APPENDIX A

EIGENVALUE PROBLEMS

A. 1 Summary of Matrices

A column vector is indicated by

$f=$| f_{1} |
| :---: |
| f_{2} |
| \cdot |
| \dot{C} |
| f_{N} |

A matrix consisting of M rows and N columns is defined by

$$
\begin{array}{lllll}
& \mathrm{A}_{11} & \mathrm{~A}_{12} & \ldots & \mathrm{~A}_{1 \mathrm{~N}} \\
& \mathrm{~A}_{21} & \mathrm{~A}_{22} & \ldots & \mathrm{~A}_{2 \mathrm{~N}} \\
\mathrm{~A}_{31} & \mathrm{~A}_{32} & \ldots & \mathrm{~A}_{3 \mathrm{~N}}
\end{array}
$$

$$
\begin{array}{llll}
A_{M 1} & A_{M 2} & \ldots & A_{M N}
\end{array}
$$

A is said to be an $M \times N$ matrix which is denoted by $A_{i j}$. The vector f is considered as a $\mathrm{M} \times 1$ matrix.

The product of a $\mathrm{M} \times \mathrm{N}$ matrix with a $\mathrm{N} \times \mathrm{K}$ matrix gives a $\mathrm{M} \times \mathrm{K}$ matrix. It is obvious that matrix multiplication is not commutative, that is $A B$ is not equal to $B A$. When $C=A B$ we have

$$
C_{i k}=\Sigma A_{i j} B_{j k} .
$$

Matrix products are associative so that $A(B C)=(A B) C$.
On the basis of the rule of matrix multiplication, the product of a row vector ($1 \times \mathrm{N}$) and a column vector ($\mathrm{N} \times 1$) gives a (1×1) matrix, or the scalar product

$$
f^{\mathrm{t}} \mathrm{f}=\mathrm{f}_{1} \mathrm{f}_{1}+\mathrm{f}_{2} \mathrm{f}_{2}+\ldots+\mathrm{f}_{\mathrm{N}} \mathrm{f}_{\mathrm{N}} .
$$

But the product of a column vector $(N \times 1)$ and a row vector $(1 \times N)$ gives a $(N \times N)$ matrix, or a vector product

$$
f f^{t}=\quad \begin{array}{cccc}
f_{1} f_{1} & f_{1} f_{2} & \ldots & f_{1} f_{N} \\
f_{2} f_{1} & f_{2} f_{2} & \cdots & f_{2} f_{N} \\
& & & \\
\\
& & & \\
f_{N} f_{1} & f_{N} f_{2} & \ldots & f_{N} f_{N}
\end{array}
$$

To summarize these few properties of matrix multiplication: (a) matrix multiplication is not commutative, (b) the ji element of AB is the sum of products of elements from the jth row of A and ith column of B, and (c) the number of columns in A must equal the number of rows in B if the product $A B$ is to make sense.

There are several matrices that are related to A. They are:
(a) A^{t} which is the transpose of A so that $\left[A^{t}\right]_{\mathrm{ij}}=[A]_{\mathrm{j}}$,
(b) A^{*} which is the complex conjugate of A so that

$$
\left[A^{*}\right]_{\mathrm{ij}}=[A]^{*}{ }_{\mathrm{ij}},
$$

(c) A^{+}which is the adjoint of A so that $\left[A^{+}\right]_{\mathrm{ij}}=[A]^{*} \mathrm{j}$, and
(d) A^{-1} which is the inverse of A so that $A^{-1} A=A A^{-1}=I$, where I denotes the identity matrix.

A few definitions follow:
(a)A is real if $A^{*}=A$,
(b) A is symmetric if $A^{t}=A$,
(c) A is antisymmetric if $A^{t}=-A$,
(d) A is Hermitian if $\mathrm{A}^{+}=\mathrm{A}$,
(e) A is orthogonal if $A^{-1}=A^{t}$, and
(f) A is unitary if $A^{-1}=A^{+}$.

