
  CHAPTER 5 
 
 THE RADIATIVE TRANSFER EQUATION (RTE) 
 
 
5.1 Derivation of RTE 
 

Radiative transfer serves as a mechanism for exchanging energy between the atmosphere 
and the underlying surface and between different layers of the atmosphere.  Infrared radiation 
emitted by the atmosphere and intercepted by satellite sensors is the basis for remote sensing of 
atmospheric temperature structure. 
 

The radiance leaving the earth-atmosphere system which can be sensed by a satellite 
borne radiometer is the sum of radiation emissions from the earth surface and each atmospheric 
level that are transmitted to the top of the atmosphere.  Considering the earth's surface to be a 
blackbody emitter (with an emissivity equal to unity), the upwelling radiance intensity Iλ for a 
cloudless atmosphere is given by the expression 
 
 Iλ   =   Bλ(T(ps)) τλ(ps) +  Σ ελ(∆p) Bλ(T(p)) τλ(p) 

p 
 
where the first term is the surface contribution and the second term is the atmospheric contribution 
to the radiance to space.  Using Kirchhoff's law, the emissivity of an infinitesimal layer of the 
atmosphere at pressure p is equal to the absorptance (one minus the transmittance of the layer).  
Consequently, 
 
                                           ελ(∆p) τλ(p)  =  [1 - τλ(∆p)] τλ(p) 
 
Since the transmittance is an exponential function of depth of the absorbing constituent, 
 

          p+∆p 
τλ(∆p) τλ(p) = exp [ -sec φ  ∫       kλ q g-1 dp] 

          p 

               p 
        * exp [-sec φ ∫    kλ q g-1 dp] 

          o 
 

   = τλ(p+∆p) 
 
Therefore 
 

ελ(∆p) τλ(p)  =  τλ(p) - τλ(p + ∆p)  =  - ∆τλ(p) . 
 
and 
 
 Iλ  =  Bλ(T(ps)) τλ(ps)  -  Σ  Bλ(T(p)) ∆τλ(p) . 

                                   p 
which written in integral form reads 
      o                  dτλ (p) 

Iλ  =  Bλ(T(ps)) τλ(ps) + ∫    Bλ(T(p))                      dp . 
      ps       dp 
 
The first term is the spectral radiance emitted by the surface and attenuated by the atmosphere, 
often called the boundary term and the second term is the spectral radiance emitted to space by the 
atmosphere. 
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Another approach to derivation of the RTE starts from Schwarzchild's equation written in 

pressure coordinates 
 
 dIλ  =  (Iλ - Bλ) kλ g-1 q sec φ dp . 
 
This is a first order linear differential equation, and a solution emerges when it is multiplied by an 
integrating factor 

p 
 τλ = exp [-sec φ ∫  g-1 q kλ dp] 

o 
which has the differential 
 dτλ  =  - τλ sec φ g-1 q kλ dp . 
 
Thus 
 τλ  dIλ  =  - (Iλ - Bλ) dτλ 
or 
 d(τλ  Iλ)  =  Bλ dτλ . 
 
Integrating from ps to 0,  
  

          o                  dτ  (p) λ
 Iλ(0) τλ(0) - Iλ(ps) τλ(ps)    =     ∫    Bλ(T(p))                      dp . 

ps                    dp 
 
The radiance detected by the satellite is given by Iλ (0), τλ(0) is 1 by definition, and the surface of 
the earth is treated as a blackbody so Iλ(ps) is given by Bλ(T(ps)).  Therefore 

o                 dτ (p) λ
 Iλ  =  Bλ(T(ps)) τλ(ps)  +    ∫    Bλ(T(p))                   dp 

         ps                  dp 
 
as before.  Writing this in terms of height  
 

∞                 dτ  λ
 Iλ  =  Bλ(T(0)) τλ(0)   +    ∫   Bλ(T(z))               dz . 

         o                  dz 
 
dτλ/dz is often called the weighting function which, when multiplied by the Planck function, yields the 
upwelling radiance contribution from a given altitude z.  An alternate form of the weighting function 
is dτλ/dln p. 
 

To investigate the RTE further consider the atmospheric contribution to the radiance to 
space of an infinitesimal layer of the atmosphere at height z, 
 
 dIλ(z)  =  Bλ(T(z)) dτλ(z) . 
 

Assume a well-mixed isothermal atmosphere where the density drops off exponentially 
with height 
 
 ρ  =  ρo  exp ( - γz) , 
 
and assume kλ is independent of height, so that the optical depth can be written for normal 
incidence 
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              ∞ 
 σλ  =   ∫    kλ ρ dz  =  γ-1 kλ  ρo  exp( - γz) 

                    z 
 
and the derivative with respect to height 

 
                                  dσλ 

             =  - kλ  ρo  exp( - γz)  =  - γ σλ  . 
                  dz 

 
Therefore, an expression for the detected radiance per unit thickness of the layer as a function of 
optical depth is at hand, 
 

  dIλ(z)               dτλ(z) 
                      =    Bλ(Tconst)                 =   Bλ(Tconst) γ σλ  exp (-σλ)  .  
      dz                              dz 

 
The level which is emitting the most detected radiance is given by 
 

d       dIλ(z) 
         {                   }  =  0 , 
dz       dz 

 
or where σλ = 1.  Most of the monochromatic radiance impinging upon the satellite is emitted by 
layers near the level of unit optical depth.  Much of the radiation emanating from deeper layers is 
absorbed on its way up through the atmosphere, while far above the level of unit optical depth there 
is not enough mass to emit very much radiation.  The assumption of an isothermal atmosphere with 
a constant absorption coefficient was helpful in simplifying the mathematics in the above derivation. 
 However, it turns out that for realistic vertical profiles of T and kλ the above result is still at least 
qualitatively valid; most of the satellite detected radiation emanates from that portion of the 
atmosphere for which the optical depth is of order unity. 
 

The fundamental principle of atmospheric sounding with meteorological satellites detecting 
the earth-atmosphere thermal infrared emission is based on the solution of the radiative transfer 
equation.  In this equation, the upwelling radiance arises from the product of the Planck function, 
the spectral transmittance, and the weighting function.  The Planck function consists of temperature 
information, while the transmittance is associated with the absorption coefficient and density profile 
of the relevant absorbing gases.  Obviously, the observed radiance contains the temperature and 
gaseous profiles of the atmosphere, and therefore, the information content of the observed radiance 
from satellites must be physically related to the temperature field and absorbing gaseous 
concentration. 
 

The mixing ratio of CO2 is fairly uniform as a function of time and space in the atmosphere. 
 Moreover, the detailed absorption characteristics of CO2 in the infrared region are well-understood 
and its absorption parameters (i.e., half width, line strength, and line position) are known rather 
accurately.  Consequently, the spectral transmittance and weighting functions for a given level may 
be calculated once the spectral interval and the instrumental response function have been given. To 
see the atmospheric temperature profile information, the RTE is rewritten so that 
                                                                
                                                                       o                  dτλ(p) 

Iλ - Bλ(T(ps)) τλ(ps)   =     ∫    Bλ(T(p))                   dp . 
                                                                       ps                   dp 
 

It is apparent that measurements of the upwelling radiance in the CO2 absorption band 
contain information regarding the temperature values in the interval from ps to O, once the surface 
temperature has been determined.  However, the information content of the temperature is under 
the integral operator which leads to an ill-conditioned mathematical problem.  This problem is 
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discussed further and a number of methods for the recovery of the temperature profile from a set of 
radiance observations in the CO2 band are explored. 

 
To understand the fundamental concept of remote sounding of the atmosphere, Figure 5.1 

illustrates the relation between the vertical position of the spectral band weighting function and the 
location of the spectral band in the absorption band.  The pressure broadening of the absorption 
band is demonstrated in the center of Figure 5.1.  In the left of Figure 5.1, three separate spectral 
selections in the CO2 absorption band are indicated.  When the sounding radiometer views the 
atmosphere from above in spectral band A (at the center of the CO2 absorption band), the radiation 
detected originates mainly from the higher levels of the atmosphere.  Further away from the center 
of the absorption band, spectral band B detects radiation from lower down in the atmosphere (since 
the CO2 higher in the atmosphere has a very narrow absorption line and radiation in spectral band 
B is transmitted).  In the wing of the absorption band, little of the radiation in spectral band C 
emitted from the earth surface and lower atmosphere is absorbed by the CO2 molecules higher up 
in the atmosphere (since the CO2 absorption line gets narrower with height, decreasing pressure).  
Thus spectral band C detects radiation emitted from the lowest portion of the atmosphere (and 
partly from the earth surface).  The contributions to the observed spectral radiances are depicted in 
the right part of Figure 5.1; these weighting functions move progressively lower in the atmosphere 
as the spectral band moves further away from the center of the absorption band. Figure 5.2 shows 
images of spectral measurements from the opaque to the very transmissive parts of the CO2 
absorption band. 
 

