
 CHAPTER 4 
 
 THE RADIATION BUDGET 
 
 
4.1 The Mean Global Energy Balance 
 

Figure 4.1 summarizes the annual mean global energy balance for the earth-atmosphere 
system and indicates some of the atmospheric processes that come into play.  Of the 100 units of 
incident solar radiation, 19 are absorbed during passage through the atmosphere: 16 in cloud-free 
air and three in clouds.  A total of 30 units are reflected back to space: 20 from clouds, six from 
cloud-free air, and four from the earth’s surface.  The remaining 51 units are absorbed at the earth’s 
surface.  The earth disposes of this energy by a combination of infrared radiation and sensible and 
latent heat flux.  The net infrared emission, which represents the upward emission from the earth’s 
surface, minus the downward emission from the atmosphere, amounts to 21 units, 15 of which are 
absorbed in passing through the atmosphere and six of which reach space.  The remaining 30 units 
are transferred from the earth’s surface to the atmosphere by a combination of latent and sensible 
heat flux. 
 

From the viewpoint of the atmosphere alone, there is a net loss of 49 units of infrared 
radiation (70 units emitted to space from the top of the atmosphere minus 21 units of net upward 
flux from the earth’s surface) which exceeds by 30 units, the energy gained as a result of the 
absorption of solar radiation.  This deficit is balanced by an influx of 30 units of latent and sensible 
heat from the earth’s surface.  Thus, in the global average, the atmosphere experiences a net 
radiative cooling which is balanced by the latent heat of condensation that is released in regions of 
precipitation, and by the conduction of sensible heat from the underlying surface.  Were it not for 
the fluxes of latent and sensible heat, the earth’s surface would have to be considerably hotter (on 
the order of 340 K as compared with the observed value of 288 K) in order to emit enough infrared 
radiation to satisfy the balance requirements for thermal equilibrium. 
 
 
4.2 The First Satellite Experiment to Measure the Net Radiation 
 

The radiation budget of net radiation, N, of the entire earth-atmosphere system is the 
difference between the absorbed solar radiation and the outgoing longwave radiation; therefore, 
 
 N = (1 - A) S/4 - RLW 
 
where A is the fraction of incoming solar energy reflected back to space (the planetary albedo), S is 
the incoming solar irradiance and RLW is the outgoing longwave irradiance.  The radiation budget 
equation can be written for a specific location of the earth at a given instant of time by replacing the 
planetary mean incoming solar radiation term ( S/4 ) with the term S cos φ, where φ is the solar 
zenith angle at the location and time of interest.  In this case, A is no longer the planetary albedo, 
but instead the bi-directional reflectance of the earth-atmosphere for that specific location and time. 
 

The first meteorological satellite experiment flew prior to TIROS-I on the Explorer VII 
satellite in 1959.  The experiment was devised by Suomi and Parent to provide this most basic 
meteorological measurement, the balance between the radiation input to the atmosphere from the 
sun and the radiation exiting from the atmosphere as a result of reflection and emission processes. 
 The spatial distribution of the radiation imbalances between incoming and outgoing radiation (the 
net radiation) is the primary driving force of atmospheric circulation.  The solar input had already 
been measured from ground-based and balloon borne platforms.  Suomi’s experiment was the first 
to measure the energy loss to space. 
 

Suomi’s radiometer consisted of two heat sensing detectors, one painted black to absorb 
radiation at all wavelengths, and the other painted white to reflect the shortwave sun’s energy and 
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thereby absorbed only earth emitted radiation.  Thus, Suomi was able to differentiate between the 
energy leaving the earth’s atmosphere due to reflected sunlight (provided by the difference between 
the radiation sensed by the black and white sensors) and that emitted by the earth and atmosphere 
(the radiation measured by the white sensor). 
 