A. 2 Eigenvalue Problems

To understand some of the techniques for solving the radiative transfer equation it is necessary to review solutions to eigenvalue problems. When a operator A acts on a vector x, the resulting vector $A x$ is in general distinct from x. However there may exist certain nonzero vectors for which $A x$ is just a multiple of x. That is

$$
A x=\lambda x
$$

or written out explicitly

$$
\Sigma A_{i j} x_{j}=\lambda x_{i} \quad l=1, \ldots, n .
$$

Such a vector is called an eigenvector of the operator A, and the constant λ is called an eigenvalue. The eigenvector is said to belong to the eigenvalue. Consider an example where the operator A is given by

1	2	3			
4	5	6			
7	8	9	$=A ;$		x_{1}
:---					
$x_{2}=x$.					

So we are trying to solve

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=\lambda x_{1} \\
& 4 x_{1}+5 x_{2}+6 x_{3}=\lambda x_{2} \\
& 7 x_{1}+8 x_{2}+9 x_{3}=\lambda x_{3}
\end{aligned}
$$

For a nontrivial solution the determinant of coefficients must vanish

$1-\lambda$	2	3
4	$5-\lambda$	6
7	8	$9-\lambda$

This produces a third order polynomial in λ whose three roots are the eigenvalues λ_{i}.
There are several characteristics of the operator A that determine the character of the eigenvalue. Briefly summarized they are (a) if A is hermitian, then the eigenvalues are real and the eigenvectors are orthogonal (eigenvectors of identical or degenerate eigenvalues can be made orthogonal through the Gram Schmidt process) and (b) if A is a linear operator, then the eigenvalues and eigenvectors are independent of the coordinate system. A proof of (b) is quickly apparent.

$$
A x=\lambda x
$$

Let Q represent an arbitrary coordinate transformation, then

$$
\begin{aligned}
& y^{-1} A x=\lambda y^{-1} x \\
& Y^{-1} A y y^{-1} x=\lambda y^{-1} x \\
& A^{\prime} x^{\prime}=\lambda x^{\prime} .
\end{aligned}
$$

Thus if x is an eigenvector of the linear operator A , its transform

$$
x^{\prime}=y^{-1} x
$$

is an eigenvector of the transformed matrix

$$
A^{\prime}=\gamma^{-1} A \gamma
$$

and the eigenvalues are the same.
It is often desirable to make a transformation to a coordinate system in which A^{\prime} is a diagonal matrix and the diagonal elements are the eigenvalues. The desired transformation matrix consists of the eigenvectors of the original matrix A.

where the $\mathrm{j}^{\text {th }}$ col consists of components of eigenvector e_{j}. For the transformation to be unitary, the eigenvectors must be orthonormal (orthogonal and normalized).

A. $3 \quad \mathrm{CO}_{2}$ Vibration Example

Consider the problem of molecular vibrations in CO_{2}, which is shown schematically as a simple linear triatomic molecule system consisting of three masses connected by springs of spring constant k . Let x_{i} represent deviations from the equilibrium position.

x_{1}	x_{2}	x_{3}
m	M	m
O	C	O

The kinetic energy of this system can be written

$$
T=\frac{1}{2} \sum_{i} m_{i} v_{i}^{2}=\frac{1}{2} v^{t} M v
$$

where v represents $d x / d t$. The potential energy is given by

$$
P=\frac{1}{2} \sum_{i j} P_{i j} x_{i} x_{j}=\frac{1}{2} x^{t} P x
$$

where

$$
P=P_{o}+\sum_{i}\left(\frac{\partial P}{\partial x_{i}}\right)_{0} x_{i}+\frac{1}{2} \sum_{i j}\left(\frac{\partial^{2} P}{\partial x_{i} \partial x_{j}}\right)_{0} x_{i} x_{j}
$$

and without loss of generality let $\mathrm{P}_{\mathrm{o}}=0$ and use the fact that $\partial \mathrm{P} / \partial \mathrm{x}=0$ at equilibrium. Then Lagrange's equation:

$$
\mathrm{dt} \quad \partial \mathrm{v} \quad \partial \mathrm{x}
$$

with

$$
T=\frac{1}{2} m v^{2} \text { and } P=\frac{1}{2} k x^{2}
$$

becomes

$$
m v=-k x
$$

This suggests a solution of the form $x_{i}=a_{i} \sin \left(\omega_{i} t+\delta_{i}\right)$, so that