Finally, to better understand the information regarding the gaseous concentration profile 
contained in the solution of the radiative transfer equation, integration by parts on the integral term 
yields 
 

    o         dBλ(T(p)) 
 Iλ - Bλ(T(0))   =    ∫ τλ(p)                           dp . 

    ps            dp 
  
Now, if measurements are made in the H2O or O3 spectral regions, and if temperature values are 
known, the transmittance profile may be inferred just as the temperature profile may be recovered 
when the spectral transmittance is given.  Relating the gaseous concentration profile to the spectral 
transmittance, the density values are hidden in the exponent of an integral which is further 
complicated by the spectral integration over the response function.  Because of these 
complications, retrieval of the gaseous density profile is very difficult.  No clear-cut mathematical 
analyses may be followed in the solution of the density values.  Therefore, the focus of subsequent 
sections is on the temperature inversion problem. 
 
 
5.2 Temperature Profile Inversion 
 

Inference of atmospheric temperature profile from satellite observations of thermal infrared 
emission was first suggested by King (1956).  In his pioneering paper, King pointed out that the 
angular radiance (intensity) distribution is the Laplace transform of the Planck intensity distribution 
as a function of the optical depth, and illustrated the feasibility of deriving the temperature profile 
from the satellite intensity scan measurements. 
 

Kaplan (1959) advanced the sounding concepts by demonstrating that vertical resolution of 
the temperature field could be inferred from the spectral distribution of atmospheric emission.  
Kaplan pointed out that observations in the wings of a spectral band sense deeper into the 
atmosphere, whereas observations in the band centre see only the very top layer of the atmosphere 
since the radiation mean free path is small.  Thus, by properly selecting a set of different sounding 
spectral channels, the observed radiances could be used to make an interpretation of the vertical 
temperature distribution in the atmosphere. 
 

Wark (1961) proposed a satellite vertical sounding programme to measure atmospheric 
temperature profiles.  Polar orbiting sounders were first flown in 1969 and a geostationary sounder 
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was first launched in 1980. 
 

In order for atmospheric temperatures to be determined by measurements of thermal 
emission, the source of emission must be a relatively abundant gas of known and uniform 
distribution.  Otherwise, the uncertainty in the abundance of the gas will make ambiguous the 
determination of temperature from the measurements.  There are two gases in the earth-
atmosphere which have uniform abundance for altitudes below about 100 km, and which also show 
emission bands in the spectral regions that are convenient for measurement.  Carbon dioxide, a 
minor constituent with a relative volume abundance of 0.003, has infrared vibrational-rotational 
bands.  In addition, oxygen, a major constituent with a relative volume abundance of 0.21, also 
satisfies the requirement of a uniform mixing ratio and has a microwave spin-rotational band. 
 

The outgoing radiance observed by IRIS (Infrared Interferometer and Spectrometer) on the 
Nimbus 4 satellite is shown in Figure 5.3 in terms of the blackbody temperature in the vicinity of the 
15 µm band. The equivalent blackbody temperature generally decreases as the centre of the band 
is approached.  This decrease is associated with the decrease of tropospheric temperature with 
altitude.  Near about 690 cm-1, the temperature shows a minimum which is related to the colder 
tropopause.  Decreasing the wave number beyond 690 cm-1, however, increases the temperature.  
This is due to the increase of the temperature in the stratosphere, since the observations near the 
band centre see only the very top layers of the atmosphere.  On the basis of the sounding principle 
already discussed, a set of sounding wave numbers can be selected so that a temperature profile in 
the troposphere and lower stratosphere can be estimated.  The arrows in Figure 5.3 indicate an 
example of such a selection. 
 

There is no unique solution for the detailed vertical profile of temperature or an absorbing 
constituent because (a) the outgoing radiances arise from relatively deep layers of the atmosphere, 
(b) the radiances observed within various spectral channels come from overlapping layers of the 
atmosphere and are not vertically independent of each other, and (c) measurements of outgoing 
radiance possess errors.  As a consequence, there are a large number of analytical approaches to 
the profile retrieval problem.  The approaches differ both in the procedure for solving the set of 
spectrally independent radiative transfer equations (e.g., matrix inversion, numerical iteration) and 
in the type of ancillary data used to constrain the solution to insure a meteorologically meaningful 
result (e.g., the use of atmospheric covariance statistics as opposed to the use of an a priori 
estimate of the profile structure).  There are some excellent papers in the literature that review the 
retrieval theory which has been developed over the past few decades (Fleming and Smith, 1971; 
Fritz et al, 1972; Rodgers, 1976; and Twomey, 1977).  The next sections present the mathematical 
basis for some of the procedures which have been utilized in the operational retrieval of 
atmospheric profiles from satellite measurements and include some example problems that are 
solved by using these procedures. 
 
 
5.3 Transmittance Determinations 
 

Before proceeding to the retrieval problem, a few comments regarding the determination of 
transmittance are necessary. 
 

So far, the upwelling radiance has been discussed at a monochromatic wavelength.  
However, for a practical instrument whose spectral channels have a finite spectral bandwidth, all 
quantities given in the RTE must be integrated over the bandwidth and are weighted by the spectral 
response of the instrument.  The measured radiance over an interval λ1 to λ2 is given by 
 

            λ2                  λ2 
 Iλeff   =  ∫   φ(λ) Iλ dλ  /  ∫    φ(λ) dλ 

            λ1                     λ1 
 
where φ denotes the instrument spectral response (or slit) function and λ denotes the mean 
wavelength of the bandwidth.  However, since B varies slowly with λ while τ varies rapidly and 
without correlation to B within the narrow spectral channels of the sounding spectrometer, it is 
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sufficient to perform the spectral integrations of B and τ independently and treat the results as if 
they are monochromatic values for the effective wavelength λeff. 
 

For simplicity, we shall let the spectral response function φ(λ) = 1 so that the spectral 
transmittance may be expressed by 
 
                                               1         q    p 

τλ(p)  =  ___     ∫  dλ    exp [ -          ∫   kλ(p') dp' ] 
             ∆λ   ∆λ        g   o 

 
Note that the mixing ratio q is a constant and ∆λ= λ1 - λ2.  In the lower atmosphere, collision 
broadening dominates the absorption process and the shape of the absorption lines is governed by 
the Lorentz profile 

 
S       α 

 kλ    =                                                     . 
π (λ -λo)2 + α2 

 
The half width α is primarily proportional to the pressure (and to a lesser degree to the 
temperature), while the line strength S also depends on the temperature.  Hence, the spectral 
transmittance may be explicitly written as 
 

   dλ   q     p   S(p')      α(p')dp' 
  τλ(p)   =   ∫                exp [ -           ∫                                                      ]  . 

                                          ∆λ   ∆λ   g     o     π      (λ-λo)2 + α2(p') 
 
The temperature dependence of the absorption coefficient introduces some difficulties in the 
sounding of the temperature profile.  Nevertheless, the dependence of the transmittance on the 
temperature may be taken into account in the temperature inversion process by building a set of 
transmittances for a number of standard atmospheric profiles from which a search could be made to 
give the best transmittances for a given temperature profile. 
 

The computation of transmittance through an inhomogeneous atmosphere is rather 
involved, especially when the demands for accuracy are high in infrared sounding applications.  
Thus, accurate transmittance profiles are normally derived by means of line-by-line calculations, 
which involve the direct integration of monochromatic transmittance over the wavenumber spectral 
interval, weighted by an appropriate spectral response function.  Since the monochromatic 
transmittance is a rapidly varying function of wavenumber, numerical quadrature used for the 
integration must be carefully devised, and the required computational effort is generally enormous. 
 

All of the earlier satellite experiments for the sounding of atmospheric temperatures of 
meteorological purposes have utilized the 15 µm CO2 band.  As discussed earlier, the 15 µm CO2 
band consists of a number of individual bands which contribute significantly to the absorption.  The 
most important of these is the v2 fundamental vibrational rotational band.  In addition, there are 
several weak bands caused by the vibrational transitions between excited states, and by molecules 
containing less abundant isotopes. 
 

For temperature profile retrievals, the transmittance is assumed to be determined. 
 
 
5.4 Fredholm Form of RTE and the Direct Linear Inversion Method 
 

Upon knowing the radiances from a set of sounding channels and the associated 
transmittances, the fundamental problem is to solve for the function Bλ(T(p)).  Because there are 
several wavelengths at which the observations are made, the Planck function differs from one 
equation to another depending on the wavelength.  Thus, it becomes vitally important for the direct 
inversion problem to eliminate the wavelength dependence in this function.  In the vicinity of the 15 
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µm CO2 band, it is sufficient to approximate the Planck function in a linear form as 
 
 Bλ(T(p))  =  cλ Bλo(T(p)) + dλ 
 
where λo denotes a fixed reference wavelength and cλ and dλ are empirically derived constants.  
Assuming without loss of generality that τλ(ps)  =  0, we have the following form of the RTE  
 

                 o 
 rλ  =  ∫   b(p) Wλ(p) dp, 

                 ps 
where  

 
Iλ - dλ 

        rλ  =                , 
   cλ 

 
        b(p)  =  Bλo(T(p)) , 

and 
 dτλ(p) 

         Wλ(p)  =                             . 
   dp 

 
This is the well-known Fredholm equation of the first kind.  Wλ (p), the weighting function, 

is the kernel, and b(p), the Planck radiance profile, is the function to be recovered from a set of 
observed radiances rλ, λ = 1,2,...,M, where M is the total number of spectral channels observed. 
 

