

while getopts “:mMh:H:n:N:g:G:” ARGUMENT

do

case $ARGUMENT in

m|M) echo “\nEnter One or More Nodes to Send This Message:”

echo “\nPress ENTER when finished \n\n”

echo “Node List ==> \c”

read WINLIST

;;

h|H|n|N) WINLIST=$OPTARG

;;

g|G) GROUP=$OPTARG # $OPTARG is the value of

the switch-argument!

Make sure that the group has been defined

for G in $GROUP

do

echo “$GROUPLIST” | grep -q $G || group_error $G

done

All of the groups are valid if you get here!

WINLIST= # NULL out the WINLIST variable

Loop through each group in the $GROUP

Listing 25.9 broadcast.ksh shell script listing.

636 Chapter 25

and build a list of nodes to send the message to.

for GRP in $GROUP

do

Use “eval” to show what a variable is pointing to!

Make sure that each group has a non-empty list

file

if [-s $(eval echo \$”$GRP”)]

then

WINLIST=”$WINLIST $(eval cat \$”$GRP” \

| grep -v ^# | awk ‘{print $1}’ \

| uniq)”

else

group_file_error $(eval echo \$”$GRP”)

fi

done

;;

\?) echo “\nERROR: Invalid Argument(s)!”

usage

exit 1

;;

esac

done

##

################## BEGINNING OF MAIN #######################

##

Ensure that at least one node is defined to send the message.

If not stay in this loop until one or more nodes are entered

on the command line

until check_for_null_winlist

do

echo “\n\nEnter One or More Nodes to Send This Message:”

echo “\n Press ENTER when finished \n\n”

echo “Node List ==> \c”

read WINLIST

done

##

fi # End of “if (($# == 0))” test.

Prompt the user for a message to send. Loop until the

Listing 25.9 broadcast.ksh shell script listing. (continues)

Sending Pop-Up Messages from Unix to Windows 637

Free & Share & Open

user has entered at least one character for the message

to send.

until check_for_null_message

do

echo “\nEnter the message to send:”

echo “\nPress ENTER when finished\n\n”

echo “Message ==> \c”

read MESSAGE

done

##

Inform the user of the host list this message is sent to...

echo “\nSending message to the following hosts:\n”

echo “\nWIN_HOSTS:\n$WINLIST\n\n”

##

echo “\nSending the Message...\n”

Loop through each host in the $WINLIST and send the pop-up message

for NODE in $WINLIST

do

echo “Sending to ==> $NODE”

echo $MESSAGE | $SMBCLIENT -M $NODE # 1>/dev/null

if (($? == 0))

then

echo “Sent OK ==> $NODE”

else

echo “FAILED to ==> $NODE Failed”

fi

done

echo “\n”

##

#

This code segment is commented out by default

#

Send the message to the Unix machines too using “wall”

and “rwall” if you desire to do so. This code is commented

out by default.

#

echo “\nSending Message to the Unix machines...\n”

#

echo $MESSAGE | rwall -h $UnixHOSTLIST

Listing 25.9 broadcast.ksh shell script listing.

638 Chapter 25

echo $MESSAGE | wall

echo “\n\nMessage sent...\n\n”

#

##

Remove the message file from the system

rm -f $MESSAGE

Listing 25.9 broadcast.ksh shell script listing. (continued)

As you study the script in Listing 25.9 I hope that you can see how the pieces are put
together to produce a logical flow. You may have noticed that there is a larger if
statement that skips all of the command-line parsing if there are no command-line
arguments present. If we do not have anything to parse through, we just use the
default master list of machine destinations.

I also want to point out a function that is called at the BEGINNING OF MAIN. The
check_for_smbclient_command function looks for the smbclient command in the
$PATH. Check out this function in Listing 25.10.

function check_for_smbclient_command

{

Check to ensure that the “smbclient” command is in the $PATH

SMBCLIENT=$(which smbclient)

If the $SMBCLIENT variable begins with “which:” or “no” for

Solaris and HP-UX then the command is not in the $PATH on

this system. A correct result would be something like:

“/usr/local/bin/smbclient” or “/usr/bin/smbclient”.

if [[$(echo $SMBCLIENT | awk ‘{print $1}’) = ‘which:’]] || \

[[$(echo $SMBCLIENT | awk ‘{print $1}’) = ‘no’]]

then

echo “\n\nERROR: This script requires Samba to be installed

and configured. Specifically, this script requires that the

\”sbmclient\” program is in the \$PATH. Please correct this problem

and send your message again.\n”

echo “\n\t...EXITING...\n”

exit 3

elif [! -x $SMBCLIENT]

then

Listing 25.10 check_for_smbclient_command function listing. (continues)

Sending Pop-Up Messages from Unix to Windows 639

Free & Share & Open

echo “\nERROR: $SMBCLIENT command is not executable\n”

echo “Please correct this problem and try again\n”

exit 4

fi

}

Listing 25.10 check_for_smbclient_command function listing. (continued)

Notice that we use the which command in Listing 25.10 to find the smbclient com-
mand in the $PATH. The which command will respond with either the full pathname
of the smbclient command or an error message. The two messages look like the
following:

which smbclient

/usr/local/samba/bin/smbclient

OR

which smbclient

which: 0652-141 There is no smbclient in /usr/bin /etc /usr/sbin

/usr/ucb /usr/bin/X11 /sbin /usr/local/bin /usr/local/samba/bin

/usr/local/bin /usr/dt/bin/ /usr/opt/ifor/ls/os/aix/bin .

If we receive the second message, then the smbclient command cannot be found.
Note that this second response begins with which: just before the error code. This is
true for AIX and Linux; however, on Solaris and HP-UX the result begins with no as
opposed to which:. Using this response we give the user an error message that the
smbclient command cannot be found.

Watching the broadcast.ksh Script in Action

You can see the broadcast.ksh shell script in action in Listing 25.11. In this listing
we use the -M option to specify that we want to be prompted for both a list of destina-
tion machines and a message.

640 Chapter 25

[root:yogi]@/scripts# ./broadcast.ksh -M

Enter One or More Nodes to Send This Message:

Press ENTER when finished

Node List ==> booboo

Enter the message to send:

Press ENTER when finished

Message ==> Please log out at lunch for a system reboot.

Sending message to the following hosts:

WIN_HOSTS:

booboo

Sending the Message...

Sending to ==> booboo

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 45 bytes

Sent OK ==> booboo

Listing 25.11 broadcast.ksh shell script in action.

My booboo machine is an NT 4 box. The pop-up message that I received is shown
in Figure 25.1.

The pop-up message in Figure 25.1 is typical for most machines except for Windows
95 and 98. For these two versions of Windows the winpopup program must be run-
ning. Most other machines have a similar pop-up message, as shown in Figure 25.1.

Sending Pop-Up Messages from Unix to Windows 641

Free & Share & Open

Figure 25.1 Pop_Up message sent to a Windows desktop.

Downloading and Installing Samba

You can download the latest version of Samba from the following URL: www
.samba.org/samba.

From the main page select a download site. Download sites from around the world
are available. This page has a link, samba-latest.tar.gx, to the latest version of
the source code. If you download the source code you need a C compiler to compile the
Samba release. The ./configure file is looking for either gcc or cc when you begin
the compilation process. If a suitable C compiler is not found you cannot install the
Samba code. For our purposes we can download the available precompiled binary
versions of the code. Some of these are back releases, but the smbclient command
works just fine.

When you download the Samba source code follow these steps to compile the code
on your machine. Follow the link to the latest version of Samba. Download the code
into a directory on the Unix machine that has plenty of space, at least 500MB. Next,
uncompress the release. The code that I downloaded was a tar file that was compressed
with gzip, which has a .gz filename extension. Let’s say that you downloaded the
Samba code into the /usr/local directory with the filename samba.2.7.latest
.tar.gz. You can name it anything you want when you download the file. The
following commands in Listing 25.12 are used to uncompress, untar, and install the
Samba code.

[root:yogi]@/usr/local > gunzip samba.2.7.latest.tar.gz

[root:yogi]@/usr/local > tar -xvf samba.2.7.latest.tar

[root:yogi]@/usr/local > cd samba.2.7

[root:yogi]@/usr/local/samba.2.7 > ./configure

[root:yogi]@/usr/local/samba.2.7 > make

[root:yogi]@/usr/local/samba.2.7 > make install

Listing 25.12 Samba source code installation.

642 Chapter 25

Once the installation is complete you can remove the /usr/local/samba.2.7
directory to regain your disk space. Be aware that your file/directory names and
release may differ from the commands shown in Listing 25.12. This source code instal-
lation does not create a smb.conf file. In the procedure that is presented in Listing
25.12, the smb.conf file is located in /usr/local/samba/lib/smb.conf. Please
refer to the Samba documentation of the release you installed to know where to put
this configuration file. For our purposes, and for security, make the file simple! The
smbclient command works with a smb.conf file with only a single semicolon, (;).
No other entry is required! The semicolon (;) and hash mark (#) are both comment
specifications in this file. If you want to use any of the other functionality of Samba you
are on your own, and the Samba documentation is your best resource for additional
information.

Testing the smbclient Program the First Time
Before you start creating the master list file and a bunch of group list files, do a few
tests to ensure that you have the correct format, the destination machines are reach-
able, and the name resolution is resolved for each node. Initially have a list of about
five machines. The machines may be referenced in the NetBios world as a machine
name or a username. This name resolution varies depending on the Windows network
in your environment.

My home network does not have NetBios running, so I had to do a little research
and I found that there is a file, which coexists with the smb.conf file, that works like
a /etc/hosts file. This file is called lmhosts, and you make machine entries into
this file just like a regular hosts file, except that the machine-names are entered in
uppercase characters.

First try the following test. Let’s suppose that I have five users named JohnB,
CindySue, Bubba, JonnyLee, and BobbyJoe. For each user in the list we run the follow-
ing commands.

echo “Hello World” | smbclient -M JohnB

echo “Hello World” | smbclient -M CindySue

echo “Hello World” | smbclient -M Bubba

echo “Hello World” | smbclient -M JonnyLee

echo “Hello World” | smbclient -M BobbyJoe

Ideally, the response should look something like the following output:

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 13 bytes

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 13 bytes

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 13 bytes

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Sending Pop-Up Messages from Unix to Windows 643

Free & Share & Open

Connected. Type your message, ending it with a Control-D

sent 13 bytes

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connected. Type your message, ending it with a Control-D

sent 13 bytes

If you get responses like the ones shown here, then everything is as we want it to be.
If you get output more like the next set of smbclient output, then we have a problem,
Houston!