In a short time after exposure to various radiative components involving the direct solar 
flux, solar flux reflected by the earth and atmosphere (shortwave), and thermal infrared flux emitted 
by the earth and atmosphere (longwave), each sensor achieves radiative equilibrium.  It is assumed 
that the absorptivity of the black sensor ab is the same for shortwave and longwave radiation.  
However, the absorptivity of the white sensor for shortwave and longwave radiation are given by aw

S 
and aw

L, respectively.  Let the temperatures measured by the black sensors and white sensors be 
Tb and Tw, respectively.  On the basis of the Stefan-Boltzmann and Kirchhoff laws, radiative 
equilibrium equations for both sensors may be expressed by 
 
 4πr2 ab σTb

4 = πr2 ab (Eo +ES + EIR) 
and 
 4πr2 aw

L σTw
4 = πr2 [aw

S (Eo + Es) + aw
L EIR] . 

 
These two equations show that the emitted energy per unit time is equal to the absorbed 

energy per unit time, where 4πr2 and πr2 represent the emission and absorption areas, respectively, 
for the two spherical sensors each with a radius r.  The irradiances of the reflected shortwave, 
longwave radiation, and direct solar are denoted by ES, EIR, and EO, respectively. 
 

Upon solving the sum of the shortwave and the longwave irradiances, we obtain 
 
 Eo + ES = [4 σ aw

L / (aw
L - aw

S) ] (Tb
4 - Tw

4) 
and 
 EIR = [4 σ /( aw

L - aw
S) ] (aw

L Tw
4 - aw

S Tb
4) 

 
The direct solar irradiance EO can be evaluated from the solar constant, which is specified prior to 
the experiment. 
 

In order to convert the measured irradiances into radiances emitted and reflected by the 
earth, one must consider the solid angle Ω which the earth subtends to the satellite sensor.  For a 
satellite at height h above the earth surface, it can be shown from simple geometric considerations 
that 
 
 Ω = 2π [ 1 - (2Rh + h2)½ / (R + h) ], 
 
where R represents the radius of the earth.  Then the radiance I is given by 
 
 I = E/Ω , 
 
since the spherical sensor is equally sensitive to radiation from all directions, eliminating the cosine 
dependence with respect to angle of incidence. 
 
 
4.3 The Radiation Budget 
 

The circulation of the earth’s atmosphere and oceans can be thought of as being powered 
by a heat engine.  The shortwave radiation from the sun provides the fuel supply while the infrared 
radiation heat loss to space from the earth’s surface and atmosphere is the exhaust.  The engine is 
throttled, to a large extent, by storms and ocean disturbances associated with the transformation of 
radiative heat to latent and sensible heat. 

 



 
 

4-3 

The distribution of sunlight with latitude is responsible for our major climatic zones 
(Tropical, Temperate and Polar).  The composition of the atmosphere and the characteristics of the 
earth’s surface also play an important role in the climate of local regions such as deserts.  Small 
changes in the sun’s radiation or the terrestrial radiation due to natural or man induced changes in 
atmosphere and surface composition might lead to major variations in our climate. 
 

The net radiation for the earth may vary through the year in accordance with earth-sun 
distance since S varies 6% between January and July.  However, when integrated over an entire 
year, the net radiation must be near zero, otherwise long-term climatic changes would occur.  On 
the planetary and regional scales, clouds play the major role in upsetting the normal state of 
radiation balance.  The importance of clouds in the radiation balance is demonstrated in Figure 4.2. 
 It shows the relation between the longwave radiation to space as a function of cloud amount and 
height for a standard atmospheric temperature and moisture condition.  Also shown is the absorbed 
solar radiation as a function of cloud amount.  The longwave radiation to space decreases with 
increasing cloud cover and cloud height because cloud temperatures are considerably lower than 
the earth’s surface and they decrease with cloud elevation.  However, clouds are also good 
reflectors of solar radiation and consequently the global albedo increases the absorbed solar 
energy decreases with increasing cloud cover since clouds generally have higher albedos than the 
earth’s surface. 
 