The solution of this equation is an ill-posed problem, since the unknown profile is a 
continuous function of pressure and there are only a finite number of observations.  It is convenient 
to express b(p) as a linear function of L variables in the form 
 

                     L 
       b(p)  =   Σ   bj fj(p) , 
                    j=1 

 
where bj are unknown coefficients, and fj(p) are the known representation functions which could be 
orthogonal functions, such as polynomials or Fourier series.  It follows that 
 

                                    L       o 
                           rλ  =   Σ   bj  ∫   fj(p) Wλ(p) dp,    λ = 1,2,...,M. 
                                   j=l      ps 

 
Upon defining the known values in the form 
 
                                                               o 

Hλj  =   ∫   fj(p) Wλ(p) dp , 
           ps 

then 
                        L 
               rλ  =   Σ   Hλj bj,    λ = 1,2,...,M. 
                       j=1 

 
In order to find bj(j = 1,...,L), one needs to have the rλ(λ = 1,...,M) where M ≥ L.  In matrix 

form (see Appendix A on matrices), radiances are then related to temperature 
 
 r  =  H b . 
 
The solution can be written 
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 b  =  H-1 r . 
 
To find the solution b, the inverse matrix must be calculated. 

 
It has been pointed out in many studies that the solution is unstable because the equation 

is under-constrained.  Furthermore, the instability of this solution may also be traced to the following 
sources of error: (a) the errors arising from the numerical quadrature used for the calculation of Hλj, 
(b) the approximation to the Planck function, and (c) the numerical round-off errors.  In addition, 
sounding radiometers possess inherent instrumental noise, and thus the observed radiances 
generate errors probably in a random fashion.  All of these errors make the direct inversion from the 
solution of transfer equation difficult.   
 
 
5.5 Linearization of the RTE 
 

Many of the techniques for solving the RTE require linearization in which the dependence 
of Planck radiance on temperature is linearized, often with a first order Taylor expansion about a 
mean condition.  Defining the mean temperature profile condition as Tm(p), then 
 

       ∂Bλ(T)  
   Bλ(T)  =  Bλ(Tm)  +                          (T - Tm) 

          ∂T       T=Tm 
 
and the RTE can be written 

 
 ∂Bλ(T)  

 Iλ      +                      (Tbλ - Tmbλ)    =  
     ∂T     T=Tmbλ 

 
 

                       o      ∂Bλ(T)                           ∂τλ(p) 
  Bλ(Ts) τλ(ps) + ∫  {Bλ (Tm) +                          (T - Tm)}                      d ln p 

                      ps         ∂T       T=Tm                ∂ ln p 
 
where Tbλ represents the brightness temperature for spectral band λ.  Reducing to simplest form 
 

                   o            ∂Bλ(T)  ∂Bλ(T)                    ∂τλ(p) 
   (∆Tbλ)  =  ∫   (∆T) (                        /                         )                     d ln p 

                              ps             ∂T     T=Tm    ∂T         T=Tmbλ   ∂ ln p 
 
where ∆ denotes temperature difference from the mean condition.  This linear form of the RTE can 
then be written in numerical quadrature form 
 

                N 
 (∆Tb)λ  =   Σ  Wλj (∆T)j    λ= 1,....,M 

               j=1 
 
where Wλj is the obvious weighting factor, M is the number of spectral bands, and N is the number 
of levels at which a temperature determination is desired. 
 
 
5.6 Statistical Solutions for the Inversion of the RTE 
 

A number of methods are now presented which can be utilized to stabilize the solution and 
give reasonable results. 
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5.6.1 Statistical Least Squares Regression 
 

Consider a statistical ensemble of simultaneously observed radiances and temperature 
profiles.  One can define a least squares regression solution as the one that minimizes the error 
 
 

                                   ∂       M      L           2 
                  Σ    { Σ   Hλjbj  -  rλ  }   =  0 , 
                                  ∂bk   λ=1   j=1 

 
which leads to 
 
 b  =  (Ht H)-1 Ht r . 
 

The least squares regression solution was used for the operational production of 
soundings from the very first sounding spectrometer data by Smith (1970).  The form of the direct 
inverse solution, where rλ are observations which include the measurement error, is found to be 
 
 b  =  A r 
 
where A is a matrix of solution coefficients.  One can define A as that matrix which gives the best 
least squares solution for b in a statistical ensemble of simultaneously observed radiances and 
temperature profiles. 
 

The advantages of the least squares regression method over other methods are: (a) if one 
uses real radiance and radiosonde data comparisons to form the statistical sample, one does not 
require knowledge of the weighting functions or the observation errors, (b) the instrument need not 
be calibrated in an absolute sense, and (c) the regression is numerically stable. 
 

Some shortcomings of the regression method are: (a) it disregards the physical properties 
of the RTE in that the solution is linear whereas the exact solution is non-linear because the 
weighting function W and consequently the solution coefficients A are functions of temperature, (b) 
the solution uses the same operator matrix for a range of radiances depending upon how the 
sample is stratified, and thus the solution coefficients are not situation dependent, and (c) 
radiosonde data is required, so that the satellite sounding is dependent on more than just surface 
data. 
 
5.6.2 Constrained Linear Inversion of RTE 
 

The instrument error must be taken into account.  The measured radiances always contain 
errors due to instrument noise and biases.  Therefore we write, 
 

          meas           true 
         rλ        = rλ  + eλ 

 
where eλ represents the measurement errors.  Thus to within the measurement error, the solution 
b(p) is not unique.  To determine the best solution, constrain the following function to be a minimum 
 
 

                      M    L 
                      Σ  eλ

2  +  γ   Σ  (bj - bmean)2 
                    λ=1   j=1 

 
 
where γ is a smoothing coefficient which determines how strongly the solution is constrained to be 
near the mean.  A least squares solution with quadratic constraints implies 
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            ∂       M  L 
           ___   [  Σ   eλ

2 + γ   Σ   (bj - bmean)2 ]  =  0 . 
           ∂bk   λ=1            j=1 

 
But 

                             L  true 
 eλ  =   Σ    Hλj bj - rλ 
                             j=1 

which leads to 
 

                                    M      L 
    Σ   [  Σ    Hλj bj - rλtrue ] Hλk + γ [ bk - bmean ]  =  0 . 

                                  λ=1   j=1 
 
By definition 

 
                                   1     L 
                    bmean   =            Σ   bj , 
                                   L    j=1 

and 
 

  bk - bmean  =  -L-1 b1 - L-1 b2 - ... + (1-L-1) bk - ... - L-1 bL. 
 
So the constrained least squares solution can be written in matrix form 
 

 Ht H b - Ht r + γ Mb = 0 , 
 
where 

 
1-L-1  -L-1   . .          . 

                                                             
 -L-1  1-L-1                        

                                                               
M  =   -L-1  -L-1 1-L-1                  

                                                               
 -L-1  -L-1  -L-1  1-L-1 

                                                               
  .    .    .      .  

 
  .    .    .  .         1-L-1 

 
which becomes the identity matrix as L approaches ∞.  Thus the solution has the form 
 
                                                   b = (Ht H + γ M)-1 Ht r . 
 
This is the equation for the constrained linear inversion derived by Phillips (1962) and Twomey 
(1963).  We will discuss this further in the section on the Minimum Information Solution. 
 
5.6.3 Statistical Regularization 
 

To make explicit use of the physics of the RTE in the statistical method, using the 
linearized form of the RTE, one can express the brightness temperatures for the statistical 
ensemble of profiles as 
 
                                                            Tb  =  TW + E  , 
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where E is a matrix of the unknown observational errors.  The temperature difference notation has 
been dropped for simplicity.  Solving with the least squares approach, as explained earlier, yields 
 
 A  =  (WtTtTW + EtE)-1 WtTtT , 
 
where covariances between observation error and temperature (EtT) are assumed to be zero since 
they are uncorrelated.  Defining the covariance matrices 
 

             1                   1 
  ST  =               (TtT)  and  SE  =               (EtE) 

                             S-1                  S-1 
 
where S indicates the size of the statistical sample; then  
 
 A  =  (WtSTW + SE)-1 WtST. 
 
The solution for the temperature profile is 
 
 T  =  Tb(WtSTW + SE)-1 WtST . 
 
This solution was developed independently by Strand and Westwater (1968), Rodgers (1968), and 
Turchin and Nozik (1969). 
 

The objections raised about the regression method do not apply to this statistical 
regularization solution, namely: (a) W is included and its temperature dependence can be taken into 
account through interation; (b) the solution coefficients are re-established for each new temperature 
profile retrieval; and (c) there is no need for coincident radiosonde and satellite observations so that 
one can use an historical sample to define ST. 
 

The advantages of the regression method are, however, the disadvantages of the 
statistical regularization method, namely: (a) the weighting functions must be known with higher 
precision; and (b) the instrument must be calibrated accurately in an absolute sense. 
 

As with regression, the statistical regularization solution is stable because ST and SE are 
strongly diagonal matrices which makes the matrix 
 
 (StSTW + SE) 
 
well-conditioned for inversion. 
 