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

timeout connecting to 10.10.10.4:139

Error connecting to 10.10.10.4 (Operation already in progress)

Connection to JohnB failed

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connection to CindySue failed

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connection to Bubba failed

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connection to JonnyLee failed

added interface ip=10.10.10.1 bcast=10.10.255.255 nmask=255.255.0.0

Connection to BobbyJoe failed

Notice that the first attempt, to JohnB, timed out on connection. This is good! We
know that there is name resolution to this machine but the machine is currently
unreachable. I know it is unreachable because I turned the machine off. If a node is not
powered up, this is the type of message that we receive.

On the other hand, the next four attempts to reach CindySue, Bubba, JonnyLee, and
BobbyJoe failed. This is usually an indication that there is no name resolution to get to
these machines. When you have this problem, first try to reach the machine by
the node name instead of the user name. You can get the name of the machine by left-
clicking on the My Computer icon on the Windows desktop. Then select properties. Try
the same process of sending the message again, this time using node names. If you still
have a problem, consult the Windows Systems Administrators to see if they can help.

The other solution is to maintain a lmhosts file, which is a pain to do. The
lmhosts file is located in the same directory as the smb.conf file, which is in
/usr/local/samba/lib if you downloaded and compiled the distribution from the
Samba site. The lmhosts file does not exist by default, so you will have to create
the file using the same format as the /etc/hosts file. This problem with this solution
is that you have an extra step when you add a node to both the list files for the
broadcast.ksh shell script and the lmhosts file.

Other Options to Consider

This is one of those shell scripts that you can do a lot of different things with. Here are
a few things that I thought of. Use your imagination, and I’m sure that you can add to
this list.

644 Chapter 25

Producing Error Notifications
A very good use of this shell script is to set up as many groups as you need to do error
notification to users responsible for maintaining particular machines, programs, data-
bases, and applications. When an error is detected in one of the monitoring shell
scripts, just send a pop-up message as an immediate notification; the email notification
is just gravy on the potatoes. You can make this a powerful tool if you desire.

Add Logging of Unreachable Machines
If you redirect the output of the smbclient command in the shell script to a log file and
parse the log file for connection and name resolution errors, you can find out who is
not getting some messages, but not all. If a user’s machine is turned off, the message is
lost and there is no notification. Even if a message is refused by the host, the return
code from the smbclient command is still 0, zero. Keeping a log of the activity and
automatically parsing the log after each message is sent can help you find where the
rejections occur. Just remember to keep it simple!

Create Two-Way Messaging
I wanted to figure out how to send the message from the Windows machines back to
the Unix boxes, but I ran out of time to meet my due date. I am sure that this is not a
hard task to solve. This is a good project for you to play around with; I am going to
work on this one, too.

Summary

I sure hope that you enjoyed this chapter, and the whole book. The process of writing
this book has been a thrill for me. Every time I started a new chapter I had a firm idea
of what I wanted to accomplish, but usually along the way I got these little brain
storms that help me build on the basic idea that I started with. Some five-page chapters
turned into some of the longest chapters in the book. In every case, though, I always
tried to hit the scripting techniques from a different angle. Sometimes this resulted in a
long script or roundabout way of accomplishing the task. I really did do this on pur-
pose. There is always more than one way to solve a challenge in Unix, and I always
aimed to make each chapter different and interesting. I appreciate that you bought this
book, and in return I hope I have given you valuable knowledge and insight into solv-
ing any problem that comes along. Now you can really say that the solution to any
challenge is intuitively obvious! Thank you for reading, and best regards.

Sending Pop-Up Messages from Unix to Windows 645

Free & Share & Open

647

A P P E N D I X

A

This Appendix shows a list of the shell scripts and functions that are include on the
Web site. Each of the shell scripts and functions has a brief description of the purpose.

Shell Scripts

Chapter 2

12_ways_to_parse.ksh:

This script shows the different ways of reading a file line by line. Again there is not
just one way to read a file line by line and some are faster than others and some are
more intuitive than others.

mk_large_file.ksh:

This script is used to create a text file that is has a specified number of lines that is
specified on the command line.

Chapter 3
No shell scripts to list in Chapter 3.

What’s on the Web Site

Free & Share & Open

Chapter 4

rotate.ksh:

This shell script is used as a progress indicator with the appearance of a rotating line.

countdown.ksh:

This shell script is used as a progress indicator with a countdown to zero.

Chapter 5

fs_mon_AIX.ksh:

This shell script is used to monitor an AIX system for full filesystems using the
percentage method.

fs_mon_AIX_MBFREE.ksh:

This shell script is used to monitor an AIX system for full filesystems using the
MB free method.

fs_mon_AIX_MBFREE_excep.ksh:

This shell script is used to monitor an AIX system for full filesystems using the
MB free method with exceptions capability.

fs_mon_AIX_PC_MBFREE.ksh:

This shell script is used to monitor an AIX system for full filesystems using the
percentage method with exceptions capability.

fs_mon_AIX_excep.ksh:

Basic AIX filesystem monitoring using the percent method with exceptions
capability.

fs_mon_ALL_OS.ksh:

This shell script auto detects the UNIX flavor and monitors the filesystems using both
percent and MB free techniques with an auto detection to switch between methods.

fs_mon_HPUX.ksh:

This shell script is used to monitor a HP-UX system for full filesystems using the
percentage method.

648 Appendix A

fs_mon_HPUX_MBFREE.ksh:

This shell script is used to monitor an HP-UX system for full filesystems using the
MB free method.

fs_mon_HPUX_MBFREE_excep.ksh:

This shell script is used to monitor an HP-UX system for full filesystems using the
percentage method with exceptions capability.

fs_mon_HPUX_PC_MBFREE.ksh:

This shell script is used to monitor an HP-UX system for full filesystems using the
percentage method with exceptions capability.

fs_mon_HPUX_excep.ksh:

Basic HP-UX filesystem monitoring using the percent method with exceptions
capability.

fs_mon_LINUX.ksh:

This shell script is used to monitor a Linux system for full filesystems using the
percentage method.

fs_mon_LINUX_MBFREE.ksh:

This shell script is used to monitor a Linux system for full filesystems using the MB
free method.

fs_mon_LINUX_MBFREE_excep.ksh:

This shell script is used to monitor a Linux system for full filesystems using the
percentage method with exceptions capability.

fs_mon_LINUX_PC_MBFREE.ksh:

This shell script is used to monitor a Linux system for full filesystems using the
percentage method with exceptions capability.

fs_mon_LINUX_excep.ksh:

Basic Linux filesystem monitoring using the percent method with exceptions
capability.

fs_mon_SUNOS.ksh:

This shell script is used to monitor a SunOS system for full filesystems using the
percentage method.

What’s On the Web Site 649

Free & Share & Open

fs_mon_SUNOS_MBFREE.ksh:

This shell script is used to monitor a SunOS system for full filesystems using the MB
free method.

fs_mon_SUNOS_MBFREE_excep.ksh:

This shell script is used to monitor a SunOS system for full filesystems using the
percentage method with exceptions capability.

fs_mon_SUNOS_PC_MBFREE.ksh:

This shell script is used to monitor a SunOS system for full filesystems using the
percentage method with exceptions capability.

fs_mon_SUNOS_excep.ksh:

Basic SunOS filesystem monitoring using the percent method with exceptions
capability.

Chapter 6

AIX_paging_mon.ksh:

Shell script to monitor AIX paging space.

HP-UX_swap_mon.ksh:

Shell script to monitor HP-UX swap space.

Linux_swap_mon.ksh

Shell script to monitor Linux swap space.

SUN_swap_mon.ksh:

Shell script to monitor SunOS swap space.

all-in-one_swapmon.ksh:

Shell script to monitor AIX, HP-UX, Linux, and SunOS swap/paging space.

Chapter 7

uptime_loadmon.ksh:

System load monitor using the uptime command.

650 Appendix A

uptime_fieldtest.ksh:

Script to test the location of the latest uptime load information as it changes based
on time.

sar_loadmon.ksh:

Load monitor using the sar command.

iostat_loadmon.ksh:

Load monitor using the iostat command.

vmstat_loadmon.ksh:

Load monitor using the vmstat command.

Chapter 8

proc_mon.ksh:

Process monitor that informs the user when the process ends.

proc_wait.ksh:

Process monitor that informs the user when the process starts.

proc_watch.ksh:

Process monitor that monitors a process as it starts and stops.

proc_watch_timed.ksh:

Process monitor that monitors a process for a user specified amount of time.

Chapter 9
There are no shell scripts to list in Chapter 9.

Chapter 10

mk_passwd.ksh:

This shell script is used to create pseudo-random passwords.

What’s On the Web Site 651

Free & Share & Open

Chapter 11

stale_LV_mon.ksh:

This shell script is used to monitor AIX stale Logical Volumes.

stale_PP_mon.ksh:

This shell script is used to monitor AIX stale Physical Partitions.

stale_VG_PV_LV_PP_mon.ksh:

This shell script is used to monitor AIX stale partitions in Volume Groups, Physical
Volumes, Logical Volumes, and Physical Partitions.

Chapter 12

pingnodes.ksh:

This shell script is used to ping nodes. The operating system can be AIX, HP-UX,
Linux, or SunOS.

Chapter 13

AIXsysconfig.ksh:

This shell script is used to gather information about an AIX system’s configuration.

Chapter 14

chpwd_menu.ksh:

This shell script uses sudo to allow support personnel to change passwords.

sudo-1.6.3p7.tar.gz:

This is a tar ball of the sudo source code.

Chapter 15

hgrep.ksh:

This shell script works similar to grep except that it shows the entire file with the
pattern match highlighted in reverse video.

652 Appendix A

Chapter 16

enable_AIX_classic.ksh:

Enables all AIX “classic” print queues.

print_UP_AIX.ksh:

Enables all AIX System V printers and queues.

print_UP_HP-UX.ksh:

Enables all HP-UX System V printers and queues.

print_UP_Linux.ksh:

Enables all Linux System V printers and queues.

printing_only_UP_Linux.ksh:

Enables printing on Linux System V printers.

queuing_only_UP_Linux.ksh:

Enables queuing on Linux System V printers.

print_UP_SUN.ksh:

Enables all SunOS System V printers and queues.

PQ_all_in_one.ksh:

Enables all printing and queuing on AIX, HP-UX, Linux, and SunOS by auto detect-
ing the UNIX flavor.

