
 APPENDIX A 
 
 EIGENVALUE PROBLEMS 
 
 
A.1 Summary of Matrices 
 

A column vector is indicated by 
 

f1 
f2 

f  =  . 
 . 
 . 
fN 

 
A matrix consisting of M rows and N columns is defined by 
 

A11 A12 . . .  A1N 
A21 A22 . . .  A2N 
A31 A32 . . .  A3N 

A  =  . 
 . 
 . 
AM1 AM2 . . .  AMN 

 
A is said to be an M x N matrix which is denoted by Aij. The vector f is considered as a 
M x 1 matrix. 
 

The product of a M x N matrix with a N x K matrix gives a M x K matrix.  It is obvious 
that matrix multiplication is not commutative, that is AB is not equal to BA.  When C = AB we 
have 
 

  Cik  =  Σ Aij Bjk . 
 
Matrix products are associative so that A(BC) = (AB)C. 
 

On the basis of the rule of matrix multiplication, the product of a row vector (1 x N) 
and a column vector (N x 1) gives a (1 x 1) matrix, or the scalar product 
 

  ft f  =  f1f1 + f2f2 + ... + fNfN. 
 
But the product of a column vector (N x 1) and a row vector (1 x N) gives a (N x N) matrix, or 
a vector product 
 

f1f1   f1f2 ...   f1fN 
            f2f1   f2f2 ...   f2fN 
f ft  =   

 . 
 . 
fNf1   fNf2 ...   fNfN 
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To summarize these few properties of matrix multiplication: (a) matrix multiplication 
is not commutative, (b) the ji element of AB is the sum of products of elements from the jth 
row of A and ith column of B, and (c) the number of columns in A must equal the number of 
rows in B if the product AB is to make sense. 
 

There are several matrices that are related to A.  They are: 
 

(a) At which is the transpose of A so that [At]ij = [A]ji, 
 

(b) A* which is the complex conjugate of A so that  
 

[A*]ij = [A]*ij, 
 

(c) A+ which is the adjoint of A so that [A+]ij = [A]*ji, and 
 

(d) A-1 which is the inverse of A so that A-1A = AA-1 = I,  
where I denotes the identity matrix. 

 
A few definitions follow: 
 

(a) A is real if A* = A, 
 

(b) A is symmetric if At = A, 
 

(c) A is antisymmetric if At = -A, 
 

(d) A is Hermitian if A+ = A, 
 

(e) A is orthogonal if A-1 = At, and 
 

(f) A is unitary if A-1 = A+. 
 
 
A.2 Eigenvalue Problems 
 

To understand some of the techniques for solving the radiative transfer equation it is 
necessary to review solutions to eigenvalue problems.  When a operator A acts on a vector 
x, the resulting vector Ax is in general distinct from x.  However there may exist certain non-
zero vectors for which Ax is just a multiple of x. That is 
 

  A x  =  λ x  
 
 
or written out explicitly 
 
 

  Σ Aij xj  =  λ xi    I=1,...,n  . 
 
Such a vector is called an eigenvector of the operator A, and the constant λ is called an 
eigenvalue.  The eigenvector is said to belong to the eigenvalue.  Consider an example 
where the operator A is given by 
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  1   2   3   x1 

 
  4   5   6   =  A   ; x2 = x . 

 
  7   8   9   x3 

 
 
So we are trying to solve 
 
 

  x1 + 2x2 + 3x3 = λx1 
 

  4x1 + 5x2 + 6x3 = λx2 
 

  7x1  + 8x2 + 9x3 = λx3 
 
 
For a nontrivial solution the determinant of coefficients must vanish 
 

  1-λ   2  3 
 

   4  5-λ  6  = 0    
 

   7   8 9-λ 
 
This produces a third order polynomial in λ whose three roots are the eigenvalues λi. 
 

There are several characteristics of the operator A that determine the character of 
the eigenvalue.  Briefly summarized they are (a) if A is hermitian, then the eigenvalues are 
real and the eigenvectors are orthogonal (eigenvectors of identical or degenerate 
eigenvalues can be made orthogonal through the Gram Schmidt process) and (b) if A is a 
linear operator, then the eigenvalues and eigenvectors are independent of the coordinate 
system.  A proof of (b) is quickly apparent. 
 

A x  =  λ x 
 
Let Q represent an arbitrary coordinate transformation, then 
 

  γ-1 A x  =  λ γ-1 x 
 

  γ-1 A γ γ-1 x  =  λ γ-1 x 
 

  A' x'  =  λ x' . 
 
 
Thus if x is an eigenvector of the linear operator A, its transform 
 
 

  x'  =  γ-1 x 
 
is an eigenvector of the transformed matrix 
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  A'  =  γ-1 A γ, 
 
and the eigenvalues are the same. 
 