5.6.4 Minimum Information Solution 
 

Twomey (1963) developed a temperature profile solution to the radiances that represents a 
minimal perturbation of a guess condition such as a forecast profile.  In this case T represents 
deviations of the actual profile from the guess and Tb represents the deviation of the observed 
brightness temperatures from those which would have arisen from the guess profile condition.  ST is 
then a covariance matrix of the errors in the guess profile, which is unknown.  Assume that the 
errors in the guess are uncorrelated from level to level such that 
 
 ST  =  σT

2 I 
 
where I is the identity matrix and σT

2 is the expected variance of the errors in the guess.  If one also 
assumes that the measurement errors are random, then 
 
 SE  =  σE

2 I . 
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Simplifying the earlier expression for a solution using statistical regularization, we get 
 
 T  =  Tb ( WtW + γ I)-1 Wt 
 
where 
 
 γ  =  σε

2/σT
2  (≈ 10-3) . 

 
The solution given is the Tikhonov (1963) method of regularization. 
 

The solution is generally called the Minimum Information Solution since it requires only an 
estimate of the expected error of the guess profile.  One complication of this solution is that γ is 
unknown.  However, one can guess at γ (e.g., 10-3) and iterate it until the solution converges 
 

                                   1    M 
                Σ   (Tbi - Tbi)2  ≤  σε

2. 
                    M   j=1 

 
The minimum information solution was used for processing sounding data by the SIRS-B and VTPR 
instruments. 
 
 
5.6.5 Empirical Orthogonal Functions 
 

It is often advantageous to expand the temperature profile for the N pressure levels so that 
              L 

 T(pj)  =   Σ  ak fk(pj)    j = 1,....,N 
             k=1 

where L is the number of basis functions (less than M the number of spectral bands) and fk(pj) are 
some type of basis functions (polynomials, weighting functions, or empirical orthogonal functions).  
 

An empirically optimal approximation is achieved by defining fk(pj) as empirical orthogonal 
functions (EOF) which are the eigenvectors of a statistical covariance matrix of temperature TtT.  
When the eigenvectors and associated eigenvalues of (TtT) are determined and the N eigenvalues 
are ordered from largest to smallest, the associated eigenvectors will be ordered according to the 
amount of variance they explain in the empirical sample of soundings used to determine TtT.  The 
EOF's are optimal basis functions in that the first EOF f1(pj) is the best single predictor of T(p) that 
can be found in a mean squared error sense to describe the values used to form TtT.  The second 
EOF is the best prediction of the variance unexplained by f1(pj), and so on.  Wark and Fleming 
(1966) first used the EOF approximation in the linear RTE. 
 

 The eigenvectors of the temperature covariance matrix (empirical orthogonal functions) 
provide the most economical representation of a large sample of observations, where each 
observation consists of a set of numbers which are not statistically independent of each other.  
Each observation can be represented as a linear combination of functions (vectors) so that the 
coefficients in the representation are statistically independent.  These functions, which are the 
eigenvectors of the statistical covariance matrix, are the optimum descriptors in the sense that the 
progressive explanation of variance is maximized.  In other words, among all possible sets of 
orthogonal functions of a physical variable, the first n empirical functions explain more variance than 
the first n functions of any other set. 

 
To see this more clearly, consider the representation of the temperature Tis at level I from 

sample observation s.  The covariance matrix of the atmospheric profile is given by  

∧        1 S             mean               mean           
Tij  =           Σ   (Tis - Ti       ) (Tjs - Tj            ) , 
          S     s=1                           
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where without loss of generality we declare the mean temperatures for each level to be zero, so 
that  

 
 ∧        1     S 
 Tij  =            Σ   Tis Tjs 
                  S   s=1 

or  
 ∧ 
 T   =   TtT . 

 
This represents an NxN matrix.  If we consider that T is an NxS matrix (S measurements at N 
levels), 
  

T11, 
 
T12, 

 
..., 

 
T1S 

 
T21, 

 
T22, 

 
..., 

 
T1S 

 
TN1 

 
TN2, 

 
..., 

 
TNS 

 
        ∧                                                                  ∧ 
then T is the product of an SxN (Tt) and an NxS (T) matrices.  It should be noted that Tij is the 
covariance of temperature at levels I and j and is zero only if temperatures at these two levels are 
uncorrelated.  The diagonal element Tkk is the variance of the atmospheric temperature at the level 

                    ∧ 
We diagonalize T by performing an eigenvalue analysis.  We write 

 
                                                            ∧ 
                                                            TE   =   EΛ 
 
where E is matrix of eigenvector columns and Λ is diagonal matrix of eigenvalues.  In expanded 
notation, the eigenvalue problem can be stated 
 

∧    E1i       E1i   
T    E2i    =   λi        E2i 

      .                      . 
      .                      . 

                            .                      . 
   ENi        ENi  . 

 
in matrix notation 
 

∧  E11   E12
...E1N E11   E12

...E1N    λ1 
T  E21   E22  E2N      = E21   E22  E2N       λ2 

 .       .      .        .       .      .            .  
 .       .      .   .       .      .               .  
EN1   EN2 ENN EN1   EN2  ENN              λN 

 
where 
 

          E1    E2   ...   EN 
   E     =   

      ↓     ↓           ↓ 
         ∧  
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Since T is real and symmetric, it is Hermitian and therefore has eigenvectors that are orthonormal 
and eigenvalues that are real and greater than zero.  Thus E is an orthogonal matrix 
 

 EtE  =  I    or    Et  =  E-1  .  
 
The eigenvectors form a basis for the temperature variances.  Any temperature variance can be 
expressed as an expansion of these EOFs.   
               ∧ 
 The transformation that diagonalizes T emerges 

      ∧             ∧ 
    Et  T E  =  Λ    or     T  =  E Λ Et . 

 
When the square root of the eigenvalue of the temperature covariance matrix is less than 

the accuracy of the temperature measurements, its contribution to the solution of the temperature 
profile is unreliable (it is merely fitting noise).  The eigenvectors are ordered in such a way that the 
first eigenvector explains largest amount of variance, describing largest scale of variability, and 
subsequent eigenvectors account for the residual variance in successively decreasing order.  The 
first few eigenvectors account for all significant variance, the remaining eigenvectors are merely  
fitting noise.  This suggests a desired representation of each profile 
 

(NxS)  (NxL)  (LxS) 
 L                         

    Tis      = Σ   Aks     Eik    or     T  =     E        A 
                                  k=1 

  (NxS)              (LxS) (NxL) 
 
where L is the number of EOFs associated with eigenvalues whose square root is greater than the 
noise.  The sample of coefficients aks are statistically independent, hence 
 

        1      S                             1 
            Σ   AisAjs  =  λi δij   or           AtA  =  Λ . 
   S    s=1           S 

 
 Therefore, the temperature profile retrieval from empirical orthogonal functions has N 

equal to 25 levels, M equal to 18 channels,  L equal to 10 EOF, and S equal to the sample of 1200. 
 Using the convention that capital letters denote matrices and lower case letters denote vectors in 
the following paragraphs, we can write the expansion of atmospheric temperature in terms of EOF 
as 

 
      t     =    E         a       
 (Nx1)    (NxL)   (Lx1)        

 
where the solution rests in finding the expansion coefficients a, which are dependent on the 
atmospheric situation.  Also the observed brightness temperatures can be expanded in terms of the 
EOF for the brightness temperature covariance matrix, so that 
 

     tb     =    Eb        ab  ,     
  (Mx1)    (MxL)   (Lx1) 

 
where all components of this equation are known.  Note that in expanded form 
 

   T1s          E11    E21 ... E10,1      A1s    
   T2s          E12    E22                 A2s    
    .     =       .       .            . 
    .              .       .            .  
    .              .       .            . 
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   T25S         E1,25          E10,25     A10s 
 
which is different from at Et 
 

A1s,A2s, ...,A10s   E11    E21 ...  E25,1     
  E12    E22               
   . 
   . 
   . 
  E1,10               E25,10 

 
We are trying to solve for t from tb; a more stable solution occurs when an intermediate step is 
inserted to get a from ab.  In this formulation a transformation matrix D is used.  Then 
 
 

      a    =   D      ab      =  D (Eb
tEb)-1 Eb

ttb  =  D Eb
t tb 

   (Lx1)   (LxL) (Lx1)     
 
where the least squares solution has been inferred and the orthogonality property has been used.  
D is best determined from a statistical sample of 1200 radiosonde and rocketsonde profiles 
covering all seasons of the year throughout both hemispheres. So we write 
 

   A   =    D      Ab         
(LxS)   (LxL)(LxS) 

 
then least squares solution for D yields 
 

D = A Ab
t (Ab Ab

t)-1. 
 
Using the 1200 samples we have 
 

    T    =    E       A        
 (NxS)   (NxL) (LxS) 

 
which implies that the least squares solution for A yields 
 

A  =  (EtE)-1 EtT = EtT .  
 
since by orthogonality EtE = 1.  Similarly for the brightness temperature terms 
 

      Tb    =   Eb      Ab   
   (MxS)   (MxL) (LxS)          

 
where a least squares solution for Ab gives 
 

 Ab  =  (EtEb)-1 Eb
tTb = Eb

tTb . 
 