Chapter 17

tst_ftp.ksh:

Simple FTP automated file transfer test script.

get_remote_dir_listing.ksh:

Script to get a remote directory listing using FTP.

get_ftp_files.ksh:

Shell script to retrieve files from a remote machine using FTP.

What’s On the Web Site 653

Free & Share & Open

put_ftp_files.ksh:

Shell script to upload files to a remote machine using FTP.

get_remote_dir_listing_pw_var.ksh:

Script to get a directory listing from a remote machine using FTP. The passwords are
stored in an environment file somewhere on the system, defined in the script.

get_ftp_files_pw_var.ksh:

Script to retrieve files from a remote machine using FTP. This script gets its pass-
word from an environment file somewhere on the system, defined in the script.

put_ftp_files_pw_var.ksh:

Script to upload files to a remote machine using FTP. This script gets its password
from an environment file somewhere on the system, defined in the script.

Chapter 18

findlarge.ksh:

This shell script is used to find “large” files. The file size limit is supplied on the
command line and the search begins in the current directory.

Chapter 19

broot:

Shell script to capture keystrokes of anyone gaining root access.

banybody:

Shell script to capture keystrokes of any user defined in the shell script.

log_keystrokes.ksh:

Shell script to log a user’s keystrokes as they type on the keyboard.

Chapter 20

SSAidentify.ksh:

Shell script to control SSA disk subsystem disk identification lights.

654 Appendix A

Chapter 21

mk_unique_filename.ksh:

This shell script creates unique filenames.

Chapter 22

float_add.ksh:

Adds a series of floating point numbers together using the bc utility.

float_subtract.ksh:

Subtracts floating point numbers using the bc utility.

float_multiply.ksh:

Multiplies a series of floating point numbers together using the bc utility.

float_divide.ksh:

Divides two floating point numbers using the bc utility.

float_average.ksh:

Averages a series of floating point numbers using the bc utility.

Chapter 23

mk_swkey.ksh:

Shell script to create a software license key using the hexadecimal representation of
the IP address.

equate_any_base.ksh:

Converts numbers between any base.

equate_base_2_to_16.ksh:

Converts numbers from base 2 to base 16.

equate_base_16_to_2.ksh:

Converts numbers from base 16 to base 2.

What’s On the Web Site 655

Free & Share & Open

equate_base_10_to_16.ksh:

Converts numbers from base 10 to base 16.

equate_base_16_to_10.ksh:

Concerts numbers from base 16 to base 2.

equate_base_10_to_2.ksh:

Converts numbers from base 10 to base 2.

equate_base_2_to_10.ksh:

Converts numbers from base 2 to base 10.

equate_base_10_to_8.ksh:

Converts numbers from base 10 to base 8.

equate_base_8_to_10.ksh:

Converts numbers from base 8 to base 10.

Chapter 24

operations_menu.ksh:

Shell script menu for an Operations staff.

Chaper 25

broadcast.ksh:

Shell script to send pop-up messages to Windows desktops. This shell script requires
Samba to be installed on the UNIX machine.

Functions

Chapter 2
All of the following 12 functions are different methods to process a file line by line. The
two fastest methods are tied for first place and are highlighted in boldface text.

656 Appendix A

while_read_LINE

while_read_LINE_bottom

cat_while_LINE_line

while_line_LINE

while_LINE_line_bottom

while_LINE_line_cmdsub2

while_LINE_line_bottom_cmdsub2

while_read_LINE_FD

while_LINE_line_FD

while_LINE_line_cmdsub2_FD

while_line_LINE_FD

Chapter 3

send_notification:

This function is used to send an email notification to a list of email addresses,
specified by the MAILLIST variable defined in the main body of the shell script.

Chapter 4

dots:

This function is used as a progress indicator showing a series of dots every 10 sec-
onds, or so.

rotate:

This function is used as a progress indicator showing the appearance of a rotating
line.

Chapter 5
There are no functions to list in Chapter 5.

Chapter 6

AIX_paging_mon:

Function to monitor AIX paging space.

HP_UX_swap_mon:

Function to monitor HP-UX swap space.

What’s On the Web Site 657

Free & Share & Open

Linux_swap_mon:

Function to monitor Linux swap space.

SUN_swap_mon:

Function to monitor SunOS swap space.

Chapter 7
There are no functions to list in Chapter 7.

Chapter 8
There are no functions to list in Chapter 8.

Chapter 9

check_HTTP_server:

This function is used to check an application Web server and application URL pages.

Chapter 10

in_range_random_number:

This function creates pseudo-random numbers within one and a “max value”.

load_default_keyboard:

This function is used to load a USA 102-key board layout into a keyboard file.

check_for_and_create_keyboard_file:

If the $KEYBOARD_FILE does not exist then ask the user to load the “standard” key-
board layout, which is done with the load_default_keyboard function.

build_manager_password_report:

Build a file to print for the secure envelope.

Chapter 11
There are no functions to list in Chapter 11.

658 Appendix A

Chapter 12

ping_host:

This function executes the correct ping command based on UNIX, the UNIX flavor,
AIX, HP-UX, Linux, or SunOS.

ping_nodes:

This function is used to ping a list of nodes stored in a file. This function requires the
ping_host function.

Chapter 13
All of these functions are used in gathering system information from an AIX system.
Refer to Chapter 13 for more details in the AIXsysconfig.ksh shell script.

get_host

get_OS

get_OS_level

get_ML_for_AIX

get_TZ

get_real_mem

get_arch

get_devices

get_long_devdir_listing

get_tape_drives

get_cdrom

get_adapters

get_routes

get_netstats

get_fs_stats

get_VGs

get_varied_on_VGs

get_LV_info

get_paging_space

get_disk_info

get_VG_disk_info

get_HACMP_info

get_printer_info

get_process_info

get_sna_info

get_udp_x25_procs

get_sys_cfg

get_long_sys_config

get_installed_filesets

check_for_broken_filesets

last_logins

What’s On the Web Site 659

Free & Share & Open

Chapter 14
There are no functions to list in Chapter 14.

Chapter 15
There are no functions to list in Chapter 15.

Chapter 16

AIX_classic_printing:

Enables AIX print queues using the AIX “classic” printer subsystem.

AIX_SYSV_printing:

Enables AIX printers and queues using System V printing subsystem.

HP_UX_printing:

Enables HP-UX printers and print queues using System V printing.

Linux_printing:

Enables Linux printers and print queues using System V printing.

Solaris_printing:

Enables SunOS printers and print queues using System V printing.

Chapter 17

pre_event:

Function to allow for pre events before processing.

post_event:

Function to allow for post events after processing.

Chapter 18
There are no functions to list in Chapter 18.

660 Appendix A

Chapter 19
There are no functions to list in Chapter 19.

Chapter 20

man_page:

Function to create man page type information about the proper usage of the
SSAidentify.ksh shell script.

twirl:

Progress indicator that looks like a “twirling”, or rotating line.

all_defined_pdisks:

Function that lights all disk identification lights for all defined pdisks.

all_varied_on_pdisks:

Function that lights all disk identification lights that are in varied-on Volume
Groups.

list_of_disks:

Function that acts on each pdisk by turning on/off the SSA disk identification lights.

Chapter 21

get_random_number:

This function produces a pseudo-random between 1 and 32,767.

in_range_random_number:

Create a pseudo-random number less than or equal to the $UPPER_LIMIT value,
which is user defined.

Chapter 22
There are no functions to list in Chapter 22.

What’s On the Web Site 661

Free & Share & Open

Chapter 23
There are no functions to list in Chapter 23.

Chapter 24
There are no functions to list in Chapter 24.

Chapter 25

check_for_null_message:

Checks to see if a variable is empty.

check_for_null_winlist:

Checks to see if a variable is empty.

check_for_smbclient_command:

Checks for the existence of the smbclient command and ensures the file is
executable.

662 Appendix A

663

Index

SYMBOLS
* (asterisk), 28
\ (backslash), 2, 103, 265
` (back tic mark), 16
^ (caret), 105, 207, 622
$? (check return code), 25–26
: (colon)

checking NFS for, 113–118
getopts command and, 229, 562, 604

{} (curly braces), 104, 541
. (decimal point), 554
$ (dollar sign)

numeric test comparison and, 120
variable name and, 13, 151

&& (double ampersands), 407
$$ (double dollar signs), 524
== (double equal signs), 217
|| (double pipes), 407
“ (double quotes)

multiword string patterns and, 392
uses of, 16
variable and, 115

/ (forward slash), 471
‘ (forward tic mark), 2, 16
(hash mark), 5
- (hyphen), 562
- (minus) sign, 554
: (no-op), 58
% (percent) character, 103, 526

|& (pipe ampersand), 232
+ (plus) sign, 554
(pound) operator, 527
? (question mark), 28, 562

A
accessing

value of $# positional parameter, 45
variable data, 13

adding list of numbers, 547–551, 555
AIX

classic printer subsystem, 38, 404–408
df -k command output, 130, 131
iostat command output, 186
Logical Volume Manager (LVM), 298
lsps command, 146–147
paging monitor, 149–155
ping command syntax, 320
pwdadm command, 385–389
sar command output, 188–189
system monitoring, 98–103
system snapshot commands, 338–340
system snapshot listing, 341–351
system snapshot report output, 353–366
System V output, 426
System V printing, 408–414
uptime command output, 180–181
vmstat command output, 191
See also stale disk partition, monitoring

for

Free & Share & Open

664 Index

aliases for /etc/sudoers file, 384, 488
all_defined_pdisks function, 501–503
all_varied_on_pdisks function, 503–505
API (application program interface), 261
application monitoring

APIs and SNMP traps, 261
HTTP server, checking, 259–260
local processes, 252–254
Open Secure Shell and, 254–256
Oracle databases, checking for, 256–259
overview of, 251, 260

application program interface (API), 261
arguments, command switch and, 229.

