Falsification Of
The Atmospheric CO2 Greenhouse Effects
Within The Frame Of Physics
Version 1.0 (July 7, 2007)
Gerhard Gerlich
Institut f¨
ur Mathematische Physik
Technische Universit¨
at Carolo-Wilhelmina
Mendelssohnstraße 3
D-38106 Braunschweig
Federal Republic of Germany
g.gerlich@tu-bs.de
Ralf D. Tscheuschner
Postfach 60 27 62
D-22237 Hamburg
arXiv:0707.1161v1 [physics.ao-ph] 8 Jul 2007
Federal Republic of Germany
ralfd@na-net.ornl.gov

2
Gerhard Gerlich and Ralf D. Tscheuschner
Abstract
The atmospheric greenhouse effect, an idea that authors trace back to the traditional
works of Fourier 1824, Tyndall 1861 and Arrhenius 1896 and is still supported in global
climatology essentially describes a fictitious mechanism in which a planetary atmosphere
acts as a heat pump driven by an environment that is radiatively interacting with but
radiatively equilibrated to the atmospheric system.
According to the second law of
thermodynamics such a planetary machine can never exist. Nevertheless, in almost
all texts of global climatology and in a widespread secondary literature it is taken for
granted that such mechanism is real and stands on a firm scientific foundation. In
this paper the popular conjecture is analyzed and the underlying physical principles are
clarified. By showing that (a) there are no common physical laws between the warming
phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there
are no calculations to determine an average surface temperature of a planet, (c) the
frequently mentioned difference of 33 C is a meaningless number calculated wrongly,
(d) the formulas of cavity radiation are used inappropriately, (e) the assumption of a
radiative balance is unphysical, (f) thermal conductivity and friction must not be set to
zero, the atmospheric greenhouse conjecture is falsified.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
3
Contents
Abstract
2
1
Introduction
6
1.1
Problem background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
1.2
The greenhouse effect hypothesis
. . . . . . . . . . . . . . . . . . . . . . . . .
11
1.3
This paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
2
The warming mechanism in real greenhouses
16
2.1
Radiation Basics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
2.1.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
2.1.2
The infinitesimal specific intensity . . . . . . . . . . . . . . . . . . . . .
16
2.1.3
Integration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
2.1.4
The Stefan-Boltzmann law . . . . . . . . . . . . . . . . . . . . . . . . .
19
2.1.5
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
2.2
The Sun as a black body radiator . . . . . . . . . . . . . . . . . . . . . . . . .
21
2.3
The radiation on a very nice day
. . . . . . . . . . . . . . . . . . . . . . . . .
23
2.3.1
The phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
2.3.2
The sunshine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
2.3.3
The radiation of the ground . . . . . . . . . . . . . . . . . . . . . . . .
25
2.3.4
Sunshine versus ground radiation . . . . . . . . . . . . . . . . . . . . .
27
2.3.5
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
2.4
High School Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
2.5
Experiment by Wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
2.6
Glass house summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
3
The fictitious atmospheric greenhouse effects
35
3.1
Problem definition
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
3.2
Scientific error versus scientific fraud . . . . . . . . . . . . . . . . . . . . . . .
35
3.3
Different versions of the atmospheric greenhouse conjecture . . . . . . . . . . .
38
3.3.1
Atmospheric greenhouse effect after M¨
oller (1973) . . . . . . . . . . . .
38
3.3.2
Atmospheric greenhouse effect after Meyer's encyclopedia (1974) . . . .
38
3.3.3
Atmospheric greenhouse effect after Sch¨
onwiese (1987) . . . . . . . . .
38
3.3.4
Atmospheric greenhouse effect after Stichel (1995) . . . . . . . . . . . .
39
3.3.5
Atmospheric greenhouse effect after Anonymous 1 (1995) . . . . . . . .
39
3.3.6
Atmospheric greenhouse effect after Anonymous 2 (1995) . . . . . . . .
40
3.3.7
Atmospheric greenhouse effect after Anonymous 3 (1995) . . . . . . . .
40
3.3.8
Atmospheric greenhouse effect after German Meteorological Society (1995) 40

4
Gerhard Gerlich and Ralf D. Tscheuschner
3.3.9
Atmospheric greenhouse effect after Graßl (1996)
. . . . . . . . . . . .
41
3.3.10 Atmospheric greenhouse effect after Ahrens (2001) . . . . . . . . . . . .
41
3.3.11 Atmospheric greenhouse effect after Dictionary of Geophysics, Astro-
physics, and Astronomy (2001)
. . . . . . . . . . . . . . . . . . . . . .
42
3.3.12 Atmospheric greenhouse effect after Encyclopaedia of Astronomy and
Astrophysics (2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
3.3.13 Atmospheric greenhouse effect after Encyclopaedia Britannica Online
(2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
3.3.14 Atmospheric greenhouse effect after Rahmstorf (2007) . . . . . . . . . .
43
3.3.15 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
3.4
The conclusion of the US Department of Energy . . . . . . . . . . . . . . . . .
44
3.5
Absorption/Emission is not Reflection
. . . . . . . . . . . . . . . . . . . . . .
45
3.5.1
An inconvenient popularization of physics
. . . . . . . . . . . . . . . .
45
3.5.2
Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47
3.5.3
Absorption and Emission . . . . . . . . . . . . . . . . . . . . . . . . . .
48
3.5.4
Re-emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
3.5.5
Two approaches of Radiative Transfer
. . . . . . . . . . . . . . . . . .
49
3.6
The hypotheses of Fourier, Tyndall, and Arrhenius
. . . . . . . . . . . . . . .
51
3.6.1
The traditional works . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51
3.6.2
Modern works of climatology
. . . . . . . . . . . . . . . . . . . . . . .
57
3.7
The assumption of radiative balance
. . . . . . . . . . . . . . . . . . . . . . .
58
3.7.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
3.7.2
A note on "radiation balance" diagrams
. . . . . . . . . . . . . . . . .
58
3.7.3
The case of purely radiative transfer
. . . . . . . . . . . . . . . . . . .
60
3.7.4
The average temperature of a radiation-exposed globe . . . . . . . . . .
62
3.7.5
Non-existence of the natural greenhouse effect . . . . . . . . . . . . . .
64
3.7.6
A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
3.7.7
Non-existence of a global temperature
. . . . . . . . . . . . . . . . . .
65
3.7.8
The rotating globe . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
3.7.9
The obliquely rotating globe . . . . . . . . . . . . . . . . . . . . . . . .
67
3.7.10 The radiating bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
3.7.11 The comprehensive work of Schack . . . . . . . . . . . . . . . . . . . .
70
3.8
Thermal conductivity versus radiative transfer . . . . . . . . . . . . . . . . . .
71
3.8.1
The heat equation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
3.8.2
Heat transfer across and near interfaces . . . . . . . . . . . . . . . . . .
73
3.8.3
In the kitchen: Physics-obsessed housewife versus IPCC . . . . . . . . .
74
3.9
The laws of thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
3.9.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
5
3.9.2
Diagrams
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
3.9.3
A paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77
3.9.4
Possible resolution of the paradox . . . . . . . . . . . . . . . . . . . . .
78
4
Physical Foundations of Climate Science
79
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79
4.2
The conservation laws of magnetohydrodynamics
. . . . . . . . . . . . . . . .
80
4.2.1
Overview
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80
4.2.2
Electric charge conservation . . . . . . . . . . . . . . . . . . . . . . . .
81
4.2.3
Mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
81
4.2.4
Maxwell's equations
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
81
4.2.5
Ohm's law for moving media . . . . . . . . . . . . . . . . . . . . . . . .
82
4.2.6
Momentum balance equation . . . . . . . . . . . . . . . . . . . . . . . .
82
4.2.7
Total energy balance equation . . . . . . . . . . . . . . . . . . . . . . .
82
4.2.8
Poynting's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82
4.2.9
Consequences of the conservation laws . . . . . . . . . . . . . . . . . .
83
4.2.10 General heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . .
83
4.2.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84
4.3
Science and Global Climate Modelling
. . . . . . . . . . . . . . . . . . . . . .
85
4.3.1
Science and the Problem of Demarcation . . . . . . . . . . . . . . . . .
85
4.3.2
Evaluation of Climatology and Climate Modelling . . . . . . . . . . . .
88
4.3.3
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
89
5
Physicist's Summary
91
Acknowledgement
94
List of Figures
95
List of Tables
98
References
99

6
Gerhard Gerlich and Ralf D. Tscheuschner
1
Introduction
1.1
Problem background
Recently, there have been lots of discussions regarding the economic and political implications
of climate variability, in particular global warming as a measurable effect of an anthropogenic,
i.e. human-made, climate change [1­13]. Many authors assume that carbon dioxide emissions
from fossil-fuel consumption represent a serious danger to the health of our planet, since they
are supposed to influence the climates, in particular the average temperatures of the surface
and lower atmosphere of the Earth. However, carbon dioxide is a rare trace gas, a very small
part of the atmosphere found in concentrations as low as 0, 03 Vol % (cf. Table 1 and 2, see
also Ref. [16] ).1
Date
CO2 concentration
Source
[ppmv]
March 1958
315.56
Ref. [14]
March 1967
322.88
Ref. [14]
March 1977
334.53
Ref. [14]
March 1987
349.24
Ref. [14]
March 1996
363.99
Ref. [14]
March 2007
377.3
Ref. [15]
Table 1: Atmospheric concentration of carbon dioxide in volume parts per million (1958 -
2007)
A physicist starts his analysis of the problem by pointing his attention to two fundamental
thermodynamic properties, namely
· the thermal conductivity , a property that determines how much heat per time unit
and temperature difference flows in a medium;
· the isochoric thermal diffusivity av, a property that determines how rapidly a temper-
ature change will spread, expressed in terms of an area per time unit.
1In a recent paper on "180 Years accurate CO2 Gas analysis of Air by Chemical Methods" the German
biologist Ernst-Georg Beck argues that the IPCC reliance of ice core CO2 figures is wrong [17, 18]. Though
interesting on its own that even the CO2 data themselves are subject to a discussion it does not influence the
rationale of this paper which is to show that CO2 is completely irrelevant.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
7
Gas
Formula
U.S. Standard 1976
Hardy et al. 2005
Working
Ref. [14]
Ref. [8]
hypothesis
[Vol %]
[Vol %]
[Vol %]
Nitrogen
N2
78.084
78.09
78.09
Oxygen
O2
20.9476
20.95
20.94
Argon
Ar
0.934
0.93
0.93
Carbon dioxide
CO2
0.0314
0.03
0.04
Table 2: Three versions of an idealized Earth's atmosphere and the associated gas volume
concentrations, including the working hypothesis chosen for this paper
Both quantities are related by

av =
(1)
· cv
the proportionality constant of the heat equation
T = av · T
(2)
t
whereby T is the temperature,
the mass density, and cv the isochoric specific heat.
To calculate the relevant data from the gaseous components of the air one has to use their
mass concentrations as weights to calculate the properties of the mixture "air" according to
Gibbs thermodynamics [19, 20].2 Data on volume concentrations (Table 2) can be converted
into mass concentrations with the aid of known mass densities (Table 3).
A comparison of volume percents and mass percents for CO2 shows that the current mass
concentration, which is the physically relevant concentration, is approximately 0.06 % and not
the often quoted 0.03 % (Table 4).
2The thermal conductivity of a mixture of two gases does not, in general, vary linearly with the composition
of the mixture.
However for comparable molecular weight and small concentrations the non-linearity is
negligible [21].

8
Gerhard Gerlich and Ralf D. Tscheuschner
Gas
Formula
mass density
Source
[kg/m3]
Nitrogen
N2
1.1449
Ref. [14]
Oxygen
O2
1.3080
Ref. [14]
Argon
Ar
1.6328
Ref. [14]
Carbon Dioxide
CO2
1.7989
Ref. [14]
Table 3: Mass densities of gases at normal atmospheric pressure (101.325 kPa) and standard
temperature (298 K)
Gas
Formula
xv
(298 K)
xm
[Vol %]
[kg/m3]
[Mass %]
Nitrogen
N2
78.09
1.1449
75.52
Oxygen
O2
20.94
1.3080
23.14
Argon
Ar
0.93
1.6328
1.28
Carbon dioxide
CO2
0.04
1.7989
0.06
Table 4: Volume percent versus mass percent: The volume concentration xv and the mass
concentration xm of the gaseous components of an idealized Earth's atmosphere
From known thermal conductivities (Table 5), isochoric heat capacities, and mass densities
the isochoric thermal diffusivities of the components of the air are determined (Table 6). This
allows to estimate the change of the effective thermal conductivity of the air in dependence
of a doubling of the CO2 concentration, expected to happen within the next 300 years (Table
7).
It is obvious that a doubling of the concentration of the trace gas CO2, whose thermal
conductivity is approximately one half than that of nitrogen and oxygen, does change the
thermal conductivity at the most by 0, 03 % and the isochoric thermal diffusivity at the
most by 0.07 %. These numbers lie within the range of the measuring inaccuracy and other
uncertainties such as rounding errors and therefore have no significance at all.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
9
Gas
Formula
(200 K)
(298 K)
(300 K)
(400 K)
[W/mK]
[W/mK]
[W/mK]
[W/mK]
Ref. [14]
(interpolated)
Ref. [14]
Ref. [14]
Nitrogen
N2
0.0187
0.0259
0.0260
0.0323
Oxygen
O2
0.0184
0.0262
0.0263
0.0337
Argon
Ar
0.0124
0.0178
0.0179
0.0226
Carbon dioxide
CO2
0.0096
0.0167
0.0168
0.0251
Table 5: Thermal conductivities of the gaseous components of the Earth's atmosphere at
normal pressure (101.325 kPa)
Gas
cp
Mr
R/Mr
cv

av
[J/kg K]
[kg/mol]
[J/kg K]
[J/kg K]
[kg/m3]
[Js/mK]
[m2/s]
N2
1039
28.01
297
742
1.1489
0.0259
3.038 · 10-5
O2
919
32.00
260
659
1.3080
0.0262
3.040 · 10-5
Ar
521
39.95
208
304
1.6328
0.0178
3.586 · 10-5
CO2
843
44.01
189
654
1.7989
0.0167
1.427 · 10-5
Table 6: Isobaric heat capacities cp, relative molar masses Mr, isochoric heat capacities
cv cp - R/Mr with universal gas constant R = 8.314472 J/mol K, mass densities , thermal
conductivities , and isochoric thermal diffusivities av of the gaseous components of the
Earth's atmosphere at normal pressure (101.325 kPa)