$$
\sum_{j} P_{i j} a_{j}-\omega^{2} T_{i j} a_{j}=0 .
$$

Now the potential energy is written

$$
\begin{aligned}
P & =\frac{1}{2} k\left(x_{2}-x_{1}\right)^{2}+\frac{1}{2} k\left(x_{3}-x_{2}\right)^{2} \\
& =\frac{1}{2} k\left(x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}\right),
\end{aligned}
$$

so the matrix operator is,

$$
\begin{array}{ccc}
k & -k & 0 \\
-k & 2 k & -k \\
0 & -k & k
\end{array}
$$

which is real and symmetric. And the kinetic energy is written

$$
\mathrm{T}=\frac{1}{2} \mathrm{~m}\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{3}^{2}\right)+\frac{1}{2} \mathrm{Mx}_{2}^{2}
$$

so the matrix operator is

$$
\mathrm{T}=\begin{array}{ccc}
\mathrm{m} & 0 & 0 \\
0 & M & 0 \\
0 & 0 & m
\end{array}
$$

which is diagonal. So, we find $\left|P-\omega^{2} T\right|=0$ implies

$$
\begin{array}{ccc}
k-\omega^{2} m & -k & 0 \\
\operatorname{det} A=\left[\begin{array}{ccc}
& -k & 2 k-\omega^{2} M
\end{array}\right. & -k &]=0
\end{array}
$$

$$
\begin{array}{lll}
0 & -k & k-\omega^{2} m
\end{array}
$$

and direct evaluation of the determinant leads to the cubic equation

$$
\omega^{2}\left(\mathrm{k}-\omega^{2} \mathrm{~m}\right)\left(\mathrm{kM}+2 \mathrm{~km}-\omega^{2} \mathrm{Mm}\right)=0
$$

This yields the three roots

$$
\omega_{1}=0, \omega_{2}=[k / m]^{1 / 2}, \omega_{3}=[(k / m)(1+2 \mathrm{~m} / \mathrm{M})]^{1 / 2}
$$

Now solve for the eigenvectors. For $\omega_{1}=0$

k	$-k$	0	a_{11}
$-k$	$2 k$	$-k$	a_{12}
0	$-k$	k	a_{13}

which represents a translation since the centre of mass doesn't move $m x_{1}+M x_{2}+m x_{3}=0$.
For $\omega_{2}=[\mathrm{k} / \mathrm{m}]^{1 / 2}$

0	$-k$	0	a_{21}
$-k$	$2 k-k M / m$	$-k$	a_{22}
0	$-k$	0	a_{23}

which represents a vibration in the breathing mode with the carbon molecule stationary and the oxygen molecules moving in opposite directions.
For $\omega_{3}=[(k / m)(1+2 m / M)]^{1 / 2}$

```
\(-2 m k / M \quad-k \quad 0 \quad a_{31}\)
\(-k \quad-k M / m \quad-k \quad a_{32} \quad=0=>a_{31}=a_{33}, a_{32}=-(2 m / M) a_{31}\)
\(0 \quad-k \quad-2 m k / M \quad a_{33}\)
```

which represents the carbon molecule motion offset by the combined motion of the oxygen molecules.

Recalling that the mass of the proton is given by $m_{p}=1.67 \times 10^{-27} \mathrm{Kg}$, that the spring constant for the CO_{2} is roughly $\mathrm{k} \sim 1.4 \times 10^{3} \mathrm{~J} / \mathrm{m} 2$ (from the second derivative of the potential curves), and that $m=16 m_{p}$ while $M=12 m_{p}$, then

$$
\omega_{3}=\left[\frac{1.4 \times 10^{3}}{16 \times 1.67 \times 10^{-27}}\left(1+\frac{32}{12}\right)\right]^{1 / 2}=\left[.192 \times 10^{30}\right]^{2}=.438 \times 10^{15}
$$

and

$$
\lambda=\frac{2 \pi c}{\omega}=\frac{2 \pi 3 \times 10^{8}}{.438 \times 10^{15}} \sim 4.3 \times 10^{-6} \mathrm{~m}=4.3 \mu \mathrm{~m}
$$

This simple one dimensional model of the CO_{2} molecular motions yields the absorption wavelength of 4.3 micron observed in the spectra. Considering two dimensional vibrations yields the solution at 15 micron.