See also command-line arguments
arithmetic operators

modulo, 267, 526
overview of, 17

array
creating, 418–419
loading, 46–47, 264, 265–266, 280–281
one-dimensional, 265
uses of, 425
working with, 419–420

array pointer, 264
ASCII text, 2
assigning variable, 13
asterisk (*), 28
at command, 28, 96
auditing root access, 476, 483–486
auto-detect techniques, 118
automated event notification

basics of, 79–81
file system monitoring and, 143–144
techniques for, 79

automated FTP file transfer, 39
automated host pinging, 37
averaging series of numbers, 579–582
awk statement, 100, 307

B
background, co-process and, 245–246
backslash (\), 2, 103, 265
back tic mark (`), 16
basename command, 94–95
basename $0 command, 530
bc command and floating-point math,

40–41, 545

bc utility
float_add script, 546–552
float_average script, 579–582
float_divide script, 573–579
float_multiply script, 565–570
float_subtract script, 556–561
functions, creating, 582–583
here document, using, 555–556, 564–565
Linux swap space monitor and, 160–161
math statement, building, 554–555,

563–564
overview of, 545
parsing command-line arguments with

getopts, 561–563
parsing command line for valid

numbers, 570–572
scale, removing from scripts, 582
scale, setting, 161, 165, 556
Solaris swap space monitor and, 165
syntax, 545–546
testing for integers and floating-point

numbers, 552–554
bdf command, 132–133
bin directory, 103
blank line, removing from file, 44
boot logical volume, 300
bounce account, 480
break command, 9
broadcasting message

to all users, 621–622
error notifications, 645
groups, adding, 623
to individual destinations, 623–627
log file and, 645
overview of, 43, 619
script for, 631–639
sending message, 629–630
testing user input, 627–629

build_manager_password_report function,
271–274

built-in tests, 26

C
calling function, 2
capturing

large list of files, 39
user keystrokes, 40, 475–476, 480–483

Index 665

caret (^), 105, 207, 622
case sensitivity, 1
case statement, 8, 437–438
catching delayed command output, 32–33
cat command, 57–58
cc, 371
CD-ROM

files, script stub and, 5–6
monitoring and, 98–99

check_exceptions function, 114
check_for_and_create_keyboard_file

function, 270–271
check_for_null_message function, 629
check_for_null_winlist function, 628
check_for_smbclient_command function,

639–640
check_HTTP_server function, 259–260
check return code ($?), 25–26
chmod command, 18–20
cleanup function, 500–501
colon (:)

checking NFS for, 113–118
getopts command and, 229, 562, 604

columns heading, removing in command
output, 45–46

command-line arguments
overview of, 13–14
parsing with getopts, 29–30, 244–245,

561–563, 602–604, 624–626
special parameters and, 15–16
testing and parsing, 275–279

commands
at, 28, 96
AIX classic print control, 404–408
AIX System V print control, 408–414
basename, 94–95
basename $0, 530
bc, 40–41, 545
break, 9
cat, 57–58
catching delayed output, 32–33
chmod, 18–20
compress, 493
configure, 371–375
crontab, 27
cut, 150
date, 467, 472, 540
df -k, 98, 130–132

disk subsystem, 298–299
echo, 35, 88, 89, 498–499, 524–525
echo $#, 275
enq -A, 404–405
env, 456
executing in sub-shell, 417
exit, 9, 483
find, 39, 465, 466–473
free (Linux), 148
ftp, 442, 443, 463
gunzip, 371
gzip, 493
hostname, 467, 478
HP-UX print control, 414–417
iostat, 179, 186–188, 203–208
kill, 500–501
last, 22–23
line, 54, 58–62
Linux print control, 417–422
list of, 10–12
lpc (AIX), 408–412
lpc (Linux), 417–418
lpc (Solaris), 425–429
lpstat (AIX), 412–414
lpstat (HP-UX), 414–417
lpstat (Solaris), 429–431
lsdev, 501–503
lslv, 299
lsps (AIX), 146–147
lspv, 299, 304, 504
lsvg, 298, 299, 308
lsvg -o, 504
mail notification, 34–35, 80–83
make, 371, 375–377
make install, 377
manual page, printing, 465
more, 392, 393, 399, 471
number base conversion, 41–42
pg or page, 392, 393, 399
ping, 37–38, 251, 319
printf, 41–42, 586–587
ps, 23
ps auxw, 179, 213–214
ps -ef, 216, 252, 257
pwd, 466, 467, 471
pwdadm, 385–389
read, 53–54, 60
real-time user communication, 24

Free & Share & Open

666 Index

commands (continued)
remote, running, 255–256
removing columns heading in output,

45–46
return, 9
rsh, 20–21
running on remote host, 20–21
rwall, 24
sar, 179, 188–191, 197–203, 214
select, 42–43
sendmail, 34–35, 83–84, 330
set -A, 46–47, 265, 418
shift, 14–15, 571, 607
smbclient, 619–621, 630
Solaris print control, 425–431
sqlplus, 257–258
ssaidentify, 496–497, 503
ssaxlate, 315–316, 496, 504
ssh, 254
sudo program and, 369–370
su (switch user), 478, 492
swapinfo (HP-UX), 147–148
swap (Solaris), 148–149
symbol commands, 13
system snapshot for AIX, 338–340
tail, 45–46, 405
talk, 24
tee, 223
tee -a, 352, 422
time, 56, 67
touch, 446
tput, 38, 389, 400–401
tput rmso, 392
tput smso, 154, 392
tr, 24–25
tty, 223
typeset, 24–25, 41, 529, 585–586
uname, 128, 176
uniq, 43–44, 622
uptime, 179, 180–186, 194–197
user information, 22–23
vmstat, 179, 191–193, 208–212
w, 22
wall, 24
which, 640
who, 22
write, 24
See also getopts command; script

command

command substitution
back tics and, 16
description of, 60
experiment using, 393
options for, 323
timing methods of, 77–78

comments, 4–6
communicating with users, 23–24
compiling sudo, 371–372
compress command, 493
compressing file, 493
configure command, 371–375
configuring sudo, 378–384
continue, 9
control structures, 6–8
converting numbers between bases

base 2 (binary) to base 16 (hexadecimal),
587–590

base 8 to base 16, 586
base 10 (decimal) to base 16

(hexadecimal), 590–593
base 10 to base 16, 586
base 10 to hexadecimal, 587
base 10 to octal, 587
beginning of main, 606–608
overview of, 41–42, 585
parsing command-line argument with

getopts, 602–604
sanity checks, 604–606
software key, creating, 594–597, 608
translation between any base, 597–608
typeset command syntax, 585–586

co-process
with background function, making,

30–32
process monitoring and, 245–246
setting up, 230–231

countdown indicator, 91–96
COUNT variable, 570
CPU load monitoring. See system load

monitoring
cron table

automated hosts pinging and, 335
file system monitoring and, 143–144
overview of, 27–28
pinging and, 321
printing, queuing, and, 409, 418
silent running and, 29

curly braces ({}), 104, 541

Index 667

current directory, searching and, 472
cut command, 150

D
date command, 467, 472, 540
debug mode, automated FTP and, 463
decimal point (.), 554
declaring

function, 3
shell, 3–4

default shell, 3
defining

function, 120, 340–341, 351
trigger value, 118

/dev/random, 524
df -k command

AIX output, 130, 131
Linux output, 131
overview of, 98
SUN/Solaris output, 132

dial-out modem software, 84–85
directory, adding to path, 466
directory listing, saving remote, 444–446
dividing numbers, 573–579
dollar sign ($)

numeric test comparison and, 120
variable name and, 13, 151

dotting filename, 456–457
double ampersands (&&), 407
double bracket test for character data, 73
double dollar signs ($$), 524
double equal signs (==), 217
double parentheses mathematical test, 73,

151
double pipes (||), 407
double quotes (“)

multiword string patterns and, 392
uses of, 16
variable and, 115

downloading
Samba, 642–643
sudo program, 370–371

E
echo command

cursor control commands for, 498–499
RANDOM environment variable and,

524–525
series of dots and, 35, 88, 89

echo $# command, 275
egrep statement

file system monitoring and, 144
grep compared to, 99, 410
-v argument, 99–100, 133–134

email as repository for log files, 479–480,
486, 493

enclosures, 16
encryption key, 254
enq -A command, 404–405
enterprise management tool, 85, 86, 261
env command, 456
EOF character string, 555, 564
error log, 520
error notification, 645
escaping special character, 2, 265
/etc/motd file, 23
/etc/sudoers file

samples, 378–384, 486–488
troubleshooting, 494

eval function, 626–627
event notification

basics of, 79–81
file system monitoring and, 143
monitoring for stale disk partition, 316
swap space monitoring and, 177
techniques for, 79

events, pre, startup, and/or post, running,
228–229, 249

exceptions capability
exceptions file, 103–110
MB of free space with exceptions

method, 113–118
print queue and, 439

executing
command in sub-shell, 417
shell script recursively, 485–486

exit command, 9, 483
exit criteria, 616
exit signals, 21
exporting password variable, 456

F
file descriptors

overview of, 54
parsing file with, 63–66
timing data and, 67, 73

filename
creating unique, 535–543
dotting, 456–457

Free & Share & Open

668 Index

filename (continued)
log files, 478
See also pseudo-random number, creating

files
aliases for sendmail, 83
capturing large list of, 39
CD-ROM, 5–6
compressing, 493
.forward, 82–83, 480
gzip, 371
highlighting text in, 38
large, finding, 465
permissions and chmod command, 18–20
processing line by line, 33
.profile, ownership of, 477
searching for newly created, 473
See also filename; find command

file system monitoring
automated execution, 143–144
command syntax, 98–103
egrep statement, modifying, 144
event notification, 143
exceptions capability, adding, 103–110
full, defining, 100–101
MB of free space method, 110–113
MB of free space with exceptions

method, 113–118
percentage used-MB free combination,

118–128
techniques for, 97
Unix flavors and, 128–130
See also operating system (OS)

File Transfer Protocol. See FTP
find command

large file script, creating, 466–472
options for searching, 472–473
overview of, 39, 465
syntax, 466

flexibility in scripting, 249
floating-point math

float_add script, 546–552
float_average script, 579–582
float_divide script, 573–579
float_multiply script, 565–570
float_subtract script, 556–561
functions, creating, 582–583
here document, using, 555–556, 564–565
Linux swap space monitor and, 160–161
math statement, building, 554–555,

563–564

overview of, 545
parsing command-line arguments with

getopts, 561–563
parsing command line for valid

numbers, 570–572
scale, removing from scripts, 582
scale, setting, 161, 165, 556
Solaris swap space monitor and, 165
syntax, 545–546
testing for integers and floating-point

numbers, 552–554
floating printer, 439
for ... in statement, 7
.forward file, 82–83, 480
forward slash (/), 471
forward tic mark (‘), 2, 16
free command (Linux), 148
FTP (File Transfer Protocol)

automation of, 39, 441, 444
controlling execution with command-line

switches, 463
debug mode, adding, 463
getting files from remote system, 446–450
here document and, 442–443
log file, adding, 463
modifying script to use password

variables, 456–463
pre and post events, 449
replacing hard-coded passwords with

variables, 452–456
saving remote directory listing, 444–446
syntax for, 441–444
typical file download, 442
uploading files to remote system,