10
Gerhard Gerlich and Ralf D. Tscheuschner
Gas
xm
Mr
cp
cv

av
[Mass %]
[kg/mol]
[J/kg K]
[J/kg K]
[kg/m3]
[Js/mK]
[m2/s]
N2
75.52
28.01
1039
742
1.1489
0.0259
3.038 · 10-5
O2
23.14
32.00
929
659
1.3080
0.0262
3.040 · 10-5
Ar
1.28
39.95
512
304
1.6328
0.0178
3.586 · 10-5
CO2
0.06
44.01
843
654
1.7989
0.0167
1.427 · 10-5
Air
100.00
29.10
1005
719
1.1923
0.02586
3.0166 · 10-5
Gas
xm
Mr
cp
cv

av
[Mass %]
[kg/mol]
[J/kg K]
[J/kg K]
[kg/m3]
[Js/mK]
[m2/s]
N2
75.52
28.01
1039
742
1.1489
0.0259
3.038 · 10-5
O2
23.08
32.00
929
659
1.3080
0.0262
3.040 · 10-5
Ar
1.28
39.95
512
304
1.6328
0.0178
3.586 · 10-5
CO2
0.12
44.01
843
654
1.7989
0.0167
1.427 · 10-5
Air
100.00
29.10
1005
719
1.1926
0.02585
3.0146 · 10-5
Table 7: The calculation of the isochoric thermal diffusivity av = /( · cv) of the air and its
gaseous components for the current CO2 concentration (0.06 Mass %) and for a fictitiously
doubled CO2 concentration (0.12 Mass %) at normal pressure (101.325 kPa)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
11
1.2
The greenhouse effect hypothesis
Among climatologists, in particular those who are affiliated with the Intergovernmental Panel
of Climate Change (IPCC)3, there is a "scientific consensus" [22], that the relevant mechanism
is the atmospheric greenhouse effect, a mechanism heavily relying on the assumption, that
radiative heat transfer clearly dominates over the other forms of heat transfer such as thermal
conductivity, convection, condensation et cetera [23­30].
In all past IPCC reports and other such scientific summaries the following point evocated
in Ref. [24], p. 5, is central to the discussion:
"One of the most important factors is the greenhouse effect; a simplified ex-
planation of which is as follows. Short-wave solar radiation can pass through the
clear atmosphere relatively unimpeded. But long-wave terrestrial radiation emit-
ted by the warm surface of the Earth is partially absorbed and then re-emitted
by a number of trace gases in the cooler atmosphere above. Since, on average,
the outgoing long-wave radiation balances the incoming solar radiation, both the
atmosphere and the surface will be warmer than they would be without the green-
house gases . . . The greenhouse effect is real; it is a well understood effect, based
on established scientific principles."
To make things more precise, supposedly, the notion of radiative forcing was introduced by
the IPCC and related to the assumption of radiative equilibrium. In Ref. [27], pp. 7-6, one
finds the statement:
"A change in average net radiation at the top of the troposphere (known as the
tropopause), because of a change in either solar or infrared radiation, is defined for
the purpose of this report as a radiative forcing. A radiative forcing perturbs the
balance between incoming and outgoing radiation. Over time climate responds to
the perturbation to re-establish the radiative balance. A positive radiative forcing
tends on average to warm the surface; a negative radiative forcing on average tends
to cool the surface. As defined here, the incoming solar radiation is not considered
a radiative forcing, but a change in the amount of incoming solar radiation would
be a radiative forcing . . . For example, an increase in atmospheric CO2 concentra-
tion leads to a reduction in outgoing infrared radiation and a positive radiative
forcing."
However, in general "scientific consensus" is not related whatsoever to scientific truth as
countless examples in history have shown. "Consensus" is a political term, not a scientific
3The IPCC was created in 1988 by the World Meteorological Organization (WHO) and the United Nations
Environmental Programme (UNEP).

12
Gerhard Gerlich and Ralf D. Tscheuschner
term. In particular, from the viewpoint of theoretical physics the radiative approach, which
uses physical laws such as Planck's law and Stefan-Boltzmann's law that only have a limited
range of validity that definitely does not cover the atmospheric problem, must be highly ques-
tioned [31­35]. For instance in many calculations climatologists perform calculations where
idealized black surfaces e.g. representing a CO2 layer and the ground, respectively, radiate
against each other. In reality, we must consider a bulk problem, in which at concentrations
of 300 ppmv at normal state still
N
3 · 10-4 · V · NL
3 · 10-4 · (10 · 10-6)3 · 2.687 · 1025
3 · 10-4 · 10-15 · 2.687 · 1025
8 · 107
(3)
molecules are distributed within a cube V with edge length 10 µm, a typical wavelength of the
relevant infrared radiation.4 In this context an application of the formulas of cavity radiation
is sheer nonsense.
It cannot be overemphasized that a microscopic theory providing the base for a derivation
of macroscopic quantities like thermal or electrical transport coefficients must be a highly
involved many-body theory. Of course, heat transfer is due to interatomic electromagnetic
interactions mediated by the electromagnetic field. But it is misleading to visualize a photon
as a simple particle or wave packet travelling from one atom to another for example. Things
are pretty much more complex and cannot be understood even in a (one-)particle-wave duality
or Feynman graph picture.
On the other hand, the macroscopic thermodynamical quantities contain a lot of informa-
tion and can be measured directly and accurately in the physics lab. It is an interesting point
that the heat conductivity of CO2 is only one half of that of nitrogen or oxygen. In a 100
percent CO2 atmosphere a conventional light bulb shines brighter than in a nitrogen-oxygen
atmosphere due to the lowered heat conductivity of its environment. But this has nothing to
do with the supposed CO2 greenhouse effect which refers to trace gas concentrations. Global
climatologists claim that the Earth's natural greenhouse effect keeps the Earth 33 C warmer
than it would be without the trace gases in the atmosphere. 80 percent of this warming is
attributed to water vapor and 20 percent to the 0.03 volume percent CO2. If such an extreme
effect existed, it would show up even in a laboratory experiment involving concentrated CO2
as a heat conductivity anomaly. It would be manifest itself as a new kind of `superinsulation'
violating the conventional heat conduction equation. However, for CO2 such anomalous heat
transport properties never have been observed.
Therefore, in this paper, the popular greenhouse ideas entertained by the global clima-
tology community are reconsidered within the limits of theoretical and experimental physics.
4NL is the well-known Loschmidt number [36].

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
13
Authors trace back their origins to the works of Fourier [37,38] (1824), Tyndall [39­43] (1861)
and Arrhenius [44­46] (1896). A careful analysis of the original papers shows that Fourier's
and Tyndall's works did not really include the concept of the atmospheric greenhouse effect,
whereas Arrhenius's work fundamentally differs from the versions of today. With exception of
Ref. [46], the traditional works precede the seminal papers of modern physics, such as Planck's
work on the radiation of a black body [33, 34]. Although the arguments of Arrhenius were
falsified by his contemporaries they were picked up by Callendar [47­53] and Keeling [54­60],
the founders of the modern greenhouse hypothesis.5 Interestingly, this hypothesis has been
vague ever since it has been used. Even Keeling stated 1978 [57]:
"The idea that CO2 from fossil fuel burning might accumulate in air and cause
warming of the lower atmosphere was speculated upon as early as the latter the
nineteenth century (Arrhenius, 1903). At that time the use of fossil fuel was slight
to expect a rise in atmospheric CO2 to be detectable. The idea was convincingly
expressed by Callendar (1938, 1940) but still without solid evidence rise in CO2."
The influence of CO2 on the climate was also discussed thoroughly in a number of publications that appeared between 1909 and 1980, mainly in Germany [61­88]. The most influential
authors were Moller [69, 80­86], who also wrote a textbook on meteorology [89, 90], and Manabe [73­77, 85]. It seems, that the joint work of Moller and Manabe [85] has had a significant
influence on the formulation of the modern atmospheric CO2 Greenhouse conjectures and
hypotheses, respectively.
In a very comprehensive report of the US Department of Energy (DOE), which appeared
in 1985 [91], the atmospheric greenhouse hypothesis had been cast into its final form and
became the cornerstone in all subsequent IPCC publications [23­30].
Of course, it may be, that even if the oversimplified picture entertained in IPCC global
climatology is physically incorrect, a thorough discussion may reveal a non-neglible influence of
certain radiative effects (apart from sunlight) on the weather, and hence on its local averages,
the climates, which may be dubbed the CO2 greenhouse effect. But then three key questions
will remain, even if the effect is claimed to serve only as a genuine trigger of a network of
complex reactions:
1. Is there a fundamental CO2 greenhouse effect in physics?
2. If so, what is the fundamental physical principle behind this CO2 greenhouse effect?
3. Is it physically correct to consider radiative heat transfer as the fundamental mechanism
controlling the weather setting thermal conductivity and friction to zero?
5Recently, von Storch critized the anthropogenic global warming scepticism by characterizing the discussion
as "a discussion of yesterday and the day before yesterday" [1]. Ironically, it was Calendar and Keeling who
once reactivated "a discussion of yesterday and the day before yesterday" based on already falsified arguments.

14
Gerhard Gerlich and Ralf D. Tscheuschner
The aim of this paper is to give an affirmative negative answer to all of these questions
rendering them rhetoric.
1.3
This paper
In the language of physics an effect is a not necessarily evident but a reproducible and
measurable phenomenon together with its theoretical explanation.
Neither the warming mechanism in a glass house nor the supposed anthropogenic warming
is due to an effect in the sense of this definition:
· In the first case (the glass house) one encounters a straightforward phenomenon.
· In the second case (the Earth's atmosphere) one cannot measure something; rather, one
only makes heuristic calculations.
The explanation of the warming mechanism in a real greenhouse is a standard problem
in undergraduate courses, in which optics, nuclear physics and classical radiation theory are
dealt with. On this level neither the mathematical formulation of the first and second law
of thermodynamics nor the partial differential equations of hydrodynamics or irreversible
thermodynamics are known; the phenomenon has thus to be analyzed with comparatively
elementary means.
However, looking up the search terms "glass house effect", "greenhouse effect", or the
German word "Treibhauseffekt" in classical textbooks on experimental physics or theoretical
physics, one finds - possibly to one's surprise and disappointment - that this effect does
not appear anywhere - with a few exceptions, where in updated editions of some books
publications in climatology are cited. One prominent example is the textbook by Kittel who
added a "supplement" to the 1990 edition of his Thermal Physics on page 115 [92] :
"The Greenhouse Effect describes the warming of the surface of the Earth caused
by the infrared absorbent layer of water, as vapor and in clouds, and of carbon
dioxide on the atmosphere between the Sun and the Earth. The water may con-
tribute as much as 90 percent of the warming effect."
Kittel "supplement" refers to the 1990 and 1992 books of J.T. Houghton et al. on Climate
Change, which are nothing but the standard IPCC assessments [23, 25]. In general, most
climatologic texts do not refer to any fundamental work of thermodynamics and radiation
theory. Sometimes the classical astrophysical work of Chandrasekhar [93] is cited, but it is
not clear at all, which results are applied where, and how the conclusions of Chandrasekhar
fit into the framework of infrared radiation transfer in planetary atmospheres.
There seems to exist no source where an atmospheric greenhouse effect is introduced from
fundamental university physics alone.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
15
Evidently, the atmospheric greenhouse problem is not a fundamental problem of the phi-
losophy of science, which is best described by the M¨
unchhausen trilemma6, stating that one
is left with the ternary alternative7
infinite regression - dogma - circular reasoning
Rather, the atmospheric Greenhouse mechanism is a conjecture, which may be proved or
disproved already in concrete engineering thermodynamics [95­97]. Exactly this was done
well many years ago by an expert in this field, namely Alfred Schack, who wrote a classical
textbook on this subject [95]. 1972 he showed that the radiative component of heat transfer
of CO2, though relevant at the temperatures in combustion chambers, can be neglected at at-
mospheric temperatures. The influence of carbonic acid on the Earth's climates is definitively
unmeasurable [98].
The remaining part of this paper is organized as follows:
· In Section 2 the warming effect in real greenhouses, which has to be distinguished strictly
from the (in-) famous conjecture of Arrhenius, is discussed.
· Section 3 is devoted to the atmospheric greenhouse problem. It is shown that this
effect neither has experimental nor theoretical foundations and must be considered as
fictitious. The claim that CO2 emissions give rise to anthropogenic climate changes has
no physical basis.
· In Section 4 theoretical physics and climatology are discussed in context of the philoso-
phy of science. The question is raised, how far global climatology fits into the framework
of exact sciences such as physics.
· The final Section 5 is a physicist's summary.
6The term was coined by the critical rationalist Hans Albert, see e.g. Ref. [94]. For the current discussion on
global warming Albert's work may be particularly interesting. According to Albert new insights are not easy
to be spread, because there is often an ideological obstacle, for which Albert coined the notion of immunity
against criticism.
7Originally, an alternative is a choice between two options, not one of the options itself. A ternary
alternative generalizes an ordinary alternative to a threefold choice.

16
Gerhard Gerlich and Ralf D. Tscheuschner
2
The warming mechanism in real greenhouses
2.1
Radiation Basics
2.1.1
Introduction
For years, the warming mechanism in real greenhouses, paraphrased as "the greenhouse ef-
fect", has been commonly misused to explain the conjectured atmospheric greenhouse effect.
In school books, in popular scientific articles, and even in high-level scientific debates, it has
been stated that the mechanism observed within a glass house bears some similarity to the
anthropogenic global warming. Meanwhile, even mainstream climatologists admit that the
warming mechanism in real glass houses has to be distinguished strictly from the claimed
CO2 greenhouse effect.
Nevertheless, one should have a look at the classical glass house problem to recapitulate
some fundamental principles of thermodynamics and radiation theory. Later on, the relevant
radiation dynamics of the atmospheric system will be elaborated on and distinguished from
the glass house set-up.
Heat is the kinetic energy of molecules and atoms and will be transferred by contact or
radiation. Microscopically both interactions are mediated by photons. In the former case,
which is governed by the Coulomb resp. van der Waals interaction these are the virtual or
off-shell photons, in the latter case these are the real or on-shell photons. The interaction
between photons and electrons (and other particles that are electrically charged or have a non-
vanishing magnetic momentum) is microscopically described by the laws of quantum theory.
Hence, in principle, thermal conductivity and radiative transfer may be described in a unified
framework. However, the non-equilibrium many body problem is a highly non-trivial one and
subject to the discipline of physical kinetics unifying quantum theory and non-equilibrium
statistical mechanics.
Fortunately, an analysis of the problem by applying the methods and results of classical
radiation theory already leads to interesting insights.
2.1.2
The infinitesimal specific intensity
In classical radiation theory [93] the main quantity is the specific intensity I. It is defined in
terms of the amount of radiant energy dE in a specified frequency interval [, + d] that
is transported across an area element dF1 in direction of another area element dF2 during a
time dt:
(r dF
dE
1) (r dF2)
= I d dt
(4)
|r|4
where r is the distance vector pointing from dF1 to dF2 (Figure 1).