Through the solutions for A and Ab, D is known, 
 

 D  =  EtT [Eb
tTb]t [(Eb

tTb)(Eb
tTb)t]-1 

 
    =  EtTTb

tEb [Eb
tTbTb

tEb]-1 
 

    =  EtTTb
tEbEb

-1Tb
t-1Tb

-1Eb , 
or 

    D     =     Et        T       Tb
-1      Eb    . 
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  (LxL) =   (LxN) (NxS) (SxM) (MxL) 
 
Solving for t 

 t  =  E a  =  E D ab  =  E D Eb
t tb  =  H tb 

 
    = EEtTTb

-1EbEb
t tb 

which becomes 
       t     =   T       Tb

-1      tb    
  (Nx1)   (NxS) (SxM) (Mx1) 

 
The ordinary least squares solution yields 
 

 t  =  (T Tb
t) (Tb Tb

t)-1 tb . 
 
The advantage of eigenvector approach is that it is less sensitive to instrument noise (low 
eigenvalue eigenvectors have been discarded).  But if all eigenvectors are used (L=M) then the 
EOF solution is same as the least squares solution. It is better conditioned because L<M and noise 
has not been fit, but true variance has been.  The advantages of regression are: (1)  you don't need 
to know the weighting functions or the measurement errors, (2) instrument calibration is not critical, 
and (3) the regression is numerically stable.  The disadvantages are: (1) there is no physics of the 
RTE included, (2) there is a linear assumption, (3) sample stratification is crucial, and (4) it is 
dependent on radiosonde data.  
 

In practice, the empirical function series is truncated either on the basis of the smallness of 
the eigenvalues (thus, the smallness of explained variance) of higher order eigenvectors or on the 
basis of numerical instabilities which result when L approaches M. If L ≤ M and L is small (e.g., ≤ 5), 
a stable solution can usually be obtained by the direct inverse.  The matrix H, in this case, is better 
conditioned with respect to matrix inversion.  This is because the basis vector fk is smooth and acts 
as a constraint on the solution thereby stabilizing it.  However, in practice, best results are obtained 
by choosing an optimum L<M or by conditioning the H matrix prior to its inversion. 
 
 
5.7 Numerical Solutions for the Inversion of the RTE 
 

We have discussed several statistical matrix solutions of the direct linear inversion of the 
RTE; we now turn our attention to numerical iterative techniques producing solutions. 
 
5.7.1 Numerical Iteration Solution by Chahine Relaxation Method 
 

The difficulty in reconstructing the temperature profile from radiances at several selected 
wavelengths is due to the fact that the Fredholm equation with fixed limits may not always have a 
solution for an arbitrary function.  Since the radiances are obtained from measurements which are 
only approximate, the reduction of this problem to a linear system is mathematically improper, and a 
nonlinear approach to the solution of the full radiative transfer equations appears to become 
necessary.  The basic radiance equation is: 
 

              o                dτλ(p) 
    Iλ  =  Bλ(Ts) τλ (ps) + ∫  Bλ(T(p))                    d ln p,   λ = 1,2,....,M, 

             ps              d ln p 
 
where λ denotes the different spectral channels and the weighting function is expressed in 
logarithmic scale.  Since the weighting function reaches a strong maximum at different pressure 
levels for different spectral channels, the actual upwelling radiance observed by the satellite, Rλ, 
can be approximated through the use of the mean value theorem, by 
 



 
 

5-17 

              dτλ(p) 
  Rλ  =  Bλ (Ts) τλ(ps) + Bλ(T(pλ))  [                    ]     ∆λ  ln p , 

     d ln p     pλ 
 
where pλ denotes the pressure level at which the maximum weighting function is located, and ∆λ ln 
p is the differential of the pressure at the λth level and is defined as the effective width of the 
weighting function for wavelength λ.  Let the guessed temperature at pλ level be T'(pλ).  Thus, the 
guessed upwelling radiance Iλ is given by: 
 

   dτλ(p) 
  Iλ  =  Bλ (Ts) τλ(ps) + Bλ(T'(pλ)) [                    ]      ∆λ ln p , 

   d ln p      pλ 
 
where the transmittance and the surface temperature are assumed to be known. 
 

Upon dividing and noting that the dependence of the Planck function on temperature 
variations is much stronger than that of the weighting function, we obtain 
 

     Rλ - Bλ(Ts) τλ(ps)               Bλ(T(pλ)) 
                                                      ≈                                   
     Iλ - Bλ(Ts) τλ(ps)               Bλ(T'(pλ)) 

 
 
When the surface contribution to the upwelling radiance is negligible or dominant, the equation may 
be approximated by 
 

  Rλ  Bλ(T(pλ)) 
                ≈                           
   Iλ Bλ(T'(pλ)) 

 
or in iteration form 
 

   Rλ  Bλ(Tnew(pλ)) 
                =                                       . 
  Iλold  Bλ(Told(pλ)) 

 
This is the relaxation equation developed by Chahine (1970). 
 

Since most of the upwelling radiance at the strong absorption bands arises from the upper 
parts of the atmosphere, whereas the radiance from the less attenuating bands comes from 
progressively lower levels, it is possible to select a set of wave numbers to recover the atmospheric 
temperature at different pressure levels.  The size of a set of sounding wave numbers is defined by 
the degree of the vertical resolution required and is obviously limited by the capacity of the 
sounding instrument. 
 

Assuming now that the upwelling radiance is measured at a discrete set of M spectral 
channels, and that the composition of carbon dioxide and the level of the weighting function peaks 
pλ are all known, the following integration procedures are utilized to recover the temperature profile 
T(n)(pλ) at level pλ, where n is the order of the iterations: 
 
(a) Make an initial guess for T(n)(pλ), n = 0; 
 
(b) Substitute T(n)(pλ) into the RTE and use an accurate quadrature formula to evaluate the 

expected upwelling radiance Iλ(n) for each sounding channel; 
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(c) Compare the computed radiance values Iλ (n) with the measured data Rλ.  If the residuals 
 

 [Rλ - Iλ(n)] / Rλ 
 

are less than a preset small value (say, 10-4) for each sounding channel, then T(n)(pλ) is a 
solution; 

 
(d) If the residuals are greater than the preset criterion, we apply the relaxation equation to 

each wavelength (M times) to generate a new guess for the temperature values 
 
 T(n+1)(pλ) 

 
at the selected pressure levels pλ.  Note that 

                 Rλ 
 T (n+1)(pλ)  =  B-1[ B(T(n)(pλ))            ]  . 

                Iλ 
(n) 

In this calculation, each sounding channel acts at only one specific pressure level pλ to 
relax 

         T(n)(pλ)   to   T (n+1)(pλ)   ; 
 
(e) Carry out the interpolation between the temperature value at each given level pλ to obtain 

the desirable profile (it is sufficient to use linear interpolation); 
 
(f) Finally, with this new temperature profile, go back to step (b) and repeat until the residuals 

are less than the preset criterion. 
 
5.7.2 Example Problem Using the Chahine Relaxation Method 
 

Consider a three channel radiometer with spectral bands centred at 676.7, 708.7, and 
746.7 wavenumbers.  Their weighting functions peak at 50, 400, and 900 mb, respectively.  The  
transmittance is summarized in the following table: 
 

 
Transmittance 

 
 Pressure 
 (mb)  

676.7 
 

708.7 
 
746.7 (cm-1) 

 
             10 

 
.86 

 
.96 

 
.98 

 
            150 

 
.05 

 
.65 

 
.87 

 
            600 

 
.00 

 
.09 

 
.61 

 
           1000 

 
.00 

 
.00 

 
.21 

 
The surface temperature is assumed to be 280 K.  The radiometer senses the radiances Ri for each 
spectral band I to be 45.2, 56.5, and 77.8 mW/m2/ster/cm-1, respectively. 
 
(a) Guess T(o)(50) =T(o)(400) =T(o)(900) = 260 K; 
 
(b) Compute the radiance values for this guess profile by writing: 
 

Ii (o) = Bi(1000) τi(1000)  +  Bi(900) (τi(600) - τi(1000)) 
 
     +  Bi(400) (τi(150) - τi(600)) 
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     +  Bi(50) (τi(10) -τi(150)) 
 

yielding 76.9, 82.3, and 85.2 mW/m2/ster/cm-1, respectively; 
 
(c) Convergence has not been reached; 
 
(d) Iterate to a new profile using the relaxation equation 
 

                                              Ri 
    T(1)(pi) = Bi

-1 [ B(T(o) (pi))                ] 
           Ii (o) 
 

yielding 228, 238, and 254 K, respectively. 
 
(e) Disregard interpolation of temperature to other pressure levels in this example and go 

back to (b). 
 

(b')    45.7, 55.3, 71.6 mW/m2/ster/cm-1 
(c')    no convergence 
(d')    228, 239, 259 K 

 
(b'')   45.3, 56.4, 74.4 mW/m2/ster/cm-1 
(c'')   no convergence 
(d'')   228, 239, 262 K 

 
(b''')  45.2, 56.7, 75.9 mW/m2/ster/cm-1 
(c''')  no convergence 
(d''')  228, 239, 264 K 

 
(b'''') 45.2, 56.8, 76.7 mW/m2/ster/cm-1 

(c'''') convergence within 1 mW/m2/ster/cm-1 
 
Thus, the temperature retrieval yields T(50) = 228 K, T(400) = 239 K, and T(900) = 264 K. 
 