450–452
ftp command, 442, 443, 463
full pathname, 471
functions

all_defined_pdisks, 501–503
all_varied_on_pdisks, 503–505
build_manager_password_report,

271–274
calling, 119
check_exceptions, 114
check_for_and_create_keyboard_file,

270–271
check_for_null_message, 629
check_for_null_winlist, 628
check_for_smbclient_command, 639–640
check_HTTP_server, 259–260

Index 669

cleanup, 500–501
converting shell script into, 175–176
declaring, 3
defining, 120, 340–341, 351
eval, 626–627
form of, 3
get_max, 212–213
getopts, 278
get_random_number, 525
in_range_fixed_length_random_number,

527–528
in_range_random_number, 267–268
as interpreted, 2
list_of_disks, 506–507
load_default_keyboard, 268–270
man_page, 499
mathematical, built-in, 18
overview of, 2–3
positional parameters and, 14
send_notification, 83–84
show_all_instances_status, 257
show_oratab_instances, 256
simple_SQL_query, 258
trap_exit, 275
twirl, 499–500
usage, 274–275, 497–498
on Web site for book, 656–662

G
gcc, 371
get_max function, 212–213
getopts command

automating FTP and, 463
limitations of, 246
parsing command-line arguments with,

29–30, 244–245, 278–279, 561–563,
602–604, 624–626

process monitoring and, 218, 228,
229–230

getopts function, 212–213
get_random_number function, 525
global variable, 582
goal of script, 2
grep statement

egrep compared to, 99
exceptions capability and, 104–105
process monitoring and, 214
ps -ef command and, 216
rows and, 307

uptime field test solution and, 184–186
See also hgrep (highlighted grep)

group, broadcasting message to, 623
gunzip command, 371
gzip command, 493
gzip file, 371

H
hash mark (#), 5
hdisk#

cross-referencing to pdisk#, 520
overview of, 495
translating to pdisk#, 496

here document
bc utility and, 545–546, 555–556, 564–565
FTP process and, 442–443
swap space monitor and, 161, 165–166
syntax for, 9–10

hgrep (highlighted grep)
building shell script, 393–394
listing, 394–399
overview of, 391
reverse video control, 392–393

highlighting text in file, 38
$HOME/.profile, 617
hostname command, 467, 478
HP-UX

bdf command output, 132–133
iostat command output, 186–187
ping command syntax, 320
print control commands, 414–417
sar command output, 189
swapinfo command, 147–148
swap space monitor, 155–160
uptime command output, 181–182
vmstat command output, 191

HTTP server, checking, 259–260
hyphen (-), 562

I
identifying

hardware components, Unix flavor and,
495

SSA disk, 496–497
if statement, tests used in, 330
if ... then ... elif ... (else) statement, 7
if ... then ... else statement, 6
if ... then ... fi statement, 417
if ... then statement, 6

Free & Share & Open

670 Index

input redirection, 58
in_range_fixed_length_random_number

function, 527–528
in_range_random_number function,

267–268
integer, testing for, 552–554
iostat command, 179, 186–188, 203–208
IP address, creating software key based

on, 594–597, 608

J
job control, 28–32
junk variable, 420

K
kill command, 500–501

L
large file, searching for, 466–473
last command, 22–23
$LENGTH, testing for integer value,

277–278
line, rotating, creating, 35–36, 89–91, 95–96,

499–500
line command, 54, 58–62
Linux

controlling queuing and printing
individually, 422–425

df -k command output, 131
free command, 148
iostat command output, 187
ping command syntax, 320
print control commands, 417–422
sar command output, 189
swap space monitor, 160–164
System V output, 409, 426
uptime command output, 182
vmstat command output, 192

linx command-line browser, 259–260
listings

AIX lsps -s data gathering, 150
AIX paging monitor, 151–153, 154
AIX system snapshot commands,

338–340
AIX System V printing, 411–412
all_defined_pdisks function, 503
all-in-one paging and swap space

monitor, 169–175

automated FTP, 444
averaging list of numbers, 581
base 2 (binary) to base 16 (hexadecimal)

conversion, 588–589
base 10 (decimal) to base 16

(hexadecimal) conversion, 590–592
broadcasting message, 621–622
build_manager_password_report

function, 272
case statement for iostat fields of data, 188
case statement for sar fields of data, 190
case statement for vmstat fields of data,

192–193
cat $FILENAME|while line LINE

method, 60
cat $FILENAME|while LINE=$(line)

method, 62
cat $FILENAME|while LINE=`line`

method, 59
cat $FILENAME|while read LINE

method, 57
check_exceptions function, 114
check_for_and_create_keyboard_file

function, 270–271
check_for_null_message function, 629
check_for_null_winlist function, 628
check_for_smbclient_command function,

639–640
check_HTTP_server function, 259–260
cleanup function, 501
configure command output, 371–375
controlling case statement to pick OS,

437–438
co-process, 231
countdown indicator, 92–94
cursor control using echo command, 499
dividend and divisor, extracting, 573–574
equate_any_base, 598–601
/etc/sudoers file samples, 378–381,

381–384, 486–488
exceptions file, 109
exceptions file that worked best with

testers, 127–128
filename, creating unique, 536–539,

541–543
file system monitoring for AIX, 101–102
file system monitoring for AIX with

exceptions capability, 106–109

Index 671

finding large file, 467–470, 471–472
fixed-length random number output, 528
float_add script, 547–551, 555
float_average script in action, 581
float_divide script, 574–579
float_multiply script, 565–570, 572
float_subtract script, 556–561, 565
for loop enabling classic AIX print

queues, 406-407
FTP file download, 442
full filesystem on yogi script, 110
full filesystem script, 103
getopts command line parsing, 279
getopts command usage, 229–230
getopts function, 278
get_random_number function, 525
get remote directory listing, 445
get remote directory listing, hard-coded

passwords removed, 457–458
getting files from remote system,

446–448, 449–450
getting files from remote system, hard-

coded passwords removed, 458–460
grep mistake, 104–105
here document for FTP, 442–443
hgrep, 394–399
HP-UX print control, 416
HP-UX swapinfo -tm command output,

155
HP-UX swap space monitor, 157–158
HP-UX swap space report, 159–160
in_range_fixed_length_random_number

function, 527–528
in_range_random_number function, 268,

526
iostat load monitoring, 203–205, 207–208
$LENGTH, testing for integer value,

277–278
Linux, controlling printing individually,

422–423
Linux, controlling queuing individually,

424
Linux print control, 420–421
Linux swap space monitor, 162–163, 164
list_of_disks function, 506–507
load_default_keyboard function, 268–269
loading KEYS array, 280–281
logging keystrokes, 480–482

logging root access, 483–485
logic code for large and small filesystem

freespace script, 119
looping in background, 88
loop list, building, 281–282
lpstat command output, 413, 429–430
lpstat command using -a and -p, 414, 430
lpstat or enq -A command output, 404
lpstat -W or enq -AW command output,

405
lsdev listing of pdisks, 502
lsvg -l appvg2 rootvg command output,

300
LV, loop to show number of stale PPs

from each, 302
LV statistics, 301
mail code segment, 81
mail service, testing, 82
make command output, 375–377
make install command output, 377
MB of free space method, 111–113
MB of free space with exceptions

method, 115–118
monitor all OS, 134–141
monitoring administration users, 489–492
monitoring application process, 253
my_sql_query.sql, 257
operating system test, 129
operations menu, 612–616
paging and swap space report, 146
parsing command line, 606–607
parsing command-line switches with

getopts, 624–625
parsing numbers from command line,

572
password file with variable exported,

453–454
password file with variable not exported,

454
password report, 273–274
password report, printing, 283–284
password, testing visibility of, 455
percentage free-MB free combination,

121–127
pinging, automated hosts, with

notification, 324–328, 331
pop-up messages, sending to Windows,

631–639, 641

Free & Share & Open

672 Index

listings (continued)
printing and queuing all-in-one, 431–436
process monitoring, 218–222, 223
process monitoring and logging,

224–227, 228
process monitoring timed execution,

232–244
process monitoring timed execution in

action, 248
process startup loop, 216–217
process wait, 218
progress indicator background function,

89
pseudo-random number, creating,

531–535
pseudo-random password, 284–294
pseudo-random password, building new,

282
PV statistics, 305
reverse video menu options, 610–611
reverse video message bar, 611
rotate function, 90, 91
running remote command, 255–256
running total of numbers, 580–581
Samba source code installation, 642
sar load monitoring, 198–200, 202
script for timing of line by line

processing, 55–56
script session, command-line, 476–477
secure shell login, 254–255
sending message to list of nodes, 630
send_notification function, 83–84, 331
shell script starter file, 5–6
shift command, 14–15
show_all_instances_status function, 257
show_oratab_instances function, 256
simple_SQL_query function, 258
software key, creating, 594–595
Solaris print commands, 427–428
Solaris swap space monitor, 166–168, 169
sorted timing data by method, 75–76
SQL+ Oracle query, 258–259
SSA identify, 507–519
stale LV monitoring, 303–304
stale PP monitoring, 305–306
sudo, using first time, 385
sudo, using in shell script, 386–388
sudo log file, 389–390
system snapshot for AIX, 341–351

system snapshot for AIX report output,
353–366

testing command input, 72
testing command-line arguments,

276–277
testing for integers and floating-point

numbers, 552–553
timing command substitution methods,

77
timing data for each method, 73–75
timing script, 67–72
twirl function, 500
typeset command in random number

function, 529
typeset command to fix length of

variable, 529
uploading files to remote system,

450–452
uploading files to remote system, hard-

coded passwords removed, 460–462
uptime field test solution, 184–185
uptime load monitoring, 194–196, 197
usage function, 274, 497–498
/usr/local/bin/exceptions file, 142
verifying number base variables, 604–605
VG, LV, and PV monitoring with resync,

308–313
vmstat load monitoring, 208–212
while_line_LINE_Bottom method, 59, 76
while LINE=`line` from Bottom, 61
while LINE=$(line) from Bottom method,