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
17
Figure 1: The geometry of classical radiation: A radiating infinitesimal area dF1 and an
illuminated infinitesimal area dF2 at distance r.
For a general radiation field one may write
I = I(x, y, z; l, m, n; t)
(5)
where (x, y, z) denote the coordinates, (l, m, n) the direction cosines, t the time, respectively,
to which I refers.
With the aid of the definition of the scalar product Equation (4) may be cast into the
form
(cos
dE
1 dF1) · (cos 2 dF2)
= I d dt ·
(6)
r2
A special case is given by
2 := 1
(7)
With
:= 1
d := dF1
d := dF2/r2
(8)
Equation (6) becomes
dE = I d dt cos d d
(9)
defining the pencil of radiation [93].
Equation (6), which will be used below, is slightly more general than Equation (9), which
is more common in the literature. Both ones can be simplified by introducing an integrated
intensity

I0 =
I d
(10)
0

18
Gerhard Gerlich and Ralf D. Tscheuschner
and a radiant power dP . For example, Equation (6) may be cast into the form
(cos
dP = I
1 dF1) · (cos 2 dF2)
0 ·
(11)
r2
2.1.3
Integration
When performing integration one has to bookkeep the dimensions of the physical quantities
involved. Usually, the area dF1 is integrated and the equation is rearranged in such a way,
that there is an intensity I (resp. an intensity times an area element IdF ) on both sides of
the equation. Three cases are particularly interesting:
(a) Two parallel areas with distance a. According to Figure 2 one may write
Figure 2: Two parallel areas with distance a.
1 = 2 =:
(12)
By setting
r2
= r2 + a2
(13)
0
2rdr
= 2r0dr0
(14)
a
cos
=
(15)
r
one obtains
2
R0
(cos )2
Iparallel areas =
I0
r0dr0d
0
0
r2
2
R0
a2
=
I0
r0dr0d
0
0
r4

2
R2+a2
0
a2
=
I0
rdrd
0
a
r4

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
19

R2+a2
0
1
= 2 · I0 · a2 ·
dr
a
r3

1
R2+a2
0
= 2 · I0 · a2 · - 2r2 a
1
1
= · I0 · a2 ·
-
a2
R2 + a2
0
R2
= · I
0
0 ·
(16)
R2 + a2
0
(b) Two parallel areas with distance a 0
If the distance a is becoming very small whereas R0 is kept finite one will have
R2
I
0
parallel areas (a0) = lim
· I0 ·
= I0
(17)
a0
R2 + a2
0
This relation corresponds to the total half-space intensity for a radiation from an unit
surface.
(c) The Earth illuminated by the Sun
With ISun being the factor I
0
0 for the Sun the solar total half-space intensity is given by
ISun's surface = · ISun
(18)
0
Setting
a = REarth's orbit
(19)
R0 = RSun
(20)
one gets for the solar intensity at the Earth's orbit
R2
I
Sun
Earth's orbit
= · ISun ·
0
R2
+ R2
Sun
Earth's orbit
R2
= I
Sun
Sun's surface · R2 + R2
Sun
Earth's orbit
R2
= I
Sun
Sun's surface · R2Earth's orbit
1
= ISun's surface ·
(21)
(215)2
2.1.4
The Stefan-Boltzmann law
For a perfect black body and a unit area positioned in its proximity we can compute the
intensity I with the aid of the the Kirchhoff-Planck-function, which comes in two versions
-1
2h3
h
B(T ) =
exp
- 1
(22)
c2
kT
-1
2hc2
hc
B(T ) =
exp
- 1
(23)
5
kT

20
Gerhard Gerlich and Ralf D. Tscheuschner
that are related to each other by
d
c
B(T ) d = B(T )
d = -B(T )
d =: -B(T ) d
(24)
d
2
with
= c/
(25)
where c is the speed of light, h the Planck constant, k the Boltzmann constant, the wave-
length, the frequency, and T the absolute temperature, respectively. Integrating over all
frequencies or wavelengths we obtain the Stefan-Boltzmann T 4 law


I = ·
B(T ) d = ·
B(T ) d = T 4
(26)
0
0
with
24k4
W
= ·
= 5.670400 · 10-8
(27)
15c2h3
m2K4
One conveniently writes
T
4
W
= 5.67 ·
(28)
100
m2K4
This is the net radiation energy per unit time per unit area placed in the neighborhood of a
radiating plane surface of a black body.
2.1.5
Conclusion
Three facts should be emphasized here:
· In classical radiation theory radiation is not described by a vector field assigning to
every space point a corresponding vector. Rather, with each point of space many rays
are associated (Figure 3). This is in sharp contrast to the modern description of the
radiation field as an electromagnetic field with the Poynting vector field as the relevant
quantity [99].
Figure 3: The geometry of classical radiation: Two surfaces radiating against each other.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
21
· The constant appearing in the T 4 law is not a universal constant of physics. It strongly
depends on the particular geometry of the problem considered.8
· The T 4-law will no longer hold if one integrates only over a filtered spectrum, appropriate
to real world situations. This is illustrated in Figure 4 .
Figure 4: Black body radiation compared to the radiation of a sample coloured body. The
non-universal constant is normalized in such a way that both curves coincide at T = 290 K.
The Stefan-Boltzmann T 4 law does no longer hold in the latter case, where only two bands
are integrated over, namely that of visible light and of infrared radiation from 3 µm to 5 µm,
giving rise to a steeper curve.
Many pseudo-explanations in the context of global climatology are already falsified by these
three fundamental observations of mathematical physics.
2.2
The Sun as a black body radiator
The Kirchhoff-Planck function describes an ideal black body radiator. For matter of conve-
nience one may define
R2
1
Bsunshine = BSun ·
Sun
= BSun ·
(29)


R2

(215)2
Earth's orbit
Figure 5 shows the spectrum of the sunlight, assuming the Sun is a black body of temperature
T = 5780 K.
8For instance, to compute the radiative transfer in a multi-layer setup, the correct point of departure is
the infinitesimal expression for the radiation intensity, not an integrated Stefan-Boltzmann expression already
computed for an entirely different situation.

22
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 5: The spectrum of the sunlight assuming the sun is a black body at T = 5780 K.
To compute the part of radiation for a certain wave length interval [1, 2] one has to
evaluate the expression
2 Bsunshine(5780) d
1


(30)
Bsunshine(5780) d
0

Table 8 shows the proportional portions of the ultraviolet, visible, and infrared sunlight,
respectively.
Band
Range
Portion
[nm]
[%]
ultraviolet
0 - 380
10.0
visible
380 - 760
44,8
infrared
760 -
45,2
Table 8: The proportional portion of the ultraviolet, visible, and infrared sunlight, respec-
tively.
Here the visible range of the light is assumed to lie between 380 nm and 760 nm. It should
be mentioned that the visible range depends on the individuum.
In any case, a larger portion of the incoming sunlight lies in the infrared range than in the
visible range. In most papers discussing the supposed greenhouse effect this important fact
is completely ignored.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
23
2.3
The radiation on a very nice day
2.3.1
The phenomenon
Especially after a year's hot summer every car driver knows a sort of a glass house or green-
house effect: If he parks his normally tempered car in the morning and the Sun shines in
until he gets back into it at noon, he will almost burn his fingers at the steering wheel, if
the dashboard area had been subject to direct Sun radiation. Furthermore, the air inside
the car is unbearably hot, even if it is quite nice outside. One opens the window and the
slide roof, but unpleasant hot air may still hit one from the dashboard while driving. One
can notice a similar effect in the winter, only then one will probably welcome the fact that
it is warmer inside the car than outside. In greenhouses or glass houses this effect is put to
use: the ecologically friendly solar energy, for which no energy taxes are probably going to
be levied even in the distant future, is used for heating. Nevertheless, glass houses have not
replaced conventional buildings in our temperate climate zone not only because most people
prefer to pay energy taxes, to heat in the winter, and to live in a cooler apartment on summer
days, but because glass houses have other disadvantages as well.
2.3.2
The sunshine
One does not need to be an expert in physics to explain immediately why the car is so hot
inside: It is the Sun, which has heated the car inside like this. However, it is a bit harder
to answer the question why it is not as hot outside the car, although there the Sun shines
onto the ground without obstacles. Undergraduate students with their standard physical
recipes at hand can easily "explain" this kind of a greenhouse effect: The main part of the
Sun's radiation (Figure 6) passes through the glass, as the maximum (Figure 7) of the solar
radiation is of bluegreen wavelength
bluegreen = 0.5 µm
(31)
which the glass lets through. This part can be calculated with the Kirchhoff-Planck-function.
Evidently, the result depends on the type of glass. For instance, if it is transparent to
electromagnetic radiation in the 300 nm - 1000 nm range one will have
1 µm
Bsunshine(5780) d
0.3 µm


= 77, 2 %
(32)
Bsunshine(5780) d
0

In case of a glass, which is assumed to be transparent only to visible light (380 nm - 760 nm)
one gets
0.760 µm Bsunshine(5780) d
0.380 µm


= 44, 8 %
(33)
Bsunshine(5780) d
0

Because of the Fresnel reflection [99] at both pane boundaries one has to subtract 8 - 10
percent and only 60 - 70 percent (resp. 40 percent) of the solar radiation reach the ground.

24
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 6: The unfiltered spectral distribution of the sunshine on Earth under the assumption
that the Sun is a black body with temperature T = 5780 K (left: in wave length space, right:
in frequency space).
Figure 7: The exact location of the zero of the partial derivatives of the radiation intensities
of the sunshine on Earth (left: in wave length space, right: in frequency space).

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
25
High performance tinted glass which is also referred to as spectrally selective tinted glass
reduces solar heat gain typically by a factor of 0.50 (only by a factor of 0.69 in the visible
range) compared to standard glass [100].
2.3.3
The radiation of the ground
The bottom of a glass house has a temperature of approximately 290 K (Figure 8). The
maximum of a black body's radiation can be calculated with the help of Wien's displacement
law (cf. Figure 9 and Figure 10)
Figure 8: The unfiltered spectral distribution of the radiation of the ground under the as-
sumption that the earth is a black body with temperature T = 290 K (left: in wave length
space, right: in frequency space).
max(T ) · T = const.
(34)
giving
6000 K
max(300 K) =
· max(6000 K) = 10 µm
(35)
300 K
This is far within the infrared wave range, where glass reflects practically all light, according
to Beer's formula [101]. Practically 100 percent of a black body's radiation at ground tem-
peratures lie above the wavelengths of 3.5 µm. The thermal radiation of the ground is thus
"trapped" by the panes.
According to Wien's power law describing the intensity of the maximum wave-length
B
(T ) T 5
(36)
max
the intensity of the radiation on the ground at the maximum is
T 5
60005
Sun

= 205 = 3.2 · 106
(37)
T 5
3005
Earth's ground

26
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 9: The radiation intensity of the ground and its partial derivative as a function of the
wave length (left column) and of the frequency (right column).
Figure 10: Three versions of radiation curve families of the radiation of the ground (as a
function of the wave number k, of the frequency , of the wave length , respectively),
assuming that the Earth is a black radiator.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
27
times smaller than on the Sun and
T 5
R2
1
Sun
·
Sun
205 ·
70
(38)
T 5
R2
2152
Earth's ground
Earth's orbit
times smaller than the solar radiation on Earth.
The total radiation can be calculated from the Stefan-Boltzmann law
Btotal(T ) = · T 4
(39)
Hence, the ratio of the intensities of the sunshine and the ground radiation is given by
T 4
R2
1
Sun
·
Sun
204 ·
3.46
(40)
T 4
R2
2152
Earth's ground
Earth's orbit
Loosely speaking, the radiation of the ground is about four times weaker than the incoming
solar radiation.
2.3.4
Sunshine versus ground radiation
To make these differences even clearer, it is convenient to graphically represent the spectral
distribution of intensity at the Earth's orbit and of a black radiator of 290 K, respectively, in
relation to the wavelength. (Figures 11, 12, and 13)
To fit both curves into one drawing,
Figure 11: The unfiltered spectral distribution of the sunshine on Earth under the assumption
that the Sun is a black body with temperature T = 5780 K and the unfiltered spectral
distribution of the radiation of the ground under the assumption that the Earth is a black
body with temperature T = 290 K, both in one diagram (left: normal, right: super elevated
by a factor of 10 for the radiation of the ground).
one makes use of the technique of super-elevation and/or applies an appropriate re-scaling.
It becomes clearly visible,

28
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 12: The unfiltered spectral distribution of the sunshine on Earth under the assumption
that the Sun is a black body with temperature T = 5780 K and the unfiltered spectral
distribution of the radiation of the ground under the assumption that the Earth is a black
body with temperature T = 290 K, both in one semi-logarithmic diagram (left: normalized in
such a way that equal areas correspond to equal intensities, right: super elevated by a factor
of 10 for the radiation of the ground).
Figure 13: The unfiltered spectral distribution of the sunshine on Earth under the assumption
that the Sun is a black body with temperature T = 5780 K and the unfiltered spectral
distribution of the radiation of the ground under the assumption that the Earth is a black
body with temperature T = 290 K, both in one semi-logarithmic diagram (left: normalized
in such a way that equal areas correspond to equal intensities with an additional re-scaling
of the sunshine curve by a factor of 1/3.5, right: super elevated by a factor of 68 for the
radiation of the ground).

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
29
· that the maxima are at 0.5 µm or 10 µm, respectively;
· that the intensities of the maxima differ by more than an order of ten;
· that above 0.8 µm (infrared) the solar luminosity has a notable intensity.
Figure 13 is an obscene picture, since it is physically misleading. The obscenity will not
remain in the eye of the beholder, if the latter takes a look on the obscure scaling factors
already applied by Bakan and Raschke in an undocumented way in their paper on the so-
called natural greenhouse effect [102]. This is scientific misconduct as is the missing citation.
Bakan and Raschke borrowed this figure from Ref. [103] where the scaling factors, which are of
utmost importance for the whole discussion, are left unspecified. This is scientific misconduct
as well.
2.3.5
Conclusion
Though in most cases the preceding "explanation" suffices to provide an accepted solution to
the standard problem, presented in the undergraduate course, the analysis leaves the main
question untouched, namely, why the air inside the car is warmer than outside and why the
dashboard is hotter than the ground outside the car. Therefore, in the following, the situation
inside the car is approached experimentally.
2.4
High School Experiments
On a hot summer afternoon, temperature measurements were performed with a standard
digital thermometer by the first author [104­108] and were recently reproduced by the other
author.
In the summertime, such measurements can be reproduced by everyone very easily. The
results are listed in Table 9.
Thermometer located . . .
Temperature
inside the car, in direct Sun
71 C
inside the car, in the shade
39 C
next to the car, in direct Sun, above the ground
31 C
next to the car, in the shade, above the ground
29 C
in the living room
25 C
Table 9: Measured temperatures inside and outside a car on a hot summer day.

30
Gerhard Gerlich and Ralf D. Tscheuschner
Against these measurements one may object that one had to take the dampness of the ground
into account: at some time during the year the stones certainly got wet in the rain. The above
mentioned measurements were made at a time, when it had not rained for weeks. They are
real measured values, not average values over all breadths and lengths of the Earth, day
and night and all seasons and changes of weather. These measurements are recommended
to every climatologist, who believes in the CO2-greenhouse effect, because he feels already
while measuring, that the just described effect has nothing to do with trapped thermal
radiation. One can touch the car's windows and notice that the panes, which absorb the
infrared light, are rather cool and do not heat the inside of the car in any way. If one holds
his hand in the shade next to a very hot part of the dashboard that lies in the Sun, one
will practically feel no thermal radiation despite the high temperature of 70C, whereas one
clearly feels the hot air. Above the ground one sees why it is cooler there than inside the car:
the air inside the car "stands still", above the ground one always feels a slight movement of
the air. The ground is never completely plain, so there is always light and shadow, which
keep the circulation going. This effect was formerly used for many old buildings in the city of
Braunschweig, Germany. The south side of the houses had convexities. Hence, for most of the
time during the day, parts of the walls are in the shade and, because of the thus additionally
stimulated circulation, the walls are heated less.
In order to study the warming effect one can look at a body of specific heat cv and width
d, whose cross section F is subject to the radiation intensity S (see Figure 14). One has
Figure 14: A solid parallelepiped of thickness d and cross section F subject to solar radiation
dT
F d cv
= FS
(41)
dt
or, respectively,
dT
S
=
(42)
dt
cv d

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
31
which may be integrated yielding
S
T = T0 +
(t - t0)
(43)
cv d
In this approximation, there is a linear rise of the temperature in time because of the irradiated
intensity. One sees that the temperature rises particularly fast in absorbing bodies of small
diameter: Thin layers are heated especially fast to high temperatures by solar radiation. The
same applies to the heat capacity per unit volume:
· If the heat capacity is large the change of temperature will be slow.
· If the heat capacity is small the change in temperature will be fast.
Thus the irradiated intensity is responsible for the quick change of temperature, not for its
value. This rise in temperature is stopped by the heat transfer of the body to its environment.
Especially in engineering thermodynamics the different kinds of heat transfer and their
interplay are discussed thoroughly [95­97]. A comprehensive source is the classical textbook
by Schack [95]. The results have been tested e.g. in combustion chambers and thus have a
strong experimental background.
One has to distinguish between
· Conduction
· Convection
· Radiation
· Transfer of latent heat in phase transitions such as condensation and sublimation9
Conduction, condensation and radiation, which slow down the rise in temperature work prac-
tically the same inside and outside the car. Therefore, the only possible reason for a difference
in final temperatures must be convection: A volume element of air above the ground, which
has been heated by radiation, is heated up (by heat transfer through conduction), rises and is
replaced by cooler air. This way, there is, in the average, a higher difference of temperatures
between the ground and the air and a higher heat transmission compared to a situation, where
the air would not be replaced. This happens inside the car as well, but there the air stays
locked in and the air which replaces the rising air is getting warmer and warmer, which causes
lower heat transmission. Outside the car, there is of course a lot more cooler air than inside.
On the whole, there is a higher temperature for the sunlight absorbing surfaces as well as for
the air.
9Among those phenomena governed by the exchange of latent heat there is radiation frost, an striking
example for a cooling of the Earth's surface through emission of infrared radiation.