5.7.3 Smith's Numerical Iteration Solution 
 

Smith (1970) developed an iterative solution for the temperature profile retrieval, which 
differs somewhat from that of the relaxation method introduced by Chahine.  As before, let Rλ 
denote the observed radiance and Iλ (n) the computed radiance in the nth iteration.  Then the 
upwelling radiance expression may be written as: 

                   o            dτλ (p) 
   Iλ(n)  =  Bλ

(n)(Ts) τλ(ps) +  ∫  Bλ
(n)(T(p))                          d ln p. 

                                        ps             d ln p 
 
Further, for the (n+1) step we set 
 

                Rλ  =  Iλ(n+1) 
               o                dτλ(p) 

        =  Bλ
(n+1)(Ts) τλ(ps) +  ∫     Bλ

(n+1)(T(p))                  d ln p. 
                                 ps                       d ln p 

 
Upon subtracting, we obtain 
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  Rλ - Iλ(n)  =  [ Bλ
(n+1)(Ts) - Bλ

(n)(Ts) ] τλ(ps)  
 

                     o                                            dτλ(p) 
         + ∫   [Bλ

(n+1)(T(p)) - Bλ
(n)(T(p)) ]                    d ln p 

                   ps           d ln p 
 
An assumption is made at this point that for each sounding wavelength, the Planck function 
difference for the sensed atmospheric layer is independent of the pressure coordinate.  Thus, 
 

 Rλ – Iλ(n)  =  Bλ
(n+1)(T(p)) - Bλ

(n)(T(p)). 
 
That is, 

 
 Bλ

(n+1)(T(p)) = Bλ
(n)(T(p)) + (Rλ - Iλ(n)) . 

 
This is the iteration equation developed by Smith.  Moreover, for each wavelength we have 
 

 Tλ
(n+1) (p)  =  Bλ

-1[ Bλ(T(n+1)(p)) ] . 
 
Since the temperature inversion problem now depends on the sounding wavelength λ, the best 
approximation of the true temperature at any level p would be given by a weighted mean of 
independent estimates so that 

                              M                       M 
   T(n+1)(p)  =   Σ    Tλ

(n+1) (p) Wλ(p) /  Σ  Wλ(p) , 
                  λ=1                      λ=1 

 
where the proper weights should be approximately 
 

                       dτλ(p),  p < ps  
  Wλ(p)  =  {                         }   . 
    τλ(p),  p = ps 

 
It should be noted that the numerical technique presented above makes no assumption 

about the analytical form of the profile imposed by the number of radiance observations available. 
The following iteration schemes for the temperature retrieval may now be employed: 
 
(a) Make an initial guess for T(n)(p), n = 0; 
 
(b) Compute Bλ

(n)(T(p)) and Iλ(n); 
 
(c)  Compute Bλ

(n+1)(T(p)) and Tλ
(n+1)(p) for the desired levels; 

 
(d)  Make a new estimate of T(n+1)(p) using the proper weights; 
 
(e) Compare the computed radiance values Iλ(n) with the measured data Rλ.  If the residuals 
 

      ∆(n)  =    Rλ -Iλ(n)    / Rλ . 
 

are less than a preset small value, then T(n+1)(p) would be the solution.  If not, repeat steps 
(b)-(d) until convergence is achieved. 

 
5.7.4 Example Problem Using Smith's Iteration 
 

Using the data from the three channel radiometer discussed in the previous example 
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involving the relaxation method, we proceed as before. 
 
(a) Guess T(o)(50)  = T(o)(400)  = T(o)(900)  =  260 K; 
 
(b) Compute the estimated radiance values as before giving 76.9, 82.3, 85.2 mW/m2/ster/cm-1 

for Ii(o); 
 
(c) For each spectral band I, calculate a new profile from 
 

Ti
(1)(pj)  =  Bi

-1 { B(T(o)(pj)) + (Ri - Ii(o)) } 
 

where j runs over all desired pressure levels.  This yields 
 

233, 233, 233 K for T1
(1) , and 

 
239, 239, 239 K for T2

(1) , and 
 

254, 254, 254 K for T3
(1) . 

 
(d) The next iteration profile will be given by the weighted mean 

 3     3 
 T(1)(pj)  =  Σ    Ti

(1)(pj) ∆τ(pj) /  Σ  ∆τi (pj) 
i=1             i=1 

   
which yields 237, 243, 251 K. 

 
(e) No convergence yet, using the arbitrary criterion that: 
 

  Ri - Ii < 1 mW/m2/ster/cm-1. 
 

(b') 52.9, 60.8, 72.5 mW/m2/ster/cm-1 are Ii(1) . 
 

(c') T1
(2) is 229, 236, 245 K 

 
T2

(2) is 232, 239, 248 K 
 

T3
(2) is 242, 248, 256 K 

 
(d') T(2)  is 231, 241, 254 K 

 
(e') No convergence yet. 

 
(b'') 48.2, 58.4, 72.8 mW/m2/ster/cm-1 are Ii(2)  

 
(c'') T1

(3) is 228, 239, 252 K 
 

T2
(3) is 229, 240, 253 K 

 
T3

(3) is 236, 246, 258 K 
 

(d'') T(3)  is 229, 241, 257 K 
 

(e'') No convergence yet. 
 

(b''') 46.5, 58.2, 74.1 mW/m2/ster/cm-1 are Ii(4) 
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(c''') T1

(4) is 228, 240, 256 K 
 

T2
(4) is 227, 240, 256 K 

 
T3

(4) is 233, 245, 260 K 
 

(d''') T(4) is 228, 241, 259 K 
 

(e''') Convergence in next iteration. 
 

(b'''') 45.7, 58.1, 75.1 mW/m2/ster/cm-1 are Ii(4) 
which are within 1 mW/m2/ster/cm-1 are Ii(3). 

 
(c'''') T1

(5) is 228, 241, 259 K 
 

T2
(5) is 226, 240, 258 K 

 
To

(5) is 231, 244, 261 K 
 

(d'''') T(5)  is 228, 241, 261 K 
 

Thus the temperature retrieval yields T(50) = 228 K, T(400) = 241 K, and T(900) = 261 K. 
This result compares reasonably well with the earlier result obtained by the relaxation method. 
 
5.7.5 Comparison of the Chahine and Smith Numerical Iteration Solution 
 

Figure 5.4 illustrates a retrieval exercise using both Chahine's and Smith's methods.  The 
same transmittances were used and the true temperature profile is shown.  A climatological profile 
was used as an initial guess, and the surface temperature was fixed at 279.5 K.  The observed 
radiances utilized were obtained by direct computations for six VTPR channels at 669.0, 676.7, 
694.7, 708.7, 723.6, and 746.7 cm-1 using a forward difference scheme.  Numerical procedures 
already outlined were followed, and a linear interpolation with respect to ln p was used in the 
relaxation method to get the new profile.  With the residual set at 1%, the relaxation method 
converged after six iterations, and results are given by the solid line with black dots.  Since the top 
level at which the temperature was calculated was about 20 mb, extrapolation to the level of 1 mb 
was used.  Recovered results using Smith's method are displayed by the dashed line.  No 
interpolation is necessary since this method gives temperature values at desirable levels.  It took 
five iterations to converge the solution to within 1%.  Both methods do not adequately recover the 
temperature at upper levels due to the fact that the highest weighting function peak is at about 30 
mb.  It should be noted that the retrieval exercise presented here does not account for random 
errors and therefore, it is a hypothetical one. 
 

The major problems with the Chahine method are: (a) the profile is not usually well-
represented by a series of line segments between pressure levels where the weighting functions 
peak, particularly for a small number of channels (levels), and (b) the iteration and hence the 
solution can become unstable since one is attempting to extract M distinct pieces of information 
from M non-independent observations. 

 
While the Smith method does avoid the problems of the Chahine method (no interpolation 

is required for a temperature at any pressure level and the solution is stable in the averaging 
scheme because the random error propagating from Rλ to T(p) is suppressed to the average value 
of the errors in all channels, which will be near zero), it does have the main disadvantage that the 
averaging process can prevent obtaining a solution that satisfies the observations to within their 
measurement error levels.  There is no guarantee that the solution converges to one which satisfies 
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the radiances by this criterion. 
 
 
5.8 Direct Physical Solution 
 
5.8.1 Example Problem Solving Linear RTE Directly 
 

The linear form of the RTE can be solved directly (often with rather poor results).  For the 
example problem presented earlier, we have that Tb equals 223, 232, and 258 K for the spectral 
bands, respectively.  As before, take T(1000) = 280 K and assume a mean temperature profile 
condition T (900) = T (400) = T (50) = 260 K.  Therefore, Tb equals 250, 258, and 263 K, 
respectively.  We set up the matrix solution by writing 
 

      ∂Bi              ∂Bi       
∆Tbi  =  ∆T900 [                /                     ]  (τi(600)  - τi(1000)) 

      ∂T               ∂T        
                                                 T900            Tbi 
 
 

       ∂Bi             ∂Bi       
      + ∆T400 [                  /                     ]  (τi(150) - τi(600)) 

       ∂T       ∂T        
                    T400          Tbi 
 

       ∂Bi       ∂Bi       
      + ∆T50   [                 /                      ]  (τi(10) - τi(150)) 

       ∂T               ∂T              
                T50             Tbi   

 
which gives 
 

-27 = ∆T900(.89/.77)(.00) +∆T400(.89/.77)(.05) +∆T50(.89/.77)(.81) 
 

-26 = ∆T900(.86/.83)(.09) +∆T400(.86/.83)(.56) +∆T50(.86/.83)(.31) 
 

  -5 = ∆T900(.81/.85)(.40) +∆T400(.81/.85)(.26) +∆T50(.81/.85)(.11) 
 
Solving we find that 
 

∆T900=  15 K, 
 

∆T400= -33 K, 
 

∆T50 = -25 K, 
 
so that the temperature profile solution is 
 

T(900) = 275 K, 
 

T(400) = 227 K, 
 

T(50)  = 235 K. 
 