Figure 4.3a displays the globally averaged monthly mean values of various radiation 
budget parameters from July 1975 through December 1976.  The annual cycles seem to repeat, as 
the values observed during July 1976 through December 1976 are nearly the same as those 
observed one year earlier.  The albedo and longwave radiation cycles are nearly 180 degrees (six 
months) out of phase, possibly the result of two phenomena.  The variation of the longwave 
radiation with time is the first consideration.  In the Northern Hemisphere, the heating and cooling 
rates correspond to that expected for land surfaces, so outgoing longwave radiation reaches a 
maximum in July and a minimum in December.  In the Southern Hemisphere, it is dominated by sea 
surfaces, so only a weak cycle is observed because the seasonal variation of sea-surface 
temperature is negligible.  Therefore, the variation of the globally averaged longwave radiation with 
time is dominated by the Northern Hemisphere. During the months when the longwave radiation is 
at a minimum, the snow and ice cover and thus albedo in the Northern Hemisphere are close to a 
maximum.  When the longwave radiation is at a maximum, the snow and ice cover are greatly 
reduced.  A second consideration of equal importance is the annual cycle of cloudiness.  There 
tends to be more cloudiness in the Northern Hemisphere winter than in the Southern Hemisphere 
winter.  This tends to increase the albedo and decrease the longwave radiation.  The opposite 
effect occurs around June when the cloudiness is least.  It is uncertain at this time which of the two 
effects discussed above is the dominant cause of the variations of the longwave radiation and 
albedo. 
 

As shown in Figure 4.3b, the variation with time in the absorbed solar radiation (incoming 
minus reflected solar radiation) appears to be principally dependent upon the variation of the 
incoming solar radiation.  The annual variation of the incoming solar radiation about its mean value 
is ±11.4 W m-2, while the variation of the net energy about its mean value is only about ±7.6 W m-2, 
both nearly in phase with each other.  If the earth were in a perfectly circular orbit around the sun so 
that there were no variations in the incoming radiation due to variations in the earth-sun distance, 
then the variation in absorbed solar radiation would be dominated by variation in the reflected 
energy.  This would cause the phase of the absorbed solar radiation to be shifted about 180 
degrees from that observed.  Minima and maxima of the absorbed solar radiation correspond to 
maxima and minima, respectively, of the reflected radiation.  Since the net radiation is the 
difference of the absorbed solar radiation and the outgoing longwave radiation, which are nearly 
180 degrees out of phase with each other, the variation in the net radiation has an amplitude 
exceeding that of the absorbed and outgoing components and nearly the same phase as the 
absorbed solar radiation. 
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4.4 Distribution of Solar Energy Intercepted by the Earth 
 

The solar irradiance at the top of the atmosphere depends strongly on the zenith angle of 
the sun and much less strongly on the variable distance of the earth from the sun.  If the zenith 
angle, θ, is assumed to be constant over the solid angle subtended by the sun, the irradiance on a 
horizontal surface varies as cos θ.  The zenith angle depends on latitude, time of day, and the tilt of 
the earth’s axis to the rays of the sun (celestial longitude).  The mean value of the earth-sun 
distance, Res

m, is about 1.495 x 1011 metres.  The minimum distance occurs on about 3 January 
during perihelion and is 1.47 x 1011 metres; the maximum distance occurs on about 5 July during 
aphelion and is 1.52 x 1011 metres. 
 

The total energy received per unit area per day, called insolation and denoted by QO, may 
be calculated by integrating over the daylight hours as follows: 
 

          sunset 
 Qo = S (Res

m / Res)2 ∫         cos θ dt 
          sunrise 

 
where S represents the mean solar irradiance. 
 

Figure 4.4 shows the results of evaluating QO for a variety of latitudes and dates.  The 
maximum insolation is shown to occur at summer solstice at either pole.  This is the result of the 24 
hour solar day.  The maximum in the Southern Hemisphere is higher than in the Northern 
Hemisphere because the earth is closer to the sun during the northern winter than during the 
northern summer. 
 
 
4.5 Solar Heating Rates 
 

Absorption of solar radiation by various gases results in heating in the atmosphere.  
Heating rate variation with atmospheric pressure is derived in a straightforward manner from net 
flux considerations.  Starting with a plane parallel absorbing and scattering atmosphere, let the 
differential thickness within the atmosphere be ∆z and the monochromatic downward and upward 
irradiances at wavelength λ be Eλ

↓ and Eλ
↑ respectively.  The net monochromatic irradiance 

(downward) at a given altitude is then given by 
 
 Eλ (z) = Eλ

↓ (z) - Eλ
↑ (z) . 