32
Gerhard Gerlich and Ralf D. Tscheuschner
Of course, the exposed body loses energy by thermal radiation as well. The warmer body
inside the car would lose more heat in unit of time than the colder ground outside, which would
lead to a higher temperature outside, if this temperature rise were not absorbed by another
mechanism! If one considers, that only a small part of the formerly reckoned 60 - 70 percent
of solar radiation intensity reaches the inside of the car through its metal parts, this effect
would contribute far stronger to the temperature outside! The "explanation" of the physical
greenhouse effect only with attention to the radiation balance would therefore lead to the
reverse effect! The formerly discussed effect of the "trapped" heat radiation by reflecting glass
panes remains, which one can read as hindered heat transmission in this context. So this means
a deceleration of the cooling process. However, as this heat transmission is less important
compared to the convection, nothing remains of the absorption and reflection properties of
glass for infrared radiation to explain the physical greenhouse effect. Neither the absorption
nor the reflection coefficient of glass for the infrared light is relevant for this explanation of
the physical greenhouse effect, but only the movement of air, hindered by the panes of glass.
Although meteorologists have known this for a long time [121, 131], some of them still use
the physical greenhouse effect to explain temperature effects of planetary atmospheres. For
instance in their book on the atmospheric greenhouse effect, Sch¨
onwiese and Diekmann build
their arguments upon the glass house effect [133]. Their list of references contains a seminal
publication that clearly shows that this is inadmissable [91].
2.5
Experiment by Wood
Although the warming phenomenon in a glass house is due to the suppression of convection,
say air cooling10, it remains true that most glasses absorb infrared light at wavelength 1 µm
and higher almost completely.
An experimentum crucis therefore is to build a glass house with panes consisting of NaCl
or KCl, which are transparent to visible light as well as infrared light. For rock salt (NaCl)
such an experiment was realized as early as 1909 by Wood [109­112]:
"There appears to be a widespread belief that the comparatively high temperature
produced within a closed space covered with glass, and exposed to solar radiation,
results from a transformation of wave-length, that is, that the heat waves from
the Sun, which are able to penetrate the glass, fall upon the walls of the enclosure
and raise its temperature: the heat energy is re-emitted by the walls in the form
of much longer waves, which are unable to penetrate the glass, the greenhouse
acting as a radiation trap.
I have always felt some doubt as to whether this action played any very large part
10A problem familiar to those who are involved in PC hardware problems.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
33
in the elevation of temperature. It appeared much more probable that the part
played by the glass was the prevention of the escape of the warm air heated by
the ground within the enclosure. If we open the doors of a greenhouse on a cold
and windy day, the trapping of radiation appears to lose much of its efficacy. As a
matter of fact I am of the opinion that a greenhouse made of a glass transparent
to waves of every possible length would show a temperature nearly, if not quite,
as high as that observed in a glass house. The transparent screen allows the solar
radiation to warm the ground, and the ground in turn warms the air, but only
the limited amount within the enclosure. In the "open", the ground is continually
brought into contact with cold air by convection currents.
To test the matter I constructed two enclosures of dead black cardboard, one
covered with a glass plate, the other with a plate of rock-salt of equal thickness.
The bulb of a thermometer was inserted in each enclosure and the whole packed
in cotton, with the exception of the transparent plates which were exposed. When
exposed to sunlight the temperature rose gradually to 65 C, the enclosure covered
with the salt plate keeping a little ahead of the other, owing to the fact that it
transmitted the longer waves from the Sun, which were stopped by the glass. In
order to eliminate this action the sunlight was first passed through a glass plate.
There was now scarcely a difference of one degree between the temperatures of the
two enclosures. The maximum temperature reached was about 55 C. From what
we know about the distribution of energy in the spectrum of the radiation emitted
by a body at 55 C, it is clear that the rock-salt plate is capable of transmitting
practically all of it, while the glass plate stops it entirely. This shows us that the
loss of temperature of the ground by radiation is very small in comparison to the
loss by convection, in other words that we gain very little from the circumstance
that the radiation is trapped.
Is it therefore necessary to pay attention to trapped radiation in deducing the
temperature of a planet as affected by its atmosphere? The solar rays penetrate
the atmosphere, warm the ground which in turn warms the atmosphere by contact
and by convection currents. The heat received is thus stored up in the atmosphere,
remaining there on account of the very low radiating power of a gas. It seems to
me very doubtful if the atmosphere is warmed to any great extent by absorbing
the radiation from the ground, even under the most favourable conditions.
I do not pretend to have gone very deeply into the matter, and publish this note
merely to draw attention to the fact that trapped radiation appears to play but a
very small part in the actual cases with which we are familiar."

34
Gerhard Gerlich and Ralf D. Tscheuschner
This text is a recommended reading for all global climatologists referring to the greenhouse
effect.
2.6
Glass house summary
It is not the "trapped" infrared radiation, which explains the warming phenomenon in a real
greenhouse, but it is the suppression of air cooling.11
11As almost everybody knows, this is also a standard problem in PCs.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
35
3
The fictitious atmospheric greenhouse effects
3.1
Problem definition
After it has been thoroughly discussed, that the physical greenhouse effect is essentially the
explanation, why air temperatures in a closed glass house or in a closed car are higher than
outside, one should have a closer look at the fictitious atmospheric greenhouse effects.
Meanwhile there are many different phenomena and different explanations for these effects,
so it is justified to pluralize here.
Depending on the particular school and the degree of popularization, the assumption that
the atmosphere is transparent for visible light but opaque for infrared radiation is supposed
to lead to
· a warming of the Earth's surface and/or
· a warming of the lower atmosphere and/or
· a warming of a certain layer of the atmosphere and/or
· a slow-down of the natural cooling of the Earth's surface
and so forth.
Unfortunately, there is no source in the literature, where the greenhouse effect is introduced
in harmony with the scientific standards of theoretical physics. As already emphasized, the
"supplement" to Kittel's book on thermal physics [92] only refers to the IPCC assessments
[23, 25]. Prominent global climatologists (as well as "climate sceptics") often present their
ideas in handbooks, encyclopedias, and in secondary and tertiary literature.
3.2
Scientific error versus scientific fraud
Recently, the German climatologist Graßl emphasized that errors in science are unavoidable,
even in climate research [113]. And the IPCC weights most of its official statements with a
kind of a "probability measure" [2]. So it seems that, even in the mainstream discussion on
the supposed anthropogenic global warming, there is room left for scientific errors and their
corrections.
However, some authors and filmmakers have argued that the greenhouse effect hypothesis
is not based on an error, but clearly is a kind of a scientific fraud.
Five examples:
· As early as 1990 the Australian movie entitled "The greenhouse conspiracy" showed
that the case for the greenhouse effect rests on four pillars [114]:

36
Gerhard Gerlich and Ralf D. Tscheuschner
1. the factual evidence, i.e. the climate records, that supposedly suggest that a global
warming has been observed and is exceptional;
2. the assumption that carbon dioxide is the cause of these changes;
3. the predictions of climate models that claim that a doubling of CO2 leads to a
predictable global warming;
4. the underlined physics.
In the movie these four pillars were dismantled bringing the building down. The speaker
states:
"In a recent paper on the effects of carbon dioxide, Professor Ellsaesser of
the Lawrence Livermore Laboratories, a major US research establishment in
California, concluded that a doubling of carbon dioxide would have little or
no effect on the temperature at the surface and, if anything, might cause the
surface to cool."
The reader is referred to Ellsaesser's original work [115].
· Two books by the popular German meteorologist and sociologist Wolfgang Th¨
une, enti-
tled The Greenhouse Swindle (In German, 1998) [116] and Aquittal for CO 2 (In German,
2002) [117] tried to demonstrate that the CO2 greenhouse effect hypothesis is pure non-
sense.
· A book written by Heinz Hug entitled Those who play the trumpet of fear (In German,
2002), elucidated the history and the background of the current greenhouse business
[118]
· Another movie was shown recently on Channel 4 (UK) entitled "The great global warm-
ing swindle" supporting the thesis that the supposed CO2 induced anthropogenic global
warming has no scientific basis [119].
· In his paper "CO2: The Greatest Scientific Scandal of Our Time" the eminent atmo-
spheric scientist Jaworowski made a well-founded statement [12].
On the other hand, Sir David King, the science advisor of the British government, stated that
"global warming is a greater threat to humanity than terrorism" (Singer)12, other individuals
put anthropogenic global warming deniers in the same category as holocaust deniers, and so
on. In an uncountable number of contributions to newspapers and TV shows in Germany the
popular climatologist Latif13 continues to warn the public about the consequences of rising
12cf. Singer's summary at the Stockholm 2006 conference [1].
13Some time ago one of the authors (R.D.T.) was Mojib Latif's teaching assistant in the physics lab.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
37
greenhouse gas (GHG) emissions [120]. But until today it is impossible to find a book on
non-equilibrium thermodynamics or radiation transfer where this effect is derived from first
principles.
The main objective of this paper is not to draw the line between error and fraud, but to find
out where the greenhouse effect appears or disappears within the frame of physics. Therefore,
in Section 3.3 several different variations of the atmospheric greenhouse hypotheses will be
analyzed and disproved. The authors restrict themselves on statements that appeared after
a publication by Lee in the well-known Journal of Applied Meteorology 1973, see Ref. [121]
and references therein.
Lee's 1973 paper is a milestone. In the beginning Lee writes:
"The so-called radiation `greenhouse' effect is a misnomer. Ironically, while the
concept is useful in describing what occurs in the earth's atmosphere, it is invalid
for cryptoclimates created when space is enclosed with glass, e.g. in greenhouses
and solar energy collectors. Specifically, elevated temperatures observed under
glass cannot be traced to the spectral absorbtivity of glass.
The misconception was demonstrated experimentally by R. W. Wood more than
60 years ago (Wood, 1909) [109] and recently in an analytical manner by Businger
(1963) [122]. Fleagle and Businger (1963) [123] devoted a section of their text to
the point, and suggested that radiation trapping by the earth's atmosphere should
be called `atmosphere effect' to discourage use of the misnomer. Munn (1966) [124]
reiterated that the analogy between `atmosphere' and `greenhouse' effect `is not
correct because a major factor in greenhouse climate is the protection the glass
gives against turbulent heat losses'. In one instance, Lee (1966) [125], observed
that the net flux of radiant energy actually was diminished be pore than 10 % in
a 6-mil polyvinyl enclosure.
In spite of the evidence, modern textbooks on meteorology and climatology not
only repeat the misnomer, but frequently support the false notion that `heat-
retaining behavior of the atmosphere is analogous to what happens in a green-
house' (Miller, 1966) [126], or that `the function of the [greenhouse] glass is to
form a radiation trap' (Peterssen, 1958) [127]. (see also Sellers, 1965, Chang,
1968, and Cole, 1970) [128­130]. The mistake obviously is subjective, based on
similarities of the atmosphere and glass, and on the `neatness' of the example in
teaching. The problem can be rectified through straightforward analysis, suitable
for classroom instruction."
Lee continues his analysis with a calculation based on radiative balance equations, which
are physically questionable. The same holds for a comment by Berry [131] on Lee's work.
Nevertheless, Lee's paper is a milestone marking the day after every serious scientist or science

38
Gerhard Gerlich and Ralf D. Tscheuschner
educator is no longer allowed to compare the greenhouse with the atmosphere, even in the
classroom, which Lee explicitly refers to.
3.3
Different versions of the atmospheric greenhouse conjecture
3.3.1
Atmospheric greenhouse effect after M¨
oller (1973)
In his popular textbook on meteorology [89, 90] M¨
oller claims:
"In a real glass house (with no additional heating, i.e. no greenhouse) the window
panes are transparent to sunshine, but opaque to terrestrial radiation. The heat
exchange must take place through heat conduction within the glass, which requires
a certain temperature gradient. Then the colder boundary surface of the window
pane can emit heat. In case of the atmosphere water vapor and clouds play the
role of the glass."
Disproof: The existence of the greenhouse effect is considered as a necessary condition for
thermal conductivity. This is a physical nonsense. Furthermore it is implied that the spectral
transmissivity of a medium determines its thermal conductivity straightforwardly. This is a
physical nonsense as well.
3.3.2
Atmospheric greenhouse effect after Meyer's encyclopedia (1974)
In the 1974 edition of Meyer's Enzyklop¨
adischem Lexikon one finds under "glass house effect"
[132]:
"Name for the influence of the Earth's atmosphere on the radiation and heat
budget of the Earth, which compares to the effect of a glass house: Water vapor
and carbon dioxide in the atmosphere let short wave solar radiation go through
down to the Earth's surface with a relative weak attenuation and, however, reflect
the portion of long wave (heat) radiation which is emitted from the Earth's surface
(atmospheric backradiation)."
Disproof: Firstly, the main part of the solar radiation lies outside the visible light. Secondly,
reflection is confused with emission. Thirdly, the concept of atmospheric backradiation relies
on an inappropriate application of the formulas of cavity radiation. This will be discussed in
Section 3.5
3.3.3
Atmospheric greenhouse effect after Sch¨
onwiese (1987)
The prominent climatologist Sch¨
onwiese states [133]:

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
39
". . . we use the picture of a glass window that is placed between the Sun and
the Earth's surface. The window pane lets pass the solar radiation unhindered
but absorbs a portion of the heat radiation of the Earth. The glass pane emits,
corresponding to its own temperature, heat in both directions: To the Earth's
surface and to the interplanetary space. Thus the radiative balance of the Earth's
surface is raised. The additional energy coming from the glass pane is absorbed
almost completely by the Earth's surface immediately warming up until a new
radiative equilibrium is reached."
Disproof: That the window pane lets pass the solar radiation unhindered is simply wrong.
Of course, some radiation goes sidewards. As shown experimentally in Section 2.4, the panes
of the car window are relatively cold. This is only one out of many reasons, why the glass
analogy is unusable. Hence the statement is vacuous.
3.3.4
Atmospheric greenhouse effect after Stichel (1995)
Stichel (the former deputy head of the German Physical Society) stated once [134]:
"Now it is generally accepted textbook knowledge that the long-wave infrared
radiation, emitted by the warmed up surface of the Earth, is partially absorbed
and re-emitted by CO2 and other trace gases in the atmosphere. This effect leads
to a warming of the lower atmosphere and, for reasons of the total radiation
budget, to a cooling of the stratosphere at the same time."
Disproof: This would be a Perpetuum Mobile of the Second Kind . A detailed discussion
is given in Section 3.9. Furthermore, there is no total radiation budget, since there are
no individual conservation laws for the different forms of energy participating in the game.
The radiation energies in question are marginal compared to the relevant geophysical and
astrophysical energies. Finally, the radiation depends on the temperature and not vice versa.
3.3.5
Atmospheric greenhouse effect after Anonymous 1 (1995)
"The carbon dioxide in the atmosphere lets the radiation of the Sun, whose max-
imum lies in the visible light, go through completely, while on the other hand it
absorbs a part of the heat radiation emitted by the Earth into space because of
its larger wavelength. This leads to higher near-surface air temperatures."
Disproof: The first statement is incorrect since the obviously non-neglible infrared part of
the incoming solar radiation is being absorbed (cf. Section 2.2). The second statement is
falsified by referring to a counterexample known to every housewife: The water pot on the
stove. Without water filled in, the bottom of the pot will soon become glowing red. Water is

40
Gerhard Gerlich and Ralf D. Tscheuschner
an excellent absorber of infrared radiation. However, with water filled in, the bottom of the
pot will be substantially colder. Another example would be the replacement of the vacuum
or gas by glass in the space between two panes. Conventional glass absorbs infrared radiation
pretty well, but its thermal conductivity shortcuts any thermal isolation.
3.3.6
Atmospheric greenhouse effect after Anonymous 2 (1995)
"If one raises the concentration of carbon dioxide, which absorbs the infrared light
and lets visible light go through, in the Earth's atmosphere, the ground heated
by the solar radiation and/or near-surface air will become warmer, because the
cooling of the ground is slowed down."
Disproof: It has already been shown in Section 1.1 that the heat conductivity is changed
only marginally even by doubling the CO2 concentration in the Earth's atmosphere.
3.3.7
Atmospheric greenhouse effect after Anonymous 3 (1995)
"If one adds to the Earth's atmosphere a gas, which absorbs parts of the radiation
of the ground into the atmosphere, the surface temperatures and near-surface air
temperatures will become larger."
Disproof: Again, the counterexample is the water pot on the stove; see Section 3.3.5.
3.3.8
Atmospheric greenhouse effect after German Meteorological Society (1995)
"As a point of a departure the radiation budget of the Earth is described. In
this case the incident unweakened solar radiation at the Earth's surface is partly
absorbed and partly reflected. The absorbed portion is converted into heat and
must be re-radiated in the infrared spectrum. Under such circumstances simple
model calculations yield an average temperature of about -18C at the Earth's
surface . . . Adding an atmosphere, the incident radiation at the Earth's surface
is weakened only a little, because the atmosphere is essentially transparent in the
visible range of the spectrum. Contrary to this, in the infrared range of the spec-
trum the radiation emitted form the ground is absorbed to a large extent by the
atmosphere . . . and, depending on the temperature, re-radiated in all directions.
Only in the so-called window ranges (in particular in the large atmospheric window
8 - 13 µm) the infrared radiation can escape into space. The infrared radiation that
is emitted downwards from the atmosphere (the so-called back-radiation) raises
the energy supply of the Earth's surface. A state of equilibrium can adjust itself if
the temperature of the ground is rises and, therefore, a raised radiation according

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
41
to Planck's law is possible. This undisputed natural Greenhouse effect gives rise
to an increase temperature of the Earth's surface."
Disproof: The concept of an radiation budget is physically wrong. The average of the
temperature is calculated incorrectly. Furthermore, an non-neglible portion of the incident
solar radiation is absorbed by the atmosphere. Heat must not be confused with heat radiation.
The assumption that if gases emit heat radiation, they will emit it only downwards is rather
obscure. The described mechanism of re-calibration to equilibrium has no physical basis. The
laws of cavity radiation do not apply to fluids and gases.
3.3.9
Atmospheric greenhouse effect after Graßl (1996)
The former director of the World Meteorological Organization (WMO) climate research pro-
gram, Professor Hartmut Graßl, states [136]:
"In so far as the gaseous hull [of the Earth] obstructs the propagation of solar
energy down to the planet's surface less than the direct radiation of heat from the
surface into space, the ground and the lower atmosphere must become warmer
than without this atmosphere, in order to re-radiate as much energy as received
from the Sun."
Disproof: This statement is vacuous, even in a literal sense.
One cannot compare the
temperature of a planet's lower atmosphere with the situation where a planetary atmosphere
does not exist at all. Furthermore, as shown in Section 2.2 the portion of the incoming
infrared is larger than the portion of the incoming visible light. Roughly speaking, we have
a fifty-fifty relation. Therefore the supposed warming from the bottom must compare to
an analogous warming from the top. Even within the logics of Graßl's oversimplified (and
physically incorrect) conjecture one is left with a zero temperature gradient and thus a null
effect.
3.3.10
Atmospheric greenhouse effect after Ahrens (2001)
In his textbook "Essentials in Meteorology: In Invitation to the Atmosphere" the author
Ahrens states [137]:
"The absorption characteristics of water vapor, CO2, and other gases such as
methane and nitrous oxide . . . were, at one time, thought to be similar to the
glass of a florists greenhouse. In a greenhouse, the glass allows visible radiation to
come in, but inhibits to some degree the passage of outgoing infrared radiation. For
this reason, the behavior of the water vapor and CO2, the atmosphere is popularly
called the greenhouse effect. However, studies have shown that the warm air inside

42
Gerhard Gerlich and Ralf D. Tscheuschner
a greenhouse is probably caused more by the airs inability to circulate and mix
with the cooler outside air, rather than by the entrapment of infrared energy.
Because of these findings, some scientists insist that the greenhouse effect should
be called the atmosphere effect. To accommodate everyone, we will usually use
the term atmospheric greenhouse effect when describing the role that water vapor
and CO2, play in keeping the earths mean surface temperature higher than it
otherwise would be."
Disproof: The concept of the Earth's mean temperature is ill-defined. Therefore the concept
of a rise of a mean temperature is ill-defined as well.
3.3.11
Atmospheric greenhouse effect after Dictionary of Geophysics, Astro-
physics, and Astronomy (2001)
The Dictionary of Geophysics, Astrophysics, and Astronomy says [138]:
"Greenhouse Effect: The enhanced warming of a planets surface temperature
caused by the trapping of heat in the atmosphere by certain types of gases (called
greenhouse gases; primarily carbon dioxide, water vapor, methane, and chloroflu-
orocarbons). Visible light from the sun passes through most atmospheres and
is absorbed by the body's surface. The surface reradiates this energy as longer-
wavelength infrared radiation (heat). If any of the greenhouse gases are present in
the body's troposphere, the atmosphere is transparent to the visible but opaque
to the infrared, and the infrared radiation will be trapped close to the surface and
will cause the temperature close to the surface to be warmer than it would be
from solar heating alone."
Disproof: Infrared radiation is confused with heat. It is not explained at all what is meant by
`the infrared radiation will be trapped". Is it a MASER, is it "superinsulation", i.e. vanishing
thermal conductivity, or is it simple thermalization?
3.3.12
Atmospheric greenhouse effect after Encyclopaedia of Astronomy and
Astrophysics (2001)
The Encyclopaedia of Astronomy and Astrophysics defines the greenhouse effect as follows
[139]:
"The greenhouse effect is the radiative influence exerted by the atmosphere of
a planet which causes the temperature at the surface to rise above the value
it would normally reach if it were in direct equilibrium with sunlight (taking
into account the planetary albedo). This effect stems from the fact that certain

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
43
atmospheric gases have the ability to transmit most of the solar radiation and
to absorb the infrared emission from the surface.
The thermal (i.e. infrared)
radiation intercepted by the atmosphere is then partially re-emitted towards the
surface, thus contributing additional heating of the surface. Although the analogy
is not entirely satisfactory in terms of the physical processes involved, it is easy to
see the parallels between the greenhouse effect in the atmosphere-surface system
of a planet and a horticultural greenhouse: the planetary atmosphere plays the
role of the glass cover that lets sunshine through to heat the soil while partly
retaining the heat that escapes from the ground. The analogy goes even further,
since an atmosphere may present opacity `windows' allowing infrared radiation
from the surface to escape, the equivalent of actual windows that help regulate
the temperature inside a domestic greenhouse."
Disproof: The concept of the "direct equilibrium with the sunlight' is physically wrong,
as will be shown in detail in Section 3.7. The description of the physics of a horticultural
greenhouse is incorrect. Thus the analogy stinks.
3.3.13
Atmospheric greenhouse effect after Encyclopaedia Britannica Online
(2007)
Encyclopaedia Britannica Online explains the greenhouse effect in the following way [140]:
"The atmosphere allows most of the visible light from the Sun to pass through and
reach the Earth's surface. As the Earth's surface is heated by sunlight, it radiates
part of this energy back toward space as infrared radiation. This radiation, unlike
visible light, tends to be absorbed by the greenhouse gases in the atmosphere,
raising its temperature. The heated atmosphere in turn radiates infrared radia-
tion back toward the Earth's surface. (Despite its name, the greenhouse effect is
different from the warming in a greenhouse, where panes of glass transmit visible
sunlight but hold heat inside the building by trapping warmed air.) Without the
heating caused by the greenhouse effect, the Earth's average surface temperature
would be only about -18C (0F)."
Disproof: The concept of the Earth's average temperature is a physically and mathematically
ill-defined and therefore useless concept as will be shown in Section 3.7.
3.3.14
Atmospheric greenhouse effect after Rahmstorf (2007)
The renowned German climatologist Rahmstorf claims [141]:
"To the solar radiation reaching Earth's surface . . . the portion of the long-wave
radiation is added, which is radiated by the molecules partly downward and partly

44
Gerhard Gerlich and Ralf D. Tscheuschner
upward. Therefore more radiation arrives down, and for reasons of compensation
the surface must deliver more energy and thus has to be warmer (+15C), in order
to reach also there down again an equilibrium. A part of this heat is transported
upward from the surface also by atmospheric convection. Without this natural
greenhouse effect the Earth would have frozen life-hostilely and completely. The
disturbance of the radiative balance [caused by the enrichment of the atmosphere
with trace gases] must lead to a heating up of the Earth's surface, as it is actually
observed."
Disproof: Obviously, reflection is confused with emission. The concept of radiative balance
is faulty. This will be explained in Section 3.7.
3.3.15
Conclusion
It is interesting to observe,
· that until today the "atmospheric greenhouse effect" does not appear
­ in any fundamental work of thermodynamics,
­ in any fundamental work of physical kinetics,
­ in any fundamental work of radiation theory;
· that the definitions given in the literature beyond straight physics are very different
and, partly, contradict to each other.
3.4
The conclusion of the US Department of Energy
All fictitious greenhouse effects have in common, that there is supposed to be one and only
one cause for them: An eventual rise in the concentration of CO2 in the atmosphere is
supposed to lead to higher air temperatures near the ground. For convenience, in the context
of this paper it is called the CO 2-greenhouse effect.14 Lee's 1973 result [121] that the warming
phenomenon in a glass house does not compare to the supposed atmospheric greenhouse effect
was confirmed in the 1985 report of the United States Department of Energy "Projecting the
climatic effects of increasing carbon dioxide" [91]. In this comprehensive pre-IPCC publication
MacCracken explicitly states that the terms "greenhouse gas" and "greenhouse effect" are
misnomers [91, 142]. A copy of the last paragraph of the corresponding section on page 28 in
shown in Figure 15.
It should be emphasized:
14The nomenclature naturally extents to other trace gases.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
45
Figure 15: An excerpt from page 28 of the DOE report (1985).
· The warming phenomenon in a glass house and the supposed atmospheric greenhouse
effects have the same participants, but in the latter case the situation is reversed.
· Methodically, there is a huge difference: For the physical greenhouse effect one can make
measurements, look at the differences of the instruments readings and observe the effect
without any scientific explanation and such without any prejudice.
For the fictitious atmospheric greenhouse effect one cannot watch anything, and only calcula-
tions are compared with one another: Formerly extremely simple calculations, they got more
and more intransparent. Nowadays computer simulations are used, which virtually nobody
can reproduce [143].
In the following the different aspects of the physics underlying the atmospheric situation
are discussed in detail.
3.5
Absorption/Emission is not Reflection
3.5.1
An inconvenient popularization of physics
Figure 16 is a screenshot from a controversial award-winning "documentary film" about "cli-
mate change", specifically "global warming", starring Al Gore, the former United States Vice
President, and directed by Davis Guggenheim [144, 145]. This movie has been supported by
managers and policymakers around the world and has been shown in schools and in outside
events, respectively. Lewis wrote an interesting "A Skeptic's Guide to An Inconvenient Truth"
evaluating Gore's work in detail [146].
From the view of a trained physicist, Gore's movie is rather grotesque, since it is shockingly
wrong. Every licensed radio amateur15 knows that what is depicted in Figure 16 would be
15Callsign of R.D.T.: DK8HH

46
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 16: A very popular physical error illustrated in the movie "An Inconvenient truth" by
Davis Guggenheim featuring Al Gore (2006).
true only,
· if the radiation graphically represented here was long wave or short wave radiation;
· if the reflecting sphere was a certain layer of the ionosphere [147].
Short waves (e.g. in the 20 m/14 MHz band) are reflected by the F layer of the ionosphere
(located 120 - 400 km above the Earth's surface) enabling transatlantic connections (QSOs).
Things depend pretty much on the solar activity, i.e. on the sun spot cycle, as every old
man (OM) knows well. The reflective characteristics of the ionosphere diminish above about
30 MHz. In the very high frequency (VHF) bands (e.g. 2 m/144 MHz band) one encounters the
so called Sporadic-E clouds (90 - 120 km above the Earth's surface), which still allow QSOs
from Germany to Italy, for example. On the other hand at the extremely low frequencies
(ELF) (i.e. radio frequencies 3 - 30 Hz) the atmosphere of the Earth behaves as a cavity and
one encounters the so called Schumann resonances [148]. These may be used to estimate a
lower bound for the mass of the photon16 and, surprisingly, appear in the climate change
discussion [149].
However, the radio signal of Al Gore's cellular phone (within the centimeter range) does not
travel around the world and so does not Bluetooth, Radar, microwave and infrared radiation
(i.e. electromagnetic waves in the sub millimeter range).
Ionosphere Radars typically work in the 6 m Band, i.e. at 50 MHz. Meteorological Radars
work in the 0.1 - 20 cm range (from 90 GHz down to 1.5 GHz), those in the 3 - 10 cm range (from
10 GHz down to 3 GHz) are used for wind finding and weather watch [150]. It is obvious, that
Al Gore confuses the ionosphere with the tropopause, the region in the atmosphere, that is the
16As a teaching assistant at Hamburg University/DESY, R.D.T. learned this from Professor Herwig Schop-
per.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
47
boundary between the troposphere and the stratosphere. The latter one is located between
6 km (at the poles) and 17 km (at the equator) above the surface of the Earth.17
Furthermore, Al Gore confuses absorption/emission with reflection. Unfortunately, this
is also done implicitly and explicitly in many climatologic papers, often by using the vaguely
defined terms "re-emission", "re-radiation" and "backradiation".
3.5.2
Reflection
When electromagnetic waves move from a medium of a given refractive index n1 into a second
medium with refractive index n2, both reflection and refraction of the waves may occur [151].
In particular, when the jump of the refractive index occurs within a length of the order of a
wavelength, there will be a reflection. The fraction of the intensity of incident electromagnetic
wave that is reflected from the interface is given by the reflection coefficient R, the fraction
refracted at the interface is given by the transmission coefficient T . The Fresnel equations,
which are based on the assumption that the two materials are both dielectric, may be used to
calculate the reflection coefficient R and the transmission coefficient T in a given situation.
In the case of a normal incidence the formula for the reflection coefficient is
n
2
R =
2 - n1
(44)
n2 - n1
In the case of strong absorption (large electrical conductivity ) simple formulas can be given
for larger angles of incidence, as well (Beer's formula):
(n
2
R
2 - n1 cos )2 + n2
2
s =
(45)
(n2 + n1 cos )2 + n22
2
and
(n
2 cos2
R
1 - n2 cos )2 + n2
2
p =
(46)
(n1 + n2 cos )2 + n22 cos2
2
When the jump of the refractive index occurs within a length of the order of a wavelength,
there will be a reflection, which is large at high absorption. In the case of gases this is only
possible for radio waves of a comparatively long wave length in the ionosphere, which has
an electrical conductivity, at a diagonal angle of incidence. There is no reflection in the
homogeneous absorbing range. As already elucidated in Section 3.5.1 this has been well-
known to radio amateurs ever since and affects their activity e.g. in the 15 m band, but
never in the microwave bands. On the other hand, most glasses absorb the infrared light
almost completely at approximately 1 µm and longer wavelength: therefore, the reflection of
the infrared waves for normal glasses is very high.
For dielectric media, whose electric conductivity is zero, one cannot use Beer's formulas.
This was a severe problem in Maxwell's theory of light.
17Some climatologists claim that there is a CO2 layer in the troposphere that traps or reflects the infrared
radiation coming from the ground.