Obviously, this example was ill-conditioned since Taylor expansion of differences larger 
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than 10 K is foolhardy.  However, this does demonstrate how to set up a direct solution, which 
should be representative of the mean temperature condition used in the expansion is close to the 
actual temperature profile. 
 

Typically, the direct solution is unstable because there are the unknown observation errors 
and W is nearly singular due to strong overlapping of the weighting functions.  Since W is 
ill-conditioned with respect to matrix inversion, the elements of the inverse matrix are greatly 
inflated which, in turn, greatly amplifies the experimental error of the observations.  This renders the 
solution virtually useless.  The ill-conditioned solution results since one does not have N 
independent pieces of information about T from M radiation observations.  The solution is further 
complicated because M is usually much smaller than the number of temperature points, N, needed 
to represent the temperature profile. 
 
5.8.2 Simultaneous Direct Physical Solution of the RTE for Temperature and Moisture 
 

Solution of the RTE often involves several iterations between solving for the temperature 
and moisture profiles.  As pointed out earlier, they are interrelated but most solutions only solve for 
each one separately, assuming the other is known.  Recently Smith (1985) has developed a 
simultaneous direct physical solution of both. 
  

In order to solve for the temperature and moisture profiles simultaneously, a simplified form 
of the integral of the radiative transfer equation is considered, 

                            ps  
 R  =  Bo +   ∫     τ dB 

                                                     o      

which comes integrating the atmospheric term by parts in the more familiar form of the RTE.  R 
represents the radiance, τ the transmittance, and B the Planck radiance.  Dependency on angle, 
pressure, and frequency are neglected for simplicity.  The subscript s refers to the surface level and 
o refers to the top of the atmosphere.  Then in perturbation form, where δ represents a perturbation 
with respect to an a priori condition 

            ps                    ps  
 δR  =   ∫     (δτ) dB  +  ∫   τ  d(δB) . 

                               o                o 
 
Integrating the second term on right side of the equation by parts, 
 

           ps                          ps    ps                          ps 
   ∫  τ d(δB)  =  τ δB   -  ∫  δB dτ  =  τs δBs - ∫  δB dτ  , 
           o          o     o                            o 

yields 
                     ps      ps 

  δR  =   ∫  (δτ) dB + τs δBs - ∫  δB dτ 
           o      o 

 
Now writing the differentials with respect to temperature 
 

                 ∂B        ∂B 
  δR  =  δTb         ,      δB  =  δT           

                 ∂Tb        ∂T 
 
and with respect to pressure 
 

         ∂B   ∂T   ∂τ 
  dB =                    dp ,   dτ =            dp , 

         ∂T   ∂p   ∂p 
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yields 
           ps  ∂T      ∂B    ∂B             ps       ∂τ     ∂B     ∂B 

 δTb  =  ∫  δτ             [           /          ] dp -   ∫  δT            [           /           ] dp 
           o  ∂p      ∂T    ∂Tb            o         ∂p     ∂T    ∂Tb 

 
              ∂Bs     ∂B 

     + δTs [           /             ] τs 
              ∂Ts     ∂Tb 

 
where Tb is the brightness temperature.  Finally, assume that the transmittance perturbation is 
dependent only on the uncertainty in the column of precipitable water density weighted path length 
u according to the relation 
 

           ∂τ 
   δτ  =             δu  . 

           ∂u         
Thus 

       ps       ∂T   ∂τ     ∂B     ∂B                p       ∂τ      ∂B     ∂B 
 δTb  =     ∫   δu                      [           /            ] dp   -   ∫  δT           [          /            ] dp 

    o        ∂p   ∂u     ∂T     ∂Tb               o       ∂p      ∂T    ∂Tb 
               ∂Bs    ∂B 

  +  δTs  [            /            ] τs 
               ∂Ts    ∂Tb 

 
  =  f [ δu, δT, δTs ] 

 
where f represents a functional relationship. 
 

The perturbations are with respect to some a priori condition which may be estimated from 
climatology, regression, or more commonly from an analysis or forecast provided by a numerical 
model.  In order to solve for δu, δT, and δTs from a set spectrally independent radiance observations 
δTb, the perturbation profiles are represented in terms of arbitrary basis functions φ (p); so 
 

 δTs =  αo φo                    
 

Q       p 
  δu(p)  =  Σ   αi  ∫   q(p) φi(p) dp ,  

                                i=1     o 
 
where the water vapour mixing ratio is given by q(p) = g ∂u/∂p and δq = g Σ α q φ, 

 
L 

 δT(p)  =  - Σ      αi  φi(p) . 
                                i=Q+1 

 
Then for M spectral channel observations 

 
L 

δTbj    = Σ  αi ψij     where     j = 1,...,M 
                   i=0 

and 
             ∂Bj     ∂Bj 

  ψoj  =  [             /             ]  τsj 
             ∂Ts     ∂Tbj 
 ps       p          ∂T     ∂τj        ∂Bj     ∂Bj 

 ψij  =   ∫   [  ∫   q φi dp] [                           ] [            /            ] dp      i=1,...,Q 
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o      o          ∂p     ∂u        ∂T     ∂Tbj 
  

ps         ∂τj        ∂Bj       ∂Bj 
 ψij  =  ∫   φI  

             [               /              ] dp      i=Q+1,...,L 
o       ∂p        ∂T        ∂Tbj 

 
or in matrix form 

 
     tb  =      ψ                 α . 
 (Mx1)  (M x L+1) (L+1 x 1) 

 
A least squares solution suggests that 
 

  α  =  (ψt ψ)-1 ψt tb  ≈  (ψt ψ + γI)-1 ψt tb 
 
where γ =.1 has been incorporated to stabilize the matrix inverse. 
 

There are many reasonable choices for the pressure basis functions φ(p).  For example 
empirical orthogonal functions (eigenvectors of the water vapour and temperature profile covariance 
matrices) can be used in order to include statistical information in the solution.  Also the profile 
weighting functions of the radiative transfer equation can be used.  Or gaussian functions that peak 
in different layers of the atmosphere can be used. 
 

Ancillary information, such as surface observations, are readily incorporated into the profile 
solutions as additional equations (M+2 equations to solve L unknowns). 
 

      Q 
 qo - q (ps)  =  g  Σ   αi q(ps) φi(ps) 

      i=1 
 

       L 
 To - T (ps)  =  -  Σ      αi φi(ps) 

     i=Q+1 
 
 In summary we have the following characteristics (a) the RTE is in perturbation form, (b) δT 
and δu are expressed as linear expansions of basis functions (EOF or W(p)), (c) ancillary 
observations are used as extra equations, (d) a least squares solution is sought, and (e) a 
simultaneous temperature and moisture profile solution produces improved moisture 
determinations.  The simultaneous solution addresses the interdependence of water vapour 
radiance upon temperature and carbon dioxide channel radiance upon water vapour concentration. 
 The dependence of the radiance observations on the surface emissions is accounted for by the 
inclusion of surface temperature as an unknown.  A single matrix solution is computationally 
efficient compared to an iterative calculation. 
 
 
5.9 Water Vapour Profile Solutions 
 

The direct physical solution of the RTE provides a simultaneous solution of both the 
temperature and moisture profiles.  It is currently the preferred solution.  On the other hand, iterative 
numerical techniques involve several determinations of each profile separately before self 
consistent convergence is achieved.  The iterative numerical solution for the moisture profile is 
presented here. It should be viewed as a companion to the iterative numerical solution of the 
temperature profile presented in section 5.7. 
 

The linear form of the RTE can be written in terms of the precipitable water vapour profile 
as 

            us 



 
 

5-27 

(∆Tb)λ    =     ∫   (∆T) Vλ du 
o 

where 
      ∂Bλ(T)               ∂Bλ(T)                ∂τλ 

  Vλ  =  [                   |       /                       |        ]              
          ∂T   ∂T                     ∂u 

      T=Tav     T=Tbλ 
 
and Tav(p) represents a mean or initial profile condition. 
 

One manner of solving for the water vapour profile from a set of spectrally independent 
water vapour radiance observations is to employ one of the linear direct temperature profile 
solutions discussed earlier.  In this case, however, one solves for the function T(u) rather than T(p). 
 Given T(p) from a prior solution of carbon dioxide and/or oxygen channel radiance observations, 
u(p) can be found by relating T(p) to T(u).  The mixing ratio profile, q(p), can then be obtained by 
taking the vertical derivative of u(p), q(p) = g ∂u/∂p where g is gravity. 
 