 
Because of absorption, the net monochromatic irradiance decreases from the upper levels to the 
lower levels.  The loss of net monochromatic irradiance or the divergence for the differential layer is 
given by 
 
 ∆ Eλ (z) = Eλ (z) - Eλ (z + ∆z) 
 
From the definition of absorption, we also have 
 
 ∆ Eλ (z) = -Eλ

↓ (z + ∆z) aλ (∆z) 
 
Energy conservation requires that the absorbed energy has to be used to heat the layer, so that 
 
 ∆ Eλ (z) = -ρ Cp ∆z dT / dt 
 
where ρ is the air density in the layer, Cp is the specific heat capacity at constant pressure, and t is 
the time.  Combining these expressions yields the heating rate 
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 dT/dt = Eλ

↓ (z + ∆z) aλ (∆z) / (ρ Cp ∆z) 
 
The heating rate is explicitly a function of the spectral interval; to derive a total heating rate it is 
necessary to sum the spectral intervals where the absorption coefficient is non zero. 
 

Figure 4.5 shows the solar heating rate profile up to 30 km using two different atmospheric 
profiles (mid latitude winter and tropical) for a clear atmosphere with the sun directly overhead.  
Effects of absorption by O3, H2O, O2, and CO2, multiple scattering by molecules, and the ground 
reflection are accounted for.  The maximum heating rate is seen to occur at 3 km and have a value 
as high as 4 degrees Centigrade per day.  The heating rate decreases drastically with increasing 
altitude due to the decrease of water vapour concentration and reaches a minimum at roughly 15 
km.  Above 20 km, the increased solar heating is caused by the absorption of ozone, which has a 
maximum concentration at about 25 km. 
 
 
4.6 Infrared Cooling Rates 
 

Emission (absorption) of infrared radiation by various gases produces a cooling (heating) 
effect in the atmosphere.  In the same way that solar heating is a function of the net transfer of 
radiation in the downward direction (as solar radiation enters from the top of the atmosphere), 
infrared cooling is a function of the net transfer of radiation in the upward direction (as thermal 
radiation can be thought of as originating from the earth surface).  An analogous derivation yields 
 
 dT/dt = - (∆ Eλ / ∆z) / (ρ Cp) 
 
where ∆Eλ represents the net loss of irradiance in the layer ∆z. 
 

A calculation of infrared cooling rates as a function of height in the clear tropical 
atmosphere is illustrated in Figure 4.6.  In the lower 2 km the most important band influencing the 
cooling is the water vapour continuum.  This is due to the rapid increase in the temperature and the 
partial pressure of water vapour as one gets closer to the surface.  Above 5 km the water vapour 
continuum contributes very little to the infrared cooling rate.  In the middle and upper troposphere, 
absorption is mostly in the water vapour rotational band.  A large increase in ozone concentration 
between 18 and 27 km results in a strong heating.  Above 30 km the cooling rate increases rapidly 
due to the CO2 15 µm and O3 9.6 µm bands. 
 
 
4.7 Radiative Equilibrium in a Gray Atmosphere 
 

The concept of a balanced atmosphere that transfers energy only through radiative 
transfer (no conduction or convection) is useful to derive some of the characteristics of the earth 
atmosphere.  Given a heated surface and a gray atmosphere in balance, one can write that the net 
irradiance at any level is constant, since 
 
 d/dz [E↑ - E↓] = ρ Cp dT/dt = 0 (1) 
 
The irradiance going up through a layer can be written 
 
 d/dχ* [E↑] = E↑ - πB (2) 
 
and similarly for the irradiance going down through a layer 
 
 -d/dχ* [E↓] = E↓ - πB (3) 
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where πB is given by Stefan’s Law and χ* is an effective optical depth integrated from the top of the 
atmosphere down over all angles in the hemisphere.  Adding equations (2) and (3) yields 
 
 d/dχ* [E↑ - E↓] = E↑ + E↓ - 2πB = 0 , (4) 
 
and subtracting (2) - (3) gives 
 
 d/dχ* [E↑ + E↓] = [E↑ - E↓] = ∆ = const. (5) 
 
or using (4) 
 πB = ∆ χ*/2 + πBo . (6) 
 