48
Gerhard Gerlich and Ralf D. Tscheuschner
3.5.3
Absorption and Emission
If an area is in thermodynamical equilibrium with a field of radiation, the intensity E (resp.
E) emitted by the unit solid angle into a frequency unit (resp. a wavelength unit) is equal
to the absorptance A (resp. A) multiplied with a universal frequency function B(T ) (resp.
a wavelength function B(T )) of the absolute temperature T . One writes, respectively,
E = A · B(T )
(47)
E = A · B(T )
(48)
This is a theorem by Kirchhoff . The function B(T ) (resp. B(T )) is called the Kirchhoff-
Planck-function. It was already considered in Section 2.1.4.
The reflectance is, respectively,
R = 1 - A
(49)
R = 1 - A
(50)
and lies between zero and one, like the absorptance A. If R is equal to zero and A is equal
to one, the body is called a perfect black body. The emissivity is largest for a perfect black
body. The proposal to realize a perfect black body by using a cavity with a small radiating
opening had already been made by Kirchhoff and is visualized in Figure 17. For this reason,
Figure 17: A cavity realizing a perfect black body.
the emission of a black body for A = 1 (resp. A = 1) is called cavity radiation. The emitted
energy comes from the walls, which are being held at a fixed temperature. If this is realized
with a part of a body's surface, it will become clear, that these points of view will only be
compatible, if the electromagnetic radiation is emitted and absorbed by an extremely thin
surface layer. For this reason, it is impossible to describe the volumes of gases with the model
of black cavity radiation. Since thermal radiation is electromagnetic radiation, this radiation
would have to be caused by thermal motion in case of gases, which normally does not work
effectively at room temperatures. At the temperatures of stars the situation is different: The
energy levels of the atoms are thermally excited by impacts.
3.5.4
Re-emission
In case of radiation transport calculations, Kirchhoff's law is "generalized" to the situation,
in which the corresponding formula for the emission, or respectively, for the absorption (per

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
49
unit length along the direction ds) is supposed to be applicable
ds = ds · B(T )
(51)
The physical meaning of this "generalization" can be seen most easily, if the above mentioned
Kirchhoff law is mathematically extracted out of this formula. For this, one may introduce
= E(s - s0)
(52)
= A(s - s0)
(53)
with a -density localized at the interface. Physically, this means that all of the absorption
and emission comes out of a thin superficial plane. Just like with the correct Kirchhoff law,
use is made of the fact, that all absorbed radiation is emitted again, as otherwise the volume
area would raise its temperature in thermal balance.
This assumption is called the assumption of Local Thermodynamical Equilibrium (LTE).
Re-emission does never mean reflection, but, rather, that the absorption does not cause any
rise of temperature in the gas.
An important physical difference to the correct Kirchhoff law lies in the fact, that there
is no formula for the absorption per linear unit analogous to
R = 1 - A
(54)
With being the density of the medium one can define a absorption coefficient and an
emission coefficient j, respectively, by setting
=
(55)
= j
(56)
The ratio of the emission to the absorption coefficient
j
S

=
(57)

describes the re-emission of the radiation and is called the source function.
3.5.5
Two approaches of Radiative Transfer
In a gas the radiation intensity of an area changes in the direction of the path element ds
according to
dI
-
= I -
(58)
ds
With the aid of the functions introduced in Equations 55­57 this can be expressed as
1 dI = I - S
(59)
ds

50
Gerhard Gerlich and Ralf D. Tscheuschner
This equation is called the radiative transfer equation.
Two completely different approaches show that this emission function is not just deter-
mined by physical laws [93]:
1. The usual one, i.e. the one in case of LTE, is given by the ansatz
S(x, y, z; l, m, n) = B(T(x, y, z; l, m, n))
(60)
where the coordinates (x, y, z) and the direction cosines (l, m, n) define the point and
the direction to which S and B (resp. T ) refer. This approach is justified with the
aid of the Kirchhoff-Planck-function B and the "generalized" Kirchhoff law introduced
in Equation (51). This assumption of Local Thermodynamical Equilibrium (LTE) is
ruled out by many scientists even for the extremely hot atmospheres of stars. The
reader is referred to Chandrasekhar's classical book on radiative transfer [93]. LTE
does only bear a certain significance for the radiation transport calculations, if the
absorption coefficients were not dependent on the temperature, which is not the case at
low temperatures. Nevertheless, in modern climate model computations, this approach
is used unscrupulously [91].
2. Another approach is the scattering atmosphere given by
1

2
S =
p(, ; , ) I( , ) sin d d
(61)
4 0
0
These extremely different approaches show, that even the physically well-founded radiative
transfer calculations are somewhat arbitrary. Formally, the radiative transfer equation (59)
can be integrated leading to
s
I(s) = I(0) exp(- (s, 0)) +
S(s ) exp(- (s, s )) ds
(62)
0
with the optical thickness
s
(s, s ) =
ds
(63)
s
The integrations for the separate directions are independent of one another. In particular,
the ones up have nothing to do with the ones down. It cannot be overemphasized, that
differential equations only allow the calculation of changes on the basis of known parameters.
The initial values (or boundary conditions) cannot be derived from the differential equations
to be solved. In particular, this even holds for this simple integral.
If one assumes that the temperature of a volume element should be constant, one cannot
calculate a rising temperature.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
51
3.6
The hypotheses of Fourier, Tyndall, and Arrhenius
3.6.1
The traditional works
In their research and review papers the climatologists refer to legendary publications of Svante
August Arrhenius (Feb. 19th 1859 - Oct. 2nd 1927), a Nobel Prize winner for chemistry. Ar-
rhenius published one of the earliest, extremely simple calculations in 1896, which were im-
mediately - and correctly - doubted and have been forgotten for many decades [44­46]. It is a
paper about the influence of carbonic acid in the air on the Earth's ground temperature. In
this quite long paper, Arrhenius put the hypothesis up for discussion, that the occurrences of
warm and ice ages are supposed to be explainable by certain gases in the atmosphere, which
absorb thermal radiation.
In this context Arrhenius cited a 1824 publication by Fourier18 entitled "M´
emoire sur les
temp´
eratures du globe terrestre et des espaces plan´
etaires" [37, 38].
Arrhenius states incorrectly that Fourier was the first, who claimed that the atmosphere
works like a glass of a greenhouse as it lets the rays of the Sun through but keeps the so-called
dark heat from the ground inside.
The English translation of the relevant passage (p. 585) reads:
We owe to the celebrated voyager M. de Saussure an experiment which appears
very important in illuminating this question. It consists of exposing to the rays of
the Sun a vase covered by one or more layers of well transparent glass, spaced at a
certain distance. The interior of the vase is lined with a thick envelope of blackened
cork, to receive and conserve heat. The heated air is sealed in all parts, either in
the box or in each interval between plates. Thermometers placed in the vase and
the intervals mark the degree of heat acquired in each place. This instrument has
been exposed to the Sun near midday, and one saw, in diverse experiments, the
thermometer of the vase reach 70, 80, 100, 110 degrees and beyond (octogesimal
division). Thermometers placed in the intervals acquired a lesser degree of heat,
and which decreased from the depth of the box towards the outside.
Arrhenius work was also preceded by the work of Tyndall who discovered that some gases
absorb infrared radiation. He also suggested that changes in the concentration of the gases
could bring climate change [39­43]. A faksimile of the front pages of Fourier's and Arrhenius
often cited but apparently not really known papers are shown in Figure 18 and in Figure 19,
respectively.
18There is a misprint in Arrhenius' work. The year of publication of Fourier's paper is 1824, not 1827 as
stated in many current papers, whose authors apparently did not read the original work of Fourier. It is
questionable whether Arrhenius read the original paper.

52
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 18: The front page of Fourier's 1824 paper.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
53
Figure 19: The front page of Arrhenius' 1896 paper.

54
Gerhard Gerlich and Ralf D. Tscheuschner
In which fantastic way Arrhenius uses Stefan-Boltzmann's law to calculate this "effect",
can be seen better in another publication, in which he defends his ice age-hypothesis [46], see
also Figures 21 and 22.
Figure 20: Excerpt (a) of Arrhenius' 1906 paper.
First, Arrhenius estimates that 18.7 % of the Earth's infrared radiation would not be
emitted into space because of its absorption by carbonic acid. This could be taken into
account by reducing the Earth's effective radiation temperature Teff to a reduced temperature
Treduced. Arrhenius assumed
Teff = 15 C = 288 K
(64)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
55
and, assuming the validity of the Stefan-Boltzmann law, made the ansatz
· T 4
(1 - 0.187) · I
reduced =
0
(65)
· T 4
I
eff
0
yielding

Treduced = Teff · 4 1 - 0.187
(66)
and

Treduced = 4 0.813 · 288 = 273.47
(67)
which corresponds to a lowering of the Earth's temperature of 14.5 C.
As one would probably not think that such an absurd claim is possible, a scan of this
passage is displayed in Figures 21 and 22.
Figure 21: Excerpt (b) of Arrhenius' 1906 paper.
The English translation reads:
"This statement could lead to the impression, that I had claimed that a reduction
of the concentration of carbonic acid in the atmosphere of 20 % would be suffi-
cient to cause ice-age temperatures, i.e. to lower the Europe's average temperature
about four to five degrees C. To keep such an idea from spreading, I would like
to point out that according to the old calculation a reduction of carbonic acid of
50 % would cause the temperature to fall for 4 (1897) or, respectively, 3.2 (1901)

56
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 22: Excerpt (c) of Arrhenius' 1906 paper.
degrees. The opinion that a decrease of carbonic acid in the air can ex-
plain ice-age temperatures is not proved wrong until it is shown, that
the total disappearance of carbonic acid from the atmosphere would
not be sufficient to cause a lowering of temperatures about four to five
degrees. It is now easy to estimate how low the temperature would fall, if the
Earth's radiation rose in the ratio of 1 to 0.775, i.e. for 29 %, which matches the
data of Messrs. Rubens and Ladenburg. An increase of emissions of 1 % would be
equivalent to a decrease of temperatures of 0.72 C, as the average absolute tem-
perature of the Earth is taken to be 15 C = 288C. Therefore, one could estimate
a lowering of the temperatures about 20, 9 C as a result of the disappearance of
carbonic acid from the atmosphere. A more exact calculation, which takes into
account the small amount of radiation of the carbonic acid and of which I have
given details in my paper of 1901, leads to slightly lower numbers. According to
this calculation, 3.8 % out of the 22.5 % of terrestrial radiation, which are being
absorbed by the carbonic acid in the atmosphere at its current state, are emitted
into space by the carbonic acid, so the real decrease of terrestrial radiation would
be 18.7 %. After the disappearance of the carbonic acid, instead of the current
temperature of 15 C = 288 K, there would be an absolute temperature T , which
is:
T 4 : 2884 = (1 - 0, 187) : 1
(68)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
57
being
T = 273, 4 K = 0, 4 C.
(69)
The current amount of carbonic acid would therefore raise the temperature of the
Earth's surface for 14, 6 C its disappearance from the atmosphere would result in
a lowering of temperatures about three times as strong as the one, which caused
the ice ages. I calculate in a similar way, that a decrease in the concentration of
carbonic acid by half or a doubling would be equivalent to changes of temperature
of -1, 5 C or +1, 6 C respectively."
It is an interesting point that there is an inversion of the burden of proof in Arrhenius'
paper, which is typeset in boldface here, because it winds its way as a red thread through
almost all contemporary papers on the influence of CO2 of the so-called global climate.
3.6.2
Modern works of climatology
Callendar [47­53] and Keeling [54­60], the founders of the modern greenhouse hypothesis,
recycled Arrhenius' "discussion of yesterday and the day before yesterday"19 by perpetuating
the errors of the past and adding a lots of new ones.
In the 70s and 80s two developments coincided: A accelerating progress in computer tech-
nology and an emergence of two contrary policy preferences, one supporting the development
of civil nuclear technology, the other supporting Green political movements. Suddenly the
CO2 issue became on-topic, and so did computer simulations of the climate. The research
results have been vague ever since:
· In the 70s, computer simulations of the "global climate" predicted for a doubling of the
CO2 concentration a global temperature rise of about 0.7 -9.6 K [152].
· Later, computer simulations pointed towards a null effect20:
­ In the IPCC 1992 report, computer simulations of the "global climate" predicted
a global temperature rise of about 0.27 - 0.82 K per decade [25].
­ In the IPCC 1995 report, computer simulations of the "global climate" predicted
a global temperature rise of about 0.08 -0.33 K per decade [28].
· Two years ago (2005), computer simulations of the "global climate" predicted for a
doubling of the CO2 concentration a global temperature rise of about 2 - 12 K, whereby
six so-called scenarios have been omitted that yield a global cooling [154].
19a phrase used by von Storch in Ref. [1]
20G.G. is indebted to the late science journalist Holger Heuseler for this valuable information [153].