Rosenkranz et al (1982) have applied this technique to microwave measurements of water 
vapour emission.  They used the regression solution for both the temperature versus pressure and 
temperature versus water vapour concentration profiles.  The regression solutions have the form 
 

              N 
  T(pj) = to(pj) +  Σ   ti(pi) Tbi 

             i=1 
and 

                M 
   T(uk) = to(uk) +  Σ   tm(uk) Tbm 

             m=1 
 
where Tbi are the N brightness temperature observations of oxygen emission and Tbm are the M 
brightness temperature observations of water vapour emission and ti(pj) and tm(uk) are the 
regression coefficients corresponding to each pressure and water vapour concentration level.  u(p) 
is found from the intersections of the T(p) and T(u) profiles obtained by interpolation of the discrete 
values given by the regression solutions.  An advantage of the linear regression retrievals is that 
they minimize the computer requirements for real time data processing since the regression 
coefficient matrices are predetermined. 
 

Various non-linear iterative retrieval methods for inferring water vapour profiles have been 
developed and applied to satellite water vapour spectral radiance observations.  The formulation 
shown below follows that given by Smith (1970).  Integrating the linear RTE by parts one has 
 

         ps                 dp 
   Tbλ - Tbλ

 (n)   =  ∫   [τλ(p) - τλ(n)(p)]   Xλ (p)             
      o               p 

 
where 
 

         ∂Bλ(T)      ∂Bλ(T)                ∂T(p) 
  Xλ (p)  =    [                  | /                    |        ]                       

            ∂T         ∂T                   ∂ lnp 
           T=Tav     T=Tbλ 

 
and the (n) superscript denotes the nth estimate of the true profile.  Expanding τλ(p) as a logarithmic 
function of the precipitable water vapour concentration u(p) yields 
 

                   (n)              ∂τλ(p)    u(p) 
   τλ(p) - τλ (p)   =                                ln                     . 

          ∂ln u(n)(p)        u(n)(p) 
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Using the approximation 
 

    ∂τλ(p)  
                                        =   τ λ

 (n) (p) ln τλ (n) (p) 
  ∂ln u(n)(p) 

 
which is valid for the exponential transmission function, then 
    

           (n)  ps      u(p)          (n)        dp 
   Tbλ - Tbλ   =  ∫    ln                        Yλ  (p)               
                     o         u(n)(p)                    p 

 
with 

     (n)             
   Yλ  (p)   =   τλ(n)(p) ln τλ(n)(p) Xλ (p) 
 
Following the same strategy employed in Smith's generalized iterative temperature profile 

solution, we realize that from each water vapour channel brightness temperature an estimate of the 
ratio of the true precipitable water vapour profile with respect to the nth estimate can be calculated 
by 

                                     (n) 
       u(p)       Tbλ - Tbλ    

   [                     ]      =     exp [                                              ]    . 
     u(n)(p)     ps  (n)        dp    

                   λ    ∫   Yλ  (p)              
     o        p   

 
As in the temperature profile solution, the best average estimate of the precipitable water 

vapour profile is based upon the weighted mean of all water vapour channel estimates using the 
weighting function Yλ

(n)(p). 
 

It follows that the mixing ratio profile q(n+1) (p) can be estimated from u(n+1) (pj) / u(n) (pj) and 
from q(n) (pj) by using 
 

     [ u(n+1) (p) ]                 ∂      [ u(n+1) (p) ]  
 q(n+1)(p)  =  q(n)(p)                               + g u(n) (p)                                                . 

      [ u(n) (p) ]                ∂p      [ u(n) (p) ]  
 
 

The advantage of using this expression to compute q(p) is that the second term on the 
right hand side is small compared to the first term so that numerical errors produced by the vertical 
differentiation are small. 
 

It should be noted that relative humidity is an immediate by-product of the above 
derivation.  Assuming that the relative humidity is constant within the radiating layer, one can write 
ln (RH/RH(n)) = ln (u/u(n)) and thus determine true RH from the nth estimate RH(n). 
 
 
5.10 Microwave Form of RTE  
 

In the microwave region, the emissivity of the earth atmosphere system is normally less 
than unity.  Thus, there is a reflection contribution from the surface.  The radiance emitted from the 
surface would therefore be given by 

 
                      ps                ∂τ'λ(p) 

 Isfc  =  ελ Bλ(Ts) τλ(ps) + (1-ελ) τλ(ps) ∫   Bλ(T(p))                    d ln p 
     λ       o                 ∂ ln p 
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The first term in the right-hand side denotes the surface emission contribution, whereas the 

second term represents the emission contribution from the entire atmosphere to the surface, which 
is reflected back to the atmosphere at the same frequency.  The transmittance τ'λ(p) is now 
expressed with respect to the surface instead of the top of the atmosphere (as τ λ (p) is).  Thus, the 
upwelling radiance is now expressed as 

 
 
                    ps               ∂τ'λ(p) 

   Iλ  =  ελ Bλ(Ts) τλ(ps) + (1-ελ) τλ(ps) ∫   Bλ(T(p))                      d ln p 
                                                                    o                 ∂ ln p 
 

          o                 ∂τλ(p) 
        +  ∫  Bλ(T(p))                    d ln p 

        ps        ∂ ln p 
 
In the wavelength domain, the Planck function is given by 
 

                                             c2/λT 
   Bλ(T)  =  c1  / [ λ5 (e       - 1) ] . 

 
 
In the microwave region c2 /λT << 1, so the Planck function may be approximated by 
 

                                             c1    T 
   Bλ(T)  ≈                           ; 

                                      c2     λ4 
 
the Planck radiance is linearly proportional to the temperature.  Analogous to the above 
approximation, we may define an equivalent brightness temperature Tb such that 
 

                              c1     Tb 
   Iλ  =                          . 

                      c2     λ4 
 
Thus, the microwave radiative transfer equation may now be written in terms of temperature 
 

                                                    ps            ∂τ'λ(p) 
 Tbλ = ελ Ts τλ(ps) + (1-ελ) τλ(ps) ∫    T(p)                   d ln p 
                                                    o         ∂    ln p 

 
                 o           ∂τλ(p) 
       +  ∫  T(p)                       d ln p . 
                               ps          ∂ ln p 

 
The transmittance to the surface can be expressed in terms of transmittance to the top of the 
atmosphere by remembering 
 
                                               1    ps 

   τ'λ(p)  =  exp [ -            ∫   kλ(p) g(p) dp ] 
                                           g   p 
 

              ps    p 
                    =  exp [ - ∫   + ∫  ] 
                            o     o 

 
                             =  τλ(ps) / τλ(p)  . 
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So 

  ∂τ'λ(p)                  τλ(ps)      ∂τλ(p) 
                       =    -                                          . 
  ∂ ln p                (τλ(p))2     ∂ ln p 

 
And thus to achieve a form similar to that of the infrared RTE, we write 
 
                                                              o                   ∂τλ(p) 

  Tbλ  =  ελ Ts(ps) τλ(ps)  +  ∫  T(p) Fλ(p)                  d ln p 
         ps                  ∂ ln p 

 
where 

                  τλ(ps) 
   Fλ(p)  =  { 1 + (1 - ελ)  [                 ]2 } . 

                  τλ(p) 
 
 A special problem area in the use of microwave for atmospheric sounding from a satellite 
platform is surface emissivity.  In the microwave spectrum, emissivity values of the earth's surface 
vary over a considerable range, from about 0.4 to 1.0.  The emissivity of the sea surface typically 
ranges between 0.4 and 0.5, depending upon such variables as salinity, sea ice, surface 
roughness, and sea foam.  In addition, there is a frequency, dependence with higher frequencies 
displaying higher emissivity values.  Over land, the emissivity depends on the moisture content of 
the soil.  Wetting of a soil surface results in a rapid decrease in emissivity.  The emissivity of dry soil 
is on the order of 0.95 to 0.97, while for wet bare soil it is about 0.80 to 0.90, depending on the 
frequency. The surface emissivity appearing in the first term has a significant effect on the 
brightness temperature value. 
 

The basic concept of inferring atmospheric temperatures from satellite observations of 
thermal microwave emission in the oxygen spectrum was developed by Meeks and Lilley (1963) in 
whose work the microwave weighting functions were first calculated.  The prime advantage of 
microwave over infrared temperature sounders is that the longer wavelength microwaves are much 
less influenced by clouds and precipitation.  Consequently, microwave sounders can be effectively 
utilized to infer atmospheric temperatures in all weather conditions.  We will not pursue microwave 
retrievals in this course, except to say that the techniques are similar to those for infrared retrieval. 
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Figure 5.1:  Location of three spectral bands in the CO2 absorption band at 15 um (left), pressure 
broadening of the absorption line from high to low in the atmosphere with the spectral band 
locations indicated (center), and vertical distribution of the weighting functions for the three spectral 
bands (right). 
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Figure 5.2:  Images of measurements in the CO2 spectral region from very opaque (left) to 
nearly transparent (right). 
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Figure 5.3: Outgoing radiance in terms of black body temperature in the vicinity of 15µm CO2 band 
observed by the IRIS on Nimbus IV.  The arrows denote the spectral regions sampled by the VTPR 
instrument. 
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Figure 5.4: Temperature retrieval using Chahine's relaxation and Smith's iterative methods for the 
VTPR channels. 