62
while line LINE with file descriptors

method, 66
while LINE=$(line) with file descriptors

method, 65
while LINE=’line’ with file descriptors

method, 64–65
while read $FILENAME from Bottom, 58
while read LINE method, 64

list_of_disks function, 506–507
load_default_keyboard function, 268–270
loading

array, 46–47, 264, 265–266, 280–281
default keyboard layout, 268

log file
automated FTP and, 463
automated hosts pinging, adding to,

333–334

Index 673

emailing, 479–480, 486, 493
filename, 478
monitoring for stale disk partition, 316
pop-up message and, 645
print queue and, 439
sudo program, 389–390
swap space monitoring and, 177
user activity and, 478–479

logging process starts and stops, 223–228
logical AND, 17, 407
logical OR, 17, 407
Logical Volume Manager (LVM, AIX), 298
loop counter, 410
looping techniques for parsing file line by

line
cat $FILENAME|while line LINE

method, 60–61
cat $FILENAME|while LINE=$(line)

method, 61–62
cat $FILENAME|while LINE=`line`

method, 59–60
cat $FILENAME|while read LINE

method, 57–58, 77
command syntax, 53–54
file for testing timing of, 54–56
techniques for, 33
timing command substitution methods,

77–78
timing data for each method, 73–77
timing methods, 66–67
timing script, 67–72
while_line_LINE_Bottom method, 58–59,

76
while LINE=`line` from Bottom, 61
while LINE=$(line) from Bottom method,

62
while line LINE with file descriptors

method, 66
while LINE=$(line) with file descriptors

method, 65–66
while LINE=’line’ with file descriptors

method, 64–65
while read $FILENAME from Bottom

method, 58
while read LINE with file descriptors

method, 63–64, 76–77
lpc command

AIX, 408–412
Linux, 417–418
Solaris, 425–429

lpstat command
AIX, 404–405, 412–414
HP-UX, 414–417
Solaris, 429–431

lsdev command, 501–503
lslv command, 299
lsps command (AIX), 146–147
lspv command, 299, 304, 504
lsvg command, 298, 299, 308
lsvg -o command, 504

M
mail command

automated event notification with, 80–81
syntax, 34
-v switch, 82–83

mail notification techniques, 34–35
mailx command

automated event notification with, 80
syntax, 34
-v switch, 82–83

maintenance window
communicating with users and, 23
printing and, 439

make command, 371, 375–377
Makefile, configuring, 371–375
make install command, 377
man_page function, 499
manual page, printing, 465
math

bc command for floating-point, 40–41,
545

functions, built-in, 18
modulo operator, 267, 526
operators, 17
See also bc utility

MB (megabytes), size of, 473
measurement type, 111
memory, paging and swap space and,

145–146
memory leak, 153
menu, creating

for Operations staff, 609–618
select command and, 42–43

message, broadcasting. See pop-up
messages, sending to Windows

message bar, creating, 611–612
mget subcommand, 449
MIB (Management Information Base), 86
Miller, Todd, 370, 378

Free & Share & Open

674 Index

minus (-) sign, 554
model dialing software, 84–85
modulo arithmetic operator, 267, 526
monitoring. See application monitoring;

file system monitoring; process
monitoring; script command; system
load monitoring

more command, 392, 393, 399, 471
multiplying list of numbers, 565–570, 572

N
named pipe, creating, 493
nlist subcommand, 444–446
no-op (:), 58
notification of event. See event notification
null value check, 114
null variable, testing for, 44, 115
number. See bc utility; pseudo-random

number, creating
number base conversion

base 2 (binary) to base 16 (hexadecimal),
587–590

base 8 to base 16, 586
base 10 (decimal) to base 16

(hexadecimal), 590–593
base 10 to base 16, 586
base 10 to hexadecimal, 587
base 10 to octal, 587
beginning of main, 606–608
overview of, 41–42, 585
parsing command-line argument with

getopts, 602–604
sanity checks, 604–606
software key, creating, 594–597, 608
translation between any base, 597–608
typeset command syntax, 585–586

numeric test comparison, 120

O
Open Secure Shell (OpenSSH), 21, 254–256
operating system (OS)

command syntax, output, and, 130–134
controlling case statement to pick,

437–438
exceptions file listing, 142
file system monitoring and, 128–130
/home filesystem, 142–143
monitor all OS listing, 134–141
See also specific operating systems

Operations staff, menu for
overview of, 609
reverse video syntax, 610–618

operators
math, 17
modulo arithmetic, 267, 526
numeric, 120
pound (#), 527

Oracle database, checking for, 256–259
OS. See operating system
outbound mail, problems with, 82–84
output control, 28–32

P
padding number with leading zeros,

527–530
page command, 392, 393, 399
pager notification, 143
paging space. See swap space
parameters

positional, 13–14, 45, 601–602
special, 15–16

parsing
command-line arguments, 29–30,

275–279
command-line arguments with getopts,

244–245, 561–563, 602–604, 624–626
command line for valid numbers,

570–572
file with file descriptors, 63–66
file with line command, 54, 58–62
See also processing file line by line

passwords
hard-coded, 446
hard-coded, replacing, 452–456
page of, printing, 264, 271–272, 283–284,

294
password environment file, creating,

456–457
pwdadm command, 385–389
randomness and, 263
root, auditing, 476, 483–486
root, protecting, 369
secure, 264, 273
selecting, 295
sudo program and, 369–370
See also pseudo-random password

path, adding directory to, 466
pattern matching and set statement, 391

Index 675

pdisk#
all_defined_pdisks function, 501–503
all_varied_on_pdisks function, 503–505
cross-referencing to hdisk#, 520
list_of_disks function, 506–507
lsdev command and, 501–502
overview of, 495
translating hdisk# to, 496

percent (%) character, 103, 526
pg command, 392, 393, 399
PID (process ID), 263, 524
ping command, 37–38, 251, 319
pinging, automated hosts, with notification

cron table entry and, 335
/etc/hosts file compared to list file, 333
functions, 329–331
listing, 324–328
logging capability, adding, 333–334
options for convenience, 321
overview of, 319
pager notification, 334–335
$PINGLIST variable length limit

problem, 332–333
script in action listing, 331
syntax, 320
trap, creating, 323
“unknown host” and, 334
variables, defining, 321–323

pipe ampersand (|&), 232
piping

to background, 231, 232
co-process to background, 31–32
file output to while loop, 57–58
to tee -a command, 352

plus (+) sign, 554
pop-up messages, sending to Windows

to all users, 621–622
error notifications, 645
groups, adding, 623
to individual destinations, 623–627
log file and, 645
overview of, 43, 619
script for, 631–639
sending message, 629–630
testing user input, 627–629

positional parameters
accessing value of $#, 45
overview of, 13–14
referring to, 601–602

pound (#) operator, 527
printers

AIX classic print control commands,
404–408

AIX System V print control commands,
408–414

controlling case statement to pick OS,
437–438

exceptions capability and, 439
HP-UX print control commands, 414–417
keeping enabled, 38–39
Linux, controlling queuing and printing

individually, 422–425
Linux print control commands, 417–422
log file and, 439
maintenance and, 439
printing and queuing all-in-one listing,

431–436
scheduling, 439
Solaris print control commands, 425–431
status information, 413–414
See also printing

printf command, 41–42, 586–587
printing

manual page, 465
page of passwords, 264, 271–272,

283–284, 294
See also printers; System V printing

process ID (PID), 263, 524
processing file line by line

cat $FILENAME|while line LINE
method, 60–61

cat $FILENAME|while LINE=$(line)
method, 61–62

cat $FILENAME|while LINE=`line`
method, 59–60

cat $FILENAME|while read LINE
method, 57–58, 77

command syntax, 53–54
file for testing timing of, 54–56
techniques for, 33
timing command substitution methods,

77–78
timing data for each method, 73–77
timing methods, 66–67
timing script, 67–72
while_line_LINE_Bottom method, 58–59,

76
while LINE=`line` from Bottom, 61

Free & Share & Open

676 Index

processing file line by line (continued)
while LINE=$(line) from Bottom method,

62
while line LINE with file descriptors

method, 66
while LINE=$(line) with file descriptors

method, 65–66
while LINE=’line’ with file descriptors

method, 64–65
while read $FILENAME from Bottom

method, 58
while read LINE with file descriptors

method, 63–64, 76–77
process monitoring

common uses of scripts, 248
end of process, 218–223
logging starts and stops, 223–228
modifications to scripts, 248–249
overview of, 215–216
startup loop, 216–218
timed execution, 228–230

.profile file, ownership of, 477
progress indicator

countdown indicator, 91–96
creating, 35–36
overview of, 87
rotating line, 89–91
series of dots, 87–89, 95

ps auxw command, 179, 213–214
ps command, 23
ps -ef command, 216, 252, 257
pseudo-random number, creating

filename, creating unique, 535–543
fixed-length numbers between 1 and

user-defined maximum, 527–530
numbers between 0 and 32,767, 525–526
numbers between 1 and user-defined

maximum, 526
overview of, 36, 523, 524
random number, description of, 523–524
shell script listing, 531–535
shell script overview, 530–531
software key creation and, 608
techniques for, 524

pseudo-random password
array, loading, 280–281
building new, 282–283
creating, 264

functions, defining, 267–275
keyboard file, checking for, 280
listing, 284–294
loop list, building, 281–282
page of, printing, 264, 271–272, 283–284,

294
syntax, 264–266
testing and parsing command-line

arguments, 275–279
trap, setting, 280
variables, defining, 266–267

pwdadm command, 385–389
pwd command, 466, 467, 471

Q
querying system for name of shell script,

530
question mark (?), 28, 562
queuing. See printers

R
random number, 523–524. See also

pseudo-random number, creating
read command, 53–54, 60
rebooting system, 337
redirecting standard error to standard

output, 366
relative pathname, 470–471
remote command, running, 255–256
remote host, running commands on, 20–21
removing

blank lines in file, 44
columns heading in command output,

45–46
repeated lines in file, 43–44

repeated line, removing from file, 43–44
resyncing, 313
return code, checking, 25–26
return command, 9
reverse video

control commands, 392–393
highlighting text using, 391
Operations menu, 610–618
turning on and off, 154

root access, auditing, 476, 483–486
root access, restricted. See sudo (superuser

do) program
rsh command, 20–21

Index 677

running
commands on remote host, 20–21
pre, startup, and/or post events,

228–229, 249
printers, 38–39
remote command, 255–256
shell script, 3–4
silent, 28–29, 63

run queue, 194
rwall command, 24

S
Samba

downloading, 642–643
overview of, 24, 619
testing smbclient program, 643–644
See also smbclient command

sanity check, 113–115
sar command, 179, 188–191, 197–203, 214
saving remote directory listing with FTP,

444–446
scale

description of, 545
removing from scripts, 582
setting, 161, 165, 556

scheduling
monitoring, 177
printers, 439

scope of variable, 14, 120
script command

emailing audit logs, 493
logging user activity, 40, 478–479, 480–483
monitoring administration users, 489–492
options, 493–494
overview of, 475
repository for log files, 479–480
starting monitoring session, 479
syntax, 476–477
uses of, 477

searching for large file, 466–473
security

monitoring user action, 475–476
pseudo-random numbers and, 543
See also passwords

sed statement
character substitution and removal and,

101, 102–103
highlighting text in file and, 38

pattern matching and, 391
removing blank lines from file and, 44
reverse video control and, 392

seed, 267, 524
select command, 42–43
sending pop-up messages to Windows.