58
Gerhard Gerlich and Ralf D. Tscheuschner
The state of the art in climate modeling 1995 is described in Ref. [155] in detail. Today every
home server is larger than a mainframe at that time and every amateur can test and modify
the vintage code [156]. Of course, there exist no realistic solvable equations for the weather
parameters. Meanwhile, "computer models" have been developed which run on almost every
PC [154, 156] or even in the internet [157].
To derive a climate catastrophe from these computer games and scare mankind to death
is a crime.
3.7
The assumption of radiative balance
3.7.1
Introduction
Like the physical mechanism in glass houses the CO2-greenhouse effect is about a comparison
of two different physical situations. Unfortunately, the exact definition of the atmospheric
greenhouse effect changes from audience to audience, that is, there are many variations of the
theme. Nevertheless, one common aspect lies in the methodology that a fictitious model com-
putation for a celestial body without an atmosphere is compared to another fictitious model
computation for a celestial body with an atmosphere. For instance, "average" temperatures
are calculated for an Earth without an atmosphere and for an Earth with an atmosphere.
Amusingly, there seem to exist no calculations for an Earth without oceans opposed to calcu-
lations for an Earth with oceans. However, in many studies, models for oceanic currents are
included in the frameworks considered, and radiative "transport" calculations are incorpo-
rated too. Not all of these refinements can be discussed here in detail. The reader is referred
to Ref. [156] and further references therein. Though there exists a huge family of generaliza-
tions, one common aspect is the assumption of a radiative balance, which plays a central role
in the publications of the IPCC and, hence, in the public propaganda. In the following it is
proved that this assumption is physically wrong.
3.7.2
A note on "radiation balance" diagrams
From the definition given in Section 2.1.2 it is immediately evident that a radiation inten-
sity I is not a current density that can be described by a vector field j(x, t). That means
that conservation laws (continuity equations, balance equations, budget equations) cannot
be written down for intensities. Unfortunately this is done in most climatologic papers, the
cardinal error of global climatology, that may have been overlooked so long due to the
oversimplification of the real world problem towards a quasi one-dimensional problem. Hence
the popular climatologic "radiation balance" diagrams describing quasi-one-dimensional sit-
uations (cf. Figure 23) are scientific misconduct since they do not properly represent the
mathematical and physical fundamentals.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
59
Figure 23: A schematic diagram supposed to describe the global average components of the
Earth's energy balance. Diagrams of this kind contradict to physics.
Diagrams of the type of Figure 23 are the cornerstones of "climatologic proofs" of the
supposed Greenhouse effect in the atmosphere [142]. They are highly suggestive, because
they bear some similarity to Kirchhoff rules of electrotechnics, in particular to the node rule
describing the conservation of charge [158]. Unfortunately, in the literature on global clima-
tology it is not explained, what the arrows in "radiation balance" diagrams mean physically.
It is easily verified that within the frame of physics they cannot mean anything.
Climatologic radiation balance diagrams are nonsense, since they
1. cannot represent radiation intensities, the most natural interpretation of the arrows
depicted in Figure 23, as already explained in Section 2.1.2 and Section 2.1.5 ;
2. cannot represent sourceless fluxes, i.e. a divergence free vector fields in three dimensions,
since a vanishing three-dimensional divergence still allows that a portion of the field goes
sidewards;
3. do not fit in the framework of Feynman diagrams, which represent mathematical ex-
pressions clearly defined in quantum field theory [159].
4. do not fit in the standard language of system theory or system engineering [160].
Kirchhoff-type node rules only hold in cases, where there is a conserved quantity and the
underlying space may be described by a topological space that is a one-dimensional manifold
almost everywhere, the singularities being the network nodes, i.e. in conventional electric

60
Gerhard Gerlich and Ralf D. Tscheuschner
circuitry [158], in mesoscopic networks [161], and, for electromagnetic waves, in waveguide
networks21 [163, 164]. However, although Kirchhoff's mesh analysis may be successfully ap-
plied to microwave networks, the details are highly involved and will break down if dissipation
is allowed [163, 164].
Clearly, neither the cryptoclimate of a glass house nor the atmosphere of the Earth's does
compare to a waveguide network e.g. feeding the acceleration cavities of a particle accelerator.
Therefore, the climatologic radiation balance diagrams are inappropriate and misleading, even
when they are supposed to describe averaged quantities.
3.7.3
The case of purely radiative transfer
If only thermal radiation would be possible for the heat transfer of a radiation-exposed body
one uses Stefan-Boltzmann's law to calculate the ground temperature determined by this
balance. It reads
S(T ) = T 4
(70)
where the irradiance S has dimensions of a power density, is the emissivity of the radiating
black body ( = 1 for a perfect black body), and is the Stefan-Boltzmann constant given
by
25k4
W
T
4
W
=
= 5.670400 · 10-8
5.67 ·
(71)
15c2h3
m2K4
100
m2K4
For example, the energy flux density of a black body a room temperature 300 K is approxi-
mately
S( T = 300 K ) = 459 W/m2
(72)
Radiative equilibrium will be achieved if the outgoing radiation balances the incoming radi-
ation of a black body. Assuming both Sun and Earth may be described as black bodies we
can write the equilibrium condition for the Earth as
R2

Sun
Earth's ground · T 4
=
·
(73)
Earth's ground
Sun · T 4
Sun
R2Earth's orbit
In the following, a normalization factor is placed only at the right side and is called . The
one on the left side - no ground is a real black radiator - is brought to the other side. Thus
one may write
1
· T 4
=
· S = · · 57804
· 1368 W/m2
(74)
Earth's ground
46225
which yields

5780

T

Earth's ground = 4
·
K = 4
· 394.2 K
(75)
215
21The second and the third type are beautifully related by the correspondence of the v. Klitzing resistance
RvK 25, 813 k with the characteristic impedance Z0 376, 73 via the Sommerfeld fine structure constant
= Z0/2RvK 1/137, 036 [162].

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
61
From this result one calculates Table 10 displaying the effective temperatures Tground of the
Earth's ground in dependence of the emissivity parameter .22
Only the temperature mea-
Tground [K]
Tground [C]
1.00
394.2
121.2
0.70
360.6
87.6
0.62
349.8
76.8
Table 10: Effective temperatures Tground in dependence of the emissivity parameter .
sured in the Sun inside the car bears some similarity with the first three ones calculated here.
Therefore, the radiation balance does not determine the temperature outside the car! In con-
trast to this, Table 11 displays the "average" temperatures of the ground, which according to
common wisdom are used to "explain" the atmospheric greenhouse effect.
Tground [K]
Tground [C]
0.25 · 1.00
278.7
5.7
0.25 · 0.70
255.0
-18.0
0.25 · 0.62
247.4
-25.6
Table 11: Effective "average" temperatures Tground in dependence of the parameter .
This fictitious effect is based on the assumption that one should have an "average effective"
temperature of -18 C. One will get this if one weights the solar constant with a factor of
0.7 and inserts a quarter of the solar constant into the "radiative balance" equation. The
factor of a quarter is introduced by "distributing" the incoming solar radiation seeing a cross
section Earth over the global surface Earth
Earth
· R2
1
=
Earth =
(76)
Earth
4 · R2
4
Earth
Evidently, such an average value has no physical meaning at all. This will be elucidated in
the following subsection.

62
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 24: A radiation exposed static globe.
3.7.4
The average temperature of a radiation-exposed globe
For a radiation exposed static globe (cf. Figure 24) the corresponding balance equation must
contain a geometric factor and reads therefore


· S · cos = · · 57804/2152 · cos
if
0 /2
· T 4 =
(77)

0
if /2
It is obvious that one gets the effective temperatures if the right side is divided by .
This in turn will determine the formerly mentioned "average" effective temperatures over
the global surface.
1
T 4
=
T 4 d
eff
4
surface
1
2

=
T 4 sin d d
4 0
0
1
2
-1
=
T 4d(- cos ) d
4 0
1
1
2
1
=
T 4d(cos ) d
(78)
4 0
-1
Defining
µ := cos
(79)
one gets
1
2
1
T 4
=
T 4 dµ d
eff
4 0
-1
1
2
1
S
=
·
· µ dµ d
4 0
0

1
S
1
=
· ·
·
µ dµ
2

0
22 The emissivity
is related to the albedo A describing the reflectivity or the "whiteness" of an object:
A = 1 - . In the earlier literature one often finds A = 0.5, in current publications A = 0.3.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
63
1
S
=
· ·
4

1
=
· · (394.2)4 K4
(80)
4
Drawing the fourth root out of the resulting expression
S
Teff =
4
·
4

=
4
· 394.2 K
4

= (1/ 2) · 4
· 394.2 K

= 0.707 · 4
· 394.2 K
(81)
Such a calculation, though standard in global climatology, is plainly wrong. Namely, if one
wants to calculate the average temperature, one has to draw the fourth root first and then
determine the average, though:
1
2
1
Tphys =
T dµ d
4 0
-1
1
2
1
S
=
4
·
· µ dµ d
4 0
0

1
S
1
=
· 4 ·
·
4 µ dµ
2

0
1
S
4
=
· 4 ·
·
2

5
2
S
=
· 4 ·
(82)
5

finally yielding
2
Tphys =
· 4 · 394.2 K
5

= 0.4 · 4
· 394.2 K
(83)
Now the averaged temperatures Tphys are considerably lower than the absolute temperature's
fourth root of the averaged fourth power (cf. Table 12).
This is no accident but a consequence of H¨
older's inequality [165­168]
1/p
1/q
f g dµ
f p dµ
·
gq dµ
(84)
X
X
X
for two non-negative measurable functions f , g and non-negative integers p, q obeying
1
1
+
= 1
(85)
p
q

64
Gerhard Gerlich and Ralf D. Tscheuschner
Teff [C]
Tphys [C]
1.00
5.7
-115
0.70
-18.0
-129
0.62
-25.6
-133
Table 12: Two kinds of "average" temperatures Teff and Tphys in dependence of the emissivity
parameter
compared.
In the case discussed here one has
p = 4, q = 4/3, g(x) 1
(86)
and
f = T
(87)
3.7.5
Non-existence of the natural greenhouse effect
According to common wisdom among global climatologists one now takes the -18C computed
from the T 4 average and compares it to the fictitious Earth's average temperature of +15C.
The difference of 33C is attributed to the natural greenhouse effect . As seen in Equation
(83) a correct averaging yields a temperature of -129C. Evidently, something must be
fundamentally wrong here.
In global climatology temperatures are computed from given radiation intensities, and
this exchanges cause and effect. The current local temperatures determine the radiation
intensities and not vice versa. If the soil is warmed up by the solar radiation many different
local processes are triggered, which depend on the local movement of the air, rain, evaporation,
moistness, and on the local ground conditions as water, ice, rock, sand, forests, meadows, etc.
One square meter of a meadow does not know anything of the rest of the Earth's surface,
which determine the global mean value. Thus, the radiation is locally determined by the local
temperature. Neither is there a global radiation balance, nor a global radiation budget, even
in the mean-field limit.
While it is incorrect to determine a temperature from a given radiation intensity, one is
allowed to compute an effective radiation temperature Teff rad from T 4 averages representing
a mean radiation emitted from the Earth and to compare it with an assumed Earth's average
temperature Tmean H¨
older's inequality says that the former is always larger than the latter
Teff rad > Tmean
(88)
provided sample selection and averaging (probability space) remain the same.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
65
For example, if n weather stations distributed around the globe measure n temperature
values T1, . . . Tn, an empirical mean temperature will be defined as
1 n
Tmean =
Ti
(89)
n i=1
For the corresponding black body radiation intensity one can approximately set
1 n
Smean =
T 4 =: T 4
(90)
n
i
eff rad
i=1
defining an effective radiation temperature
1
Teff rad =
Smean
(91)

One gets immediately
1 n
Teff rad = 4
T 4
(92)
n
i
i=1

older's inequality shows that one always has
Teff rad > Tmean
(93)
3.7.6
A numerical example
From Equation (92) one can construct numerical examples where e.g. a few high local tem-
peratures spoil an average built from a large collection of low temperatures. A more realistic
distribution is listed in Table 13. The effective radiation temperature Teff rad is slightly higher
than the average Tmean of the measured temperatures. According to H¨
older's inequality this
will always be the case.
Thus there is no longer any room for a natural greenhouse effect, both mathematically
and physically.
3.7.7
Non-existence of a global temperature
In the preceding sections mathematical and physical arguments have been presented that the
notion of a global temperature is meaningless. Recently, Essex, McKitrick, and Andresen
showed [169]:
"that there is no physically meaningful global temperature for the Earth in the
context of the issue of global warming. While it is always possible to construct
statistics for any given set of local temperature data, an infinite range of such
statistics is mathematically permissible if physical principles provide no explicit
basis for choosing among them. Distinct and equally valid statistical rules can

66
Gerhard Gerlich and Ralf D. Tscheuschner
Weather
Instruments
Absolute
4th
4th Root of
4th Root of
Station
Reading
Temperature
Power
4th Power Mean
4th Power Mean
Ti [C]
Ti [K]
T 4
T
i
eff rad [K]
Teff rad [C]
1
0.00
273.15
5566789756
2
10.00
283.15
6427857849
3
10.00
283.15
6427857849
4
20.00
293.15
7385154648
5
20.00
293.15
7385154648
6
30.00
303.15
8445595755
Mean
15.00
288.15
6939901750
288,63
15.48
Table 13: An example for a measured temperature distribution from which its associated
effective radiation temperature is computed. The latter one corresponds to the fourth root of
the fourth power mean.
and do show opposite trends when applied to the results of computations from
physical models and real data in the atmosphere. A given temperature field can
be interpreted as both `warming' and `cooling' simultaneously, making the concept
of warming in the context of the issue of global warming physically ill-posed."
Regardless of any ambiguities, a global mean temperature could only emerge out of many lo-
cal temperatures. Without knowledge of any science everybody can see, how such a changing
average near-ground temperature is constructed: There is more or less sunshine on the ground
due to the distribution of clouds. This determines a field of local near-ground temperatures,
which in turn determines the change of the distribution of clouds and, hence, the change of
the temperature average, which is evidently independent of the carbon dioxide concentration.
Mathematically, an evolution of a temperature distribution may be phenomenologically de-
scribed by a differential equation. The averages are computed afterwards from the solution of
this equation. However, one cannot write down a differential equation directly for averages.
3.7.8
The rotating globe
Since the time when Fourier formulated the heat conduction equation, a non-linear boundary
condition describing radiative transfer of a globe with a sun-side and a dark side has never
belonged to the family of solvable heat conduction problems, even in the case of a non-rotating
globe.
Regardless of solvability, one can write down the corresponding equations as well as their

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
67
boundary conditions. If a rotating globe (Fig. 25) was exposed to radiation and only radiative
Figure 25: The rotating globe
heat transfer to its environment was possible, the initial problem of the heat conduction
equation would have to be solved with the following boundary condition

T
T 4 - S · sin cos( -
-
dt)
if
-/2 - dt /2

=
(94)
n
T 4
if
/2 - dt 3/2
where
= n ·
(95)
n
denotes the usual normal derivative at the surface of the sphere and d the angular frequency
associated with the day-night cycle. By defining an appropriate geometry factor
(, , d, t) = sin cos( - dt)
(96)
and the corresponding Sun side area
A = {(, ) | (, , d, t) 0}
(97)
one can rewrite the expression as

T
T 4 - S · (, ,
-
d, t)
if
(, ) A

=
(98)
n
T 4
if
(, ) A
3.7.9
The obliquely rotating globe
The result obtained above may be generalized to the case of an obliquely rotating globe.