The boundary conditions are such that there is no downward irradiance at the top of the 
atmosphere 
 
     E↓ (top) = 0 , and 
 
 χ* (top) = 0 , 
 
and at the bottom of the atmosphere the upward irradiance must be dictated by Stefan’s Law 
applied to the surface temperature 
 
 E↑ (bot) = σ T (sfc)4 , and 
 
 χ* (top) =χ* (tot) 
 
where χ*(tot) is the effective optical depth of the total atmosphere.  Then we find that 
 
 πB = ∆ (χ*+1) / 2 and (7) 
 
 π [B (sfc) - B (bot)] = ∆/2 (8) 
 
The function πB is plotted against χ* in Figure 4.7.  At the surface there is a discontinuity in 
temperature, as dictated by Eq. (8).  Combining Eq. (7) and (8) 
 
 πB (sfc) = ∆ (χ* (tot) +2) /2  . (9) 
 
Or written more simply in terms of temperature 
 
 T (sfc)4 - T (top)4 = T (bot)4 (10) 
 
and 
 
 χ* (tot) = [T (sfc)4 / T (top)4] - 2  . (11) 
 
When the atmosphere effective optical depth is large, the surface temperature is enhanced, as 
expected by the greenhouse effect.  The optical depth of an atmosphere depends on the 
concentration of H2O, CO2, and O3.  In the case of H2O the concentration may increase with 
increasing temperature (through evaporation) and thus creating positive feedback for the 
greenhouse effect.  This effect is very noticeable on Venus, which exhibits “runaway greenhouse 
effect.” 
 

Figure 4.8 is the equivalent diagram in terms of temperature and height to Figure 4.7.  The 
lower part of the atmosphere shows a very steep lapse rate of temperature that is unstable with 
respect to vertical motion; in a more realistic atmosphere, convection would tend to establish a 
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mean adiabatic lapse rate.  Air from near the surface would tend to rise along the mean adiabatic 
lapse rate of -6 K / km and intersect with the radiative equilibrium curve at a height of about 10 km 
or near the tropopause.  In mid-latitudes the tropopause divides the troposphere where convection 
is dominant from the stratosphere where radiative transfer is dominant. 
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Figure 4.1: The annual mean global energy balance for the earth-atmosphere system.  (Numbers 
are given as percentages of the globally averaged solar irradiance incidence upon the top of the 
atmosphere.) 
 

 
 

Figure 4.2: Longwave radiation to space, R, and absorbed solar radiation, Q, as a function of 
cloud amount. 
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(a) 
 
 
 

 
(b) 
 
 
Figure 4.3: (a) Globally averaged monthly mean values of radiation budget parameters. 
(b) Variation in time with respect to an annual mean of net, incoming, and outgoing radiation. 
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Figure 4.4: Daily solar insolation in W/m2 incident on a horizontal surface at the top of the 
atmosphere as a function of latitude and date (adapted from Milankovitch, 1930). 
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Figure 4.5: Solar heating rate calculated from atmospheric profiles appropriate for tropical and 
mid latitude winter conditions (Liou, 1980). 

 
 
 

 
 

Figure 4.6:  Calculation of total and partial cooling rates with an atmospheric profile appropriate 
for clear tropical conditions (after Roewe and Liou, 1978). 
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Figure 4.7: Upward E↑ and downward E↓ irradiance and emitted radiance from a given layer πB 
(given by Stefan’s Law) plotted as a function of effective optical depth χ* in an atmosphere in 
radiative equilibrium. 
 
 
 
 
 

 
 
Figure 4.8: Radiative equilibrium temperature plotted versus altitude z.  The line c indicates an 
adiabatic lapse rate of -6 K / km originating from the surface temperature. 
 
 