See pop-up messages, sending to
Windows

sendmail command, 34–35, 83–84, 330
Serial Storage Architecture (SSA)

control functions, 501–507
disk identification, 495
error log, 520
executing commands, 520–521
identifying disks listing, 507–519
identifying disks listing explanation,

519–520
syntax, 496–497
usage and user feedback functions,

497–501
set -A command, 46–47, 265, 418
set statement, 391
sgid, 18
shell, 2
shell script

comments and style in, 4–6
as interpreted, 2
running, 3–4

shift command, 14–15, 571, 607
show_all_instances_status function, 257
show_oratab_instances function, 256
silent running, 28–29, 63
simple_SQL_query function, 258
smbclient command, 619–621, 630
snapshot information

AIX commands listing, 338–340
commands, selecting, 337–338
determining statistics to include, 367
functions, defining, 340–341, 352
listing, 341–351
listing explanation, 351–353
report output, 353–366
storing, 337
variables, defining, 352

SNMP (Simple Network Management
Protocol), 86

SNMP trap, 85–86, 261

Free & Share & Open

678 Index

software
dial-out modem, 84–85
license key, creating, 594–597, 608
See also Samba; sudo (superuser do)

program
Solaris

df -k command output, 132
iostat command output, 187
ping command syntax, 320
print control commands, 425–431
sar command output, 190
swap command, 148–149
swap space monitor, 164–169
System V output, 409, 426
uptime command output, 183
vmstat command output, 192

special characters, escaping, 2
special parameters, 15–16
SQL+ database query, 258–259
sqlplus command, 257–258
SSA. See Serial Storage Architecture
ssaidentify command, 496–497, 503
ssaxlate command, 315–316, 496, 504
ssh command, 254
stale disk partition, monitoring for

automated execution, 316
disk subsystem commands, 298–299
event notification, 316–317
Logical Volume Manager (LVM), 298
LV level, stale PPs at, 299–304
overview of, 37, 297
PV level, stale PPs at, 304–307
SSA disks, 315–316
VG, LV, and PV monitoring with resync,

308–315
starting and stopping all printing and

queuing, 409
startup event, 228–229, 249
stderr file descriptor, 54, 63
stdin file descriptor, 54, 63
stdout file descriptor, 54, 63
sticky bit, setting, 18
storing log file, 479, 493
string, testing, 47–50
style, 4–6
sub-shell, executing command in, 417
subtracting list of numbers, 556–561, 565

sudo (superuser do) program
compiling, 371–377
configure command output, 371–375
configuring, 378–384
downloading, 370–371
/etc/sudoers file samples, 378–381,

381–384, 486–488
installing, 377
lecture message, 385
log file, 389–390
make command output, 375–377
monitoring administration users and, 492
need for, 369–370
Operations menu and, 618
overview of, 367, 369
script command and, 475, 476
using first time, 384–385
using in shell script, 385–389

suid, 18
SUN/Solaris. See Solaris
su (switch user) command, 478, 492
swap command (Solaris), 148–149
swapinfo command (HP-UX), 147–148
swap space

AIX paging monitor, 149–155
all-in-one paging and swap space

monitor, 169–176
command syntax, 146–149
HP-UX swap space monitor, 155–160
Linux swap space monitor, 160–164
memory and, 145
options for, 176–177
paging space compared to, 145–146
Solaris swap space monitor, 164–169

symbol commands, 13
system information, gathering.

See snapshot information
system load monitoring

detecting problems, 213
gathering data for plotting, 214
get_max function, 212–213
iostat command syntax, 186–188
iostat solution, 203–208
overview of, 179, 193–194
sar command syntax, 188–191
sar solution, 197–203
showing top CPU hogs, 213–214

Index 679

uptime command syntax, 180–186
uptime solution, 194–197
vmstat command syntax, 191–193
vmstat solution, 208–212

System V printing
AIX and, 408–414
commands for, 39
Linux and, 417–422
Solaris and, 429–431

T
tail command, 45–46, 405
talk command, 24
tar format, 371
tee -a command, 352, 422
tee command, 223
testing

binary numbers, 589–590
built-in tests, 26
character strings, 245
command input, 72–73
command-line arguments, 275–279
integers and floating-point numbers,

552–554
mail service, 82
null variable, 44, 115
numeric test comparison, 120
password file with variable exported,

455–456
password file with variable not exported,

456
response to system snapshot, 366
sanity check, 113–115
smbclient program, 643–644
string, 47–50
text strings, 24–25
timing of line by line processing, 54–56
user input, 627–629

text
ASCII, 2
finding in large file, 391
highlighting in file, 38
uppercase or lowercase, 24–25

thrashing, 145–146
threshold variable, setting, 111
time-based script execution, 27–28
time command, 56, 67

timed execution for process monitoring
co-process, 230–231, 245–246
getopts command, 218, 228, 229–230,

244–245, 246
in action listing, 248
listing, 232–244
overview of, 228

timeout, shell, 476, 486
time stamping process, 227
timing, at command and, 96
TOKEN variable, 570
top level down, 120
touch command, 446
tput command, 38, 389, 400–401
tput rmso command, 392
tput smso command, 154, 392
trap

setting, 21, 280
SNMP, 85–86, 261

trap_exit function, 275
tr command, 24–25
trigger value, defining, 118
troubleshooting

/etc/sudoers file, 494
proactive approach to, 403
See also snapshot information

tty command, 223
twirl function, 499–500
typeset command

number base conversion and, 41
overview of, 24–25
syntax, 585–586
variable length, setting, 529

U
uname command, 128, 176
uniq command, 43–44, 622
Unix flavors. See AIX; HP-UX; Linux;

Solaris
until loop, catching delayed command

output with, 32–33
until statement, 7–8
uptime command

AIX system and, 180–181
field test solution, 184–186
HP-UX system and, 181–182
Linux system and, 182

Free & Share & Open

680 Index

uptime command (continued)
OS common denominator, 183–184
overview of, 179, 180
Solaris system and, 183
system load, measuring, 194–197

usage function, 274–275, 497–498
user

capturing keystrokes of, 40, 475–476,
480–483

giving feedback to, 313
informing about monitoring, 493–494
logging activity of, 478–479
monitoring administration, 489–492
monitoring session, starting, 479
sending pop-up message to, 621–622

user information commands, 22–23
/usr/local/bin directory, 466

V
/var, 493
variable

COUNT, 570
double quotes (“) and, 16, 115, 392
global, 582
junk, 420
length, setting, 529
name of, and $ (dollar sign), 13, 151
null, testing for, 44, 115
overview of, 13
password, 456–463
RANDOM, 524–525
replacing hard-coded password with,

452–456

scope of, 14, 120
threshold, setting, 111
TOKEN, 570

verbose mode, 218, 222
Veritas filesystem, 495
viewing data assigned to variable, 13
visudo program, 378, 488
vmstat command, 179, 191–193, 208–212
volume group, 495

W
wall command, 24
w command, 22
Web site for book

functions on, 656–662
shell scripts on, 24, 647–656

Web sites
Open Secure Shell code, 21
Samba, 642
sudo program, 370

which command, 640
while loop

parsing file in, 53–54
progress indicator and, 88, 89

while statement, 7
who command, 22
wildcards, 28
Windows, sending pop-up messages to.

See pop-up messages, sending to
Windows

Winpopup protocol, 620
write command, 24

	Mastering Unix Shell Scripting
	Cover Image

	Acknowledgments
	Contents
	Introduction
	Overview of the Book and Technology
	How This Book Is Organized
	Who Should Read This Book
	Tools You Will Need
	What¡¯s on the Web Site
	Summary

	CHAPTER 1 Scripting Quick Start and Review
	Case Sensitivity
	Unix Special Characters
	Shells
	Shell Scripts
	Functions
	A Function Has the Form

	Running a Shell Script
	Declare the Shell in the Shell Script

	Comments and Style in Shell Scripts
	Control Structures
	Using break, continue, exit, and return
	Here Document
	Syntax for a Here Document

	Shell Script Commands
	Symbol Commands
	Variables
	Command- Line Arguments
	Shift Command
	Special Parameters $* and $@
	Special Parameter Definitions

	Double Quotes ¡°, Forward Tics ¡¯, and Back Tics `
	Math in a Shell Script
	Operators

	Built-In Mathematical Functions
	File Permissions, suid and sgid Programs
	chmod Command Syntax for Each Purpose

	Running Commands on a Remote Host
	Setting Traps
	User Information Commands
	who Command
	w Command
	last Command

	ps Command
	Communicating with Users
	Uppercase or Lowercase Text for Easy Testing
	Check the Return Code
	Time- Based Script Execution
	Cron Tables

	Output Control
	Silent Running
	Using getopts to Parse Command-Line Arguments
	Making a Co-Process with Background Function

	Catching a Delayed Command Output
	Fastest Ways to Process a File Line by Line
	Mail Notification Techniques
	Using the mail and mailx Commands
	Using the sendmail Command to Send Outbound Mail

	Creating a Progress Indicator
	A Series of Dots
	A Rotating Line

	Creating a Psuedo-Random Number
	Checking for Stale Disk Partitions in AIX
	Automated Host Pinging
	Highlighting Specific Text in a File
	Keeping the Printers Printing
	AIX ¡° Classic¡± Printer Subsystem
	System V Printing

	Automated FTP File Transfer
	Capturing a List of Files Larger than $ MEG
	Capturing a User¡¯s Keystrokes
	Using the bc Utility for Floating- Point Math
	Number Base Conversions
	Using the typeset Command
	Using the printf Command