It is often desirable to make a transformation to a coordinate system in which A' is a 
diagonal matrix and the diagonal elements are the eigenvalues.  The desired transformation 
matrix consists of the eigenvectors of the original matrix A. 
 
 

  e1 e2 en    
   γ  = 

  ↓ ↓ ↓ 
 
where the jth col consists of components of eigenvector ej. For the transformation to be 
unitary, the eigenvectors must be orthonormal (orthogonal and normalized). 
 
 
A.3 CO2 Vibration Example 
 

Consider the problem of molecular vibrations in CO2, which is shown schematically 
as a simple linear triatomic molecule system consisting of three masses connected by 
springs of spring constant k.  Let xi represent deviations from the equilibrium position.   
 

  x1  x2  x3 
 
  m  M  m 
 
  O  C   O 

 
The kinetic energy of this system can be written 

 
    1         1     

  T    =            Σ mivi
2  =           vt  M  v 

    2    i        2 
 
where v represents dx/dt.  The potential energy is given by 
 

  1        1 
  P  =          Σ  Pijxixj  =          xt  P  x 

  2    ij         2 
 
where 
 

      ∂P              1        ∂2P 
   P  = Po +  Σ  (        )o  xi +            Σ  (               )o xi xj 

                     i    ∂xi     2 ij    ∂xi ∂xj 
 
and without loss of generality let Po = 0 and use the fact that  ∂P/∂x = 0 at equilibrium.  Then 
Lagrange's equation: 
 

    d ∂T  ∂P 
                       +            
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    dt ∂v  ∂x 
with 

  1     1 
  T  =         mv2  and  P  =           kx2,  

  2     2 
 
becomes 

   mv  =  - kx . 
 
This suggests a solution of the form xi = ai sin (ωit + δi), so that 
 

  Σ  Pij  aj - ω2 Tij aj  =  0  . 
  j 

Now the potential energy is written 
 

  1       1 
   P  =         k (x2 - x1)2 +         k (x3 - x2)2 

  2       2 
 

   1 
   =          k (x1

2 + 2x2
2 + x3

2 - 2x1x2 - 2x2x3) , 
   2 

so the matrix operator is, 
 

   k  -k    0 
 

   P  = -k  2k   -k      
 

   0  -k    k 
 
which is real and symmetric.  And the kinetic energy is written 
 

  1     1              
   T =      m (x1

2 + x3
2)   +         Mx2

2 ,   
  2     2            

 
so the matrix operator is 
 

  m o o 
 

   T  =  o M o 
 

  o o m 
 
 
which is diagonal.  So, we find | P - ω2T | = 0 implies 
 
 

  k-ω2m -k     o 
 

   det A   =  [   -k        2k-ω2M  -k    ]   = 0 
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     o  -k            k-ω2m 
 
 
and direct evaluation of the determinant leads to the cubic equation  
 
 

   ω2(k-ω2m)(kM + 2km - ω2Mm)  =  0  . 
 
 
This yields the three roots 

                    
    ω1  =  0 ,  ω2  = [k/m]1/2 ,  ω3  =  [(k/m)(1+2m/M)] 1/2.  

 
Now solve for the eigenvectors.  For ω1 = 0 
 

   k -k  0  a11 
 

  -k 2k -k  a12 = 0   => a11 = a12 = a13 
 

   0 -k  k  a13                  
 
 
which represents a translation since the centre of mass doesn't move  mx1 + Mx2 + mx3 = 0. 
 
For ω2 = [k/m]1/2  
 

    0   -k  0  a21                
 

   -k 2k-kM/m    -k  a22     = 0 =>  a22 = 0, a21 = -a23 
 

    0   -k    0  a23 
 
 
which represents a vibration in the breathing mode with the carbon molecule stationary and 
the oxygen molecules moving in opposite directions. 
For ω3 = [(k/m)(1+2m/M)]½  
 

    -2mk/M    -k 0  a31   
 

   -k      -kM/m    -k  a32       = 0  => a31 =  a33 , a32 = -(2m/M)a31 
 

    0       -k     -2mk/M    a33   
 
which represents the carbon molecule motion offset by the combined motion of the oxygen 
molecules. 
 

Recalling that the mass of the proton is given by  mp = 1.67x10-27 Kg, that the spring 
constant for the CO2 is roughly k ~ 1.4x103 J/m2 (from the second derivative of the potential 
curves), and that m = 16mp while M = 12mp, then 
 

  1.4x103    32 
ω3 = [                                      (1     +           ) ]½ = [.192 x 1030]2  = .438 x1015 , 

    16x1.67x10-27   12 
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and 
 

2πc  2π 3x108 
λ   =                =                             ~  4.3 x 10-6 m  =   4.3 µm 

 ω  .438x1015 
 
 
This simple one dimensional model of the CO2 molecular motions yields the absorption 
wavelength of 4.3 micron observed in the spectra. Considering two dimensional vibrations 
yields the solution at 15 micron. 
 
 