	Create a Menu with the select Command
	Sending Pop- Up Messages to Windows
	Removing Repeated Lines in a File
	Removing Blank Lines from a File
	Testing for a Null Variable
	Directly Access the Value of the Last Positional Parameter, $#
	Remove the Columns Heading in a Command Output
	Arrays
	Loading an Array

	Testing a String
	Summary

	CHAPTER 2 Twelve Ways to Process a File Line by Line
	Command Syntax
	Using File Descriptors
	Creating a Large File to Use in the Timing Test

	Twelve Methods to Parse a File Line by Line
	Method 1: cat $ FILENAME | while read LINE
	Method 2: while read $ FILENAME from Bottom
	Method 3: while_ line_ LINE_ Bottom
	Method 4: cat $ FILENAME | while LINE=` line`
	Method 5: cat $ FILENAME | while line LINE
	Method 6: while LINE=` line` from the Bottom
	Method 7: cat $ FILENAME | while LINE=$(line)
	Method 8: while LINE=$(line) from the Bottom
	Method 9: while read LINE Using File Descriptors
	Method 10: while LINE=¡¯ line¡¯ Using File Descriptors
	Method 11: while LINE=$(line) Using File Descriptors
	Method 12: while line LINE Using File Descriptors

	Timing Each Method
	Timing Script
	Timing Command Substitution Methods

	Summary

	CHAPTER 3 Automated Event Notification
	Basics of Automating Event Notification
	Using the mail and mailx Commands

	Problems with Outbound Mail
	Create a ¡° Bounce¡± Account with a . forward File
	Using the sendmail Command to Send Outbound Mail

	Dial-Out Modem Software
	SNMP Traps
	Summary

	CHAPTER 4 Progress Indicator Using a Series of Dots, a Rotating Line, or a Countdown to Zero
	Indicating Progress with a Series of Dots
	Indicating Progress with a Rotating Line
	Creating a Countdown Indicator
	Other Options to Consider
	Summary

	CHAPTER 5 File System Monitoring
	In This Chapter
	Syntax
	Adding Exceptions Capability to Monitoring
	The Exceptions File

	Using the MB of Free Space Method
	Using MB of Free Space with Exceptions
	Percentage Used-MB Free and Large Filesystems
	Running on AIX, Linux, HP- UX, and Solaris
	Other Options to Consider
	Event Notification
	Automated Execution
	Modify the egrep Statement

	Summary

	CHAPTER 6 Monitoring Paging and Swap Space
	Syntax
	AIX lsps Command
	HP- UX swapinfo Command
	Linux free Command
	Solaris swap Command

	Creating the Shell Scripts
	AIX Paging Monitor
	HP- UX Swap Space Monitor
	Linux Swap Space Monitor
	Solaris Swap Space Monitor
	All- in- One Paging and Swap Space Monitor

	Other Options to Consider
	Event Notification
	Log File
	Scheduled Monitoring

	Summary

	CHAPTER 7 Monitoring System Load
	Syntax
	Syntax for uptime
	Syntax for iostat
	Syntax for sar
	Syntax for vmstat

	Scripting the Solutions
	Using uptime to Measure the System Load
	Using sar to Measure the System Load
	Using iostat to Measure the System Load
	Using vmstat to Measure the System Load

	Other Options to Consider
	Stop Chasing the Floating uptime Field
	Try to Detect Any Possible Problems for the User
	Show the User the Top CPU Hogs
	Gathering a Large Amount of Data for Plotting

	Summary

	CHAPTER 8 Process Monitoring and Enabling Preprocess, Startup, and Postprocess Events
	Syntax
	Monitoring for a Process to Start
	Monitoring for a Process to End
	Monitor and Log as a Process Starts and Stops
	Timed Execution for Process Monitoring,
	Showing each PID, and Time Stamp with
	Event and Timing Capability
	Other Options to Consider
	Common Uses
	Modifications to Consider

	Summary

	CHAPTER 9 Monitoring Processes and Applications
	Monitoring Local Processes
	Remote Monitoring with Secure Shell
	Checking for Active Oracle Databases
	Checking If the HTTP Server/ Application Is Working

	Other Things to Consider
	Application APIs and SNMP Traps

	Summary

	CHAPTER 10 Creating Pseudo-Random Passwords
	Randomness
	Creating Pseudo- Random Passwords
	Syntax
	Arrays

	Building the Password Creation Script
	Order of Appearance
	Beginning of Main

	Other Options to Consider
	Password Reports?
	Which Password?
	Other Uses?

	Summary

	CHAPTER 11 Monitor for Stale Disk Partitions
	AIX Logical Volume Manager (LVM)
	The Commands and Methods
	Disk Subsystem Commands
	Method 1: Monitoring for Stale PPs at the LV Level
	Method 2: Monitoring for Stale PPs at the PV Level
	Method 3: VG, LV, and PV Monitoring with a resync

	Other Options to Consider
	SSA Disks
	Log Files
	Automated Execution
	Event Notification

	Summary

	CHAPTER 12 Automated Hosts Pinging with Notification
	Syntax
	Creating the Shell Script
	Define the Variables
	Creating a Trap
	The Whole Shell Script

	Other Options to Consider
	$ PINGLIST Variable Length Limit Problem
	Ping the / etc/ hosts File Instead of a List File
	Logging
	Notification of ¡° Unknown Host¡±
	Notification Method
	Automated Execution Using a Cron Table Entry

	Summary

	CHAPTER 13 Taking a System Snapshot
	Syntax
	Creating the Shell Script
	Other Options to Consider
	Summary

	CHAPTER 14 Compiling, Installing, Configuring, and Using sudo
	The Need for sudo
	Downloading and Compiling sudo
	Compiling sudo
	Configuring sudo
	Using sudo
	Using sudo in a Shell Script
	The sudo Log File
	Summary

	CHAPTER 15 hgrep: Highlighted grep Script
	Reverse Video Control
	Building the hgrep. ksh Shell Script
	Other Options to Consider
	Other Options for the tput Command

	Summary

	CHAPTER 16 Print Queue Hell: Keeping the Printers Printing
	System V versus BSD Printer Subsystems
	AIX Print Control Commands
	HP- UX Print Control Commands
	Linux Print Control Commands
	Solaris Print Control Commands

	Putting It All Together
	Other Options to Consider
	Logging
	Exceptions Capability
	Maintenance
	Scheduling

	Summary

	CHAPTER 17 Automated FTP Stuff
	Syntax
	Automating File Transfers and
	Remote Directory Listings
	Using FTP for Directory Listings on a Remote Machine
	Getting One or More Files from a Remote System
	Putting One or More Files to a Remote System
	Replacing Hard- Coded Passwords with Variables
	Modifying Our FTP Scripts to Use Password Variables

	Other Things to Consider
	Use Command- Line Switches to Control Execution
	Keep a Log of Activity
	Add a Debug Mode to the Scripts

	Summary

	CHAPTER 18 Finding "Large" Files
	Syntax
	Creating the Script
	Other Options to Consider
	Summary

	CHAPTER 19 Monitoring and Auditing User Key Strokes
	Syntax
	Scripting the Solution
	Logging User Activity
	Starting the Monitoring Session
	Where Is the Repository?
	The Scripts
	Logging root Activity
	Monitoring Other Administration Users

	Other Options to Consider
	Emailing the Audit Logs
	Compression
	Need Better Security?
	Inform the Users
	Sudoers File

	Summary

	CHAPTER 20 Turning On/Off SSA Identification Lights
	Syntax
	Translating an hdisk to a pdisk
	Identifying an SSA Disk

	The Scripting Process
	Usage and User Feedback Functions
	Control Functions
	The Full Shell Script

	Other Things to Consider
	Error Log
	Cross- Reference
	Root Access and sudo

	Summary

	CHAPTER 21 Pseudo-Random Number Generation
	What Makes a Random Number?
	The Methods
	Method 1: Creating Numbers between 0 and 32,767
	Method 2: Creating Numbers between 1 and a User-Defined Maximum
	Method 3: Fixed- Length Numbers between
	Method 3: Fixed-Length Numbers between 1 and a User-Defined Maximum

	Shell Script to Create Pseudo- Random Numbers
	Creating Unique Filenames
	Summary

	CHAPTER 22 Floating-Point Math and the bc Utility
	Syntax
	Creating Some Shell Scripts Using bc
	Creating the float_ add. ksh Shell Script
	Testing for Integers and Floating- Point Numbers
	Building a Math Statement for the bc Command
	Using a Here Document
	Creating the float_ subtract. ksh Shell Script
	Using getopts to Parse the Command Line
	Building a Math Statement String for bc
	Here Document and Presenting the Result
	Creating the float_ multiply. ksh Shell Script
	Parsing the Command Line for Valid Numbers
	Creating the float_ divide. ksh Shell Script
	Creating the float_ average. ksh Shell Script

	Other Options to Consider
	Remove the Scale from Some of the Shell Scripts
	Create More Functions

	Summary

	CHAPTER 23 Scripts for Number Base Conversions
	Syntax
	Example 23.1: Converting from Base 10 to Base 16
	Example 23.2: Converting from Base 8 to Base 16
	Example 23.3 Converting Base 10 to Octal
	Example 23.4 Converting Base 10 to Hexadecimal

	Scripting the Solution
	Base 2 (Binary) to Base 16 (Hexadecimal) Shell Script
	Base 10 (Decimal) to Base 16 (Hexadecimal) Shell Script
	Script to Create a Software Key Based on the
	Hexadecimal Representation of an IP Address
	Script to Translate between Any Number Base
	Using getopts to Parse the Command Line
	Continuing with the Script
	Beginning of Main

	Other Options to Consider
	Software Key Shell Script

	Summary

	CHAPTER 24 Menu Program Suitable for Operations Staff
	Reverse Video Syntax
	Creating the Menu
	From the Top

	Other Options to Consider
	Shelling Out to the Command Line
	Good Candidate for Using sudo

	Summary

	CHAPTER 25 Sending Pop-Up Messages from Unix to Windows
	About Samba and the smbclient Command
	Syntax
	Building the broadcast. ksh Shell Script
	Sending a Message to All Users
	Adding Groups to the Basic Code
	Adding the Ability to Specify Destinations Individually
	Testing User Input
	Sending the Message
	Putting It All Together

	Downloading and Installing Samba
	Testing the smbclient Program the First Time

	Other Options to Consider
	Producing Error Notifications
	Add Logging of Unreachable Machines
	Create Two- Way Messaging

	Summary

	APPENDIX A What's on the Web Site
	Shell Scripts
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chaper 25

	Functions
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 25

	Index
	SYMBOLS
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