68
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 26: An obliquely rotating globe
For an obliquely rotating globe (Fig. 26) one has

T
T 4 - S · (
-
0, , , y , d, t)
if
(, ) A

=
(99)
n
T 4
if
(, ) A
where /n denotes the usual normal derivative on the surface of the sphere and y, d the
angular frequencies with the year cycle and the day-night cycle, respectively.23 The geometry
factor now reads
(0, , , y, d, t) =
[ sin(yt) cos(dt) + cos(yt) sin(dt) cos 0] sin cos
+ [- sin(yt) sin(dt) + cos(yt) cos(dt) cos 0] sin sin
- [ cos(yt) sin 0 ] cos
(100)
and the expression for the sun-side surface is given by
A = {(, ) | (0, , , y, d, t) 0}
(101)
Already the first unrealistic problem will be too much for any computer. The latter more
realistic model cannot be tackled at all. The reasons for this is not only the extremely different
frequencies y and d but also a very non-physical feature which affects the numeric as well:
According to a famous law formulated by Wiener, almost all particles in this mathematical
model which cause the diffusion, move on paths at infinitely high speeds [170, 171].
Rough estimates indicate that even these oversimplified problems cannot be tackled with
any computer. Taking a sphere with dimensions of the Earth it will be impossible to solve
this problem numerically even in the far future. Not only the computer would work ages,
before a "balanced" temperature distribution would be reached, but also the correct initial
temperature distributions could not be determined at all.
23Here sidereal time is used [138, 139].

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
69
3.7.10
The radiating bulk
The physical situation of a radiating volume where the radiation density
S(T ) = T 4
(102)
emitted through the surface shell originates from the volume's heat content, cannot be realized
easily, if at all. However, it is interesting to study such a toy model in order to get a feeling
about radiative equilibration processes which are assumed to take place within a reasonable
time interval.
With disregard to the balancing processes inside, one gets the differential equation
dT
V cv
= - T 4
(103)
dt
with V denoting the volume,
the density, cv the specific heat, the surface of the body. By
defining

=
(104)
V
the above equation can be rewritten as
dT

= -
· T 4
(105)
dt
cv
For a cube with an edge length of a one has = 6/a, for a globe with radius r one has = 3/r
instead. For bodies with unit volumes = 6 or = 4.8, respectively.
The differential equation is easily solvable. The solution reads
3 T 3
T (t) = T
0
0/ 3 1 +
t
(106)
cv
At an initial temperature of 300 K with the values of
and cv for air, one gets one half of the
temperature value within three seconds for the standard cube (cf. Figure 27)
For iron the isochoric thermal diffusivity
av = cv
(107)
is about 3000 times higher than for air, the half time for the temperature decrease is approxi-
mately three hours. For air, even if only one of the cube's planes were allowed to radiate, one
would get a fall in temperatures of seventy degrees within the first three seconds, and almost
290 degrees within ten hours - a totally unrealistic cooling processes.
Hence, this simple assessment will prove that one has to be extremely careful, if the
radiation laws for black-body radiation, where the energy comes from the heated walls of the
cavity, are to be used for gases, where the emitted electromagnetic radiation should originate
from the movements of the gas molecules (cf. Section 3.5).

70
Gerhard Gerlich and Ralf D. Tscheuschner
Figure 27: The cooling curve for a radiating standard cube
3.7.11
The comprehensive work of Schack
Professor Alfred Schack, the author of a standard textbook on industrial heat transfer [95],
was the first scientist who pointed out in the twenties of the past century that the infrared
light absorbing fire gas components carbon dioxide (CO2) and water vapor (H2O) may be
responsible for a higher heat transfer in the combustion chamber at high burning temperatures
through an increased emission in the infrared . He estimated the emissions by measuring the
spectral absorption capacity of carbon dioxide and water vapor.
In the year 1972 Schack published a paper in Physikalische Bl¨
atter entitled "The influence
of the carbon dioxide content of the air on the world's climate". With his article he got
involved in the climate discussion and emphasized the important role of water vapor [98].
Firstly, Schack estimated the mass of the consumed fossil fuels up
mburned = 5 · 1012 kg = 5 GtC
(108)
per anno. Since 1 kg produces 10 m3 waste gas with 15 % CO2, a volume of
VCO = 7.5 · 1012 m3
(109)
2
is blown into the Earth's atmosphere, whose total volume under normal conditions (0 C and
760 mm Hg) is
Vatmosphere = 4 · 1018 m3
(110)
It follows immediately that the increase of the CO2 concentration is approximately 1.9 · 10-6
per anno. About one half is absorbed by the oceans, such that the increase of CO2 is reduced
to
VCO2 = 0.95 · 10-6
(111)
VCO2
per anno.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
71
With the "current" (1972) atmospheric CO2 volume concentration of
0.03 % = 300 · 10-6
(112)
and an relative annual increase of
0.95 · 10-6
0.32 % =
(113)
300 · 10-6
the CO2 concentration in the atmosphere would rise by one third of current concentration
within 100 years, supposed the fossil fuel consumption will remain constant.
Schack then shows that CO2 would absorb only one seventh of the ground's heat radiation
at most, if the water vapor had not already absorbed the infrared light in most situations.
Furthermore, a doubling of the CO2-content in the air would only halve the radiation's char-
acteristic absorption length, that is, the radiation would be absorbed at a length of 5 km
instead of at a length of 10 km, for example.
Schack discussed the CO2 contribution only under the aspect that CO2 acts as an ab-
sorbent medium. He did not get the absurd idea to heat the radiating warmer ground with
the radiation absorbed and re-radiated by the gas.
In a comment on an article by the science journalist Rudzinski [172] the climatologist
Oeschger objectioned against Schack's analysis of the influence of the CO2 concentration on
the climate that Schack had not calculated thoroughly enough [173]. In particular, he referred
to radiation transport calculations. However, such calculations have formerly been performed
only for the atmospheres of stars, because the processes in planetary atmospheres are far too
complicated for such simple models. The goal of astrophysical radiation transport calculations
is to calculate as many absorption lines as possible with one boundary density distribution
and one temperature dependency with respect to the height with Saha's equation and many
other additional hypotheses [174]. However, the boundary density of the radiation intensity
cannot be derived from these calculations.
One should emphasize that Schack was the first scientist to take into account the selective
emission by the infrared light absorbing fire-gases for combustion chambers. Therefore one
is driven to the verge of irritation when global climatologists blame him for not calculating
complicatedly enough, simply because he saw the primitive physical concepts behind the
equations for the radiation transfer.
3.8
Thermal conductivity versus radiative transfer
3.8.1
The heat equation
In many climatological texts it seems to be implicated that thermal radiation needs not be
taken into account when dealing with heat conduction, which is incorrect [175]. Rather, always

72
Gerhard Gerlich and Ralf D. Tscheuschner
the entire heat flow density q must be taken into account. This is given by the equation
q = - · grad T
(114)
in terms of the gradient of the temperature T . It is inadmissible to separate the radiation
transfer from the heat conduction, when balances are computed.
In the following, a quasi one-dimensional experimental situation for the determination of
the heat conductivity is considered (Fig. 28). With F being the cross section, d the distance
Figure 28: A simple heat transport problem.
between the two walls, and Q being the heat per time transported from 1 to 2, such that,
Q
qx =
(115)
F
we have
T
T
T
Q = F · q
2 - T1
1 - T2
x = - · F ·
= - · F ·
= · F ·
(116)
x
d
d
in case of a stationary temperature distribution.
Q is produced and measured for the stationary situation by Joule heat (i.e. electric heat)
at the higher temperature. The heat transfer by radiation cannot be separated from the heat
transfer of kinetic energy. Of course, one tries to avoid the heat convection by the experimental
arrangement. Hence any effects of the thermal radiation (long wave atmospheric radiation to
Earth) are simply contained in the stationary temperatures and the measured Joule heat.
In the non-stationary case the divergence of the heat flow no longer vanishes, and we have
for constant heat conductivity
T
div q = - · div grad T = - · T = - cv ·
(117)
t
where T is the Laplacean of the temperature and
cv the specific heat of unit volume. We
finally obtain
T

=
T
(118)
t
cv

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
73
It is important to note, that the ordinary heat conductivity is divided by
cv, which means
that the isochoric thermal diffusivity

av =
(119)
cv
of gases and metals can be of the the same order of magnitude, even if the thermal conduc-
tivities are completely different.
Unfortunately, the work on even the simplest examples of heat conduction problems needs
techniques of mathematical physics, which are far beyond the undergraduate level. Because
a concise treatment of the partial differential equations lies even outside the scope of this
paper, the following statements should suffice: Under certain circumstances it is possible to
calculate the space-time dependent temperature distribution with given initial values and
boundary conditions. If the temperature changes have the characteristic length Lchar, the
characteristic time for the heat compensation process is
1

1
=
·
(120)
tchar
· cv L2char
If the radius of the Moon were used as the characteristic length and typical values for the
other variables, the relaxation time would be equivalent to many times the age of the universe.
Therefore, an average ground temperature (over hundreds of years) is no indicator at all that
the total irradiated solar energy is emitted. If there were a difference, it would be impossible
to measure it, due to the large relaxation times. At long relaxation times, the heat flow from
the Earth's core is an important factor for the long term reactions of the average ground
temperature; after all, according to certain hypotheses the surfaces of the planetary bodies
are supposed to have been very hot and to have cooled down. These temperature changes
can never be separated experimentally from those, which were caused by solar radiation.
3.8.2
Heat transfer across and near interfaces
In the real world things become even more complex through the existence of interfaces, namely
· solid-gas interfaces
· solid-liquid interfaces
· liquid-gas interfaces
for which a general theory of heat transport does not exist yet. The mechanisms of air
cooling and water cooling and the influence of radiation have been studied in engineering
thermodynamics [95­97] and are of practical interest e.g. in solar collectors, fire research,
chemistry, nuclear engineering, electronic cooling, and in constructing reliable computer hard-
ware [176, 177]. Obviously, there are of utmost importance in geophysics and atmospheric
physics as well. Since they add an additional degree of complexity to the problem discussed
here, they are not discussed further in this context.

74
Gerhard Gerlich and Ralf D. Tscheuschner
3.8.3
In the kitchen: Physics-obsessed housewife versus IPCC
In Section 3.3.5 it was indicated how simple it is to falsify the atmospheric greenhouse hy-
potheses, namely by observing a water pot on the stove: Without water filled in, the bottom
of the pot will soon become glowing red. However, with water filled in, the bottom of the pot
will be substantially colder.
In particular, such an experiment can be performed on a glass-ceramic stove. The role of
the Sun is played by the electrical heating coils or by infrared halogen lamps that are used as
heating elements. Glas-ceramic has a very low heat conduction coefficient, but lets infrared
radiation pass very well. The dihydrogen oxide in the pot, which not only plays the role of
the "greenhouse gas" but also realizes a very dense phase of such a magic substance, absorbs
the infrared extremely well. Nevertheless, there is no additional "backwarming" effect of the
bottom of the pot. In the opposite, the ground becomes colder.
There are countless similar experiments possible that immediately show that the atmo-
spheric greenhouse picture is absolutely ridiculous from an educated physicist's point of view
or from the perspective of a well-trained salesman offering high performance tinted glass that
reduces solar heat gain mainly in the infrared [100]:
"Daylight and view are two of the fundamental attributes of a window. Unfortu-
nately, windows are also the source of significant solar heat gain during times when
it is unwanted. Traditional solutions to reducing solar heat gain such as tinted
glazing or shades mean that the amount of light is reduced as well. New glazings
with low-solar-gain Low-E (spectrally selective) coatings can provide better solar
heat gain reduction than tinted glass, with a minimal loss of visible light. This
also means that views can be clearer and unobstructed."
Ironically, this works already in the case of dihydrogen oxide. Such experiments can be
performed easily on every overhead projector, showing that the absorption of the infrared
portion of the incoming radiation by water is a non-neglible and leads to a drop of the tem-
perature of the illuminated surface dressed by an infrared absorbing layer that is transparent
to visible light.
3.9
The laws of thermodynamics
3.9.1
Introduction
At the time of Fourier's publication [37, 38] the two fundamental laws of classical thermody-
namics were not known. Formulated by Rudolf Clausius (January 2, 1822 - August 24, 1888),
the founder of axiomatic thermodynamics, they read [178, 179]:

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
75
· First law of thermodynamics: In all cases, when work is transformed into heat, an
amount of heat in proportion to the produced work is used up, and vice versa, the same
amount of heat can be produced by the consumption of an equal amount of work.
Corollary: Work can be transformed into heat and vice versa, where the amount of one
is in proportion to the amount of the other.
This is a definition of the mechanical heat equivalent.
· Second law of thermodynamics: Heat cannot move itself from a cooler body into
a warmer one. A heat transfer from a cooler body into a warmer one cannot happen
without compensation.
Corollary: A heat transfer from a cooler body into a warmer one cannot happen without
compensation.
A fictitious heat engine which works in this way is called a perpetuum mobile of the second
kind .
Clausius examines thoroughly, that the second law is relevant for radiation as well, even
if image formations with mirrors and lenses are taken into account [178, 179].
3.9.2
Diagrams
It is quite useful to clarify the second law of thermodynamics with (self-explaining) diagrams.
· A steam engine works transforming heat into mechanical energy, whereby heat is trans-
ferred from the warmth to the cold (see Figure 29).
Figure 29: A steam engine works transforming heat into mechanical energy.

76
Gerhard Gerlich and Ralf D. Tscheuschner
· A heat pump (e.g. a refrigerator) works, because an external work is applied, whereby
heat is transferred from the the cold to the warmth (see Figure 30).
Figure 30: A heat pump (e.g. a refrigerator) works, because an external work is applied.
· In a perpetuum mobile of the second kind heat is transferred from the cold to the
warmth without external work applied (see Figure 31).
Figure 31: Any machine which transfers heat from a low temperature reservoir to a high
temperature reservoir without external work applied cannot exist: A perpetuum mobile of the
second kind is impossible.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
77
3.9.3
A paradox
The use of a perpetuum mobile of the second kind can be found in many modern pseudo-
explanations of the CO2-greenhouse effect. Even prominent physicists have relied on this
argumentation. One example was the hypothesis of Stichel already discussed in Section 3.3.4
[134].
Figure 32: A machine which transfers heat from a low temperature reservoir (e.g. stratosphere)
to a high temperature reservoir (e.g. atmosphere) without external work applied, cannot exist
- even if it is radiatively coupled to an environment, to which it is radiatively balanced. A
modern climate model is supposed to be such a variant of a perpetuum mobile of the second
kind.
The renowned German climatologist Rahmstorf has claimed that greenhouse effect does
not contradict to the the second law of thermodynamics [141]:
"Some `sceptics' state that the greenhouse effect cannot work since (according to
the second law of thermodynamics) no radiative energy can be transferred from a
colder body (the atmosphere) to a warmer one (the surface). However, the second
law is not violated by the greenhouse effect, of course, since, during the radiative
exchange, in both directions the net energy flows from the warmth to the cold."
Rahmstorf's reference to the second law of thermodynamics is plainly wrong. The second
law is a statement about heat, not about energy. Furthermore the author introduces an
obscure notion of "net energy flow". The relevant quantity is the "net heat flow", which, of
course, is the sum of the upward and the downward heat flow within a fixed system, here the
atmospheric system. It is inadmissible to apply the second law for the upward and downward
heat separately redefining the thermodynamic system on the fly.
A similar confusion is currently seen in the German version of Wikipedia [180]:

78
Gerhard Gerlich and Ralf D. Tscheuschner
"Some have problems with the energy that is radiated by the greenhouse gases
towards the surface of the Earth (150 W/m2 - as shown above) because this en-
ergy flows from a colder body (approx. -40 C) to a warmer one (Earth's ground
approx. +15 C) apparently violating the second law of thermodynamics. This is
a wrong interpretation, since it ignores the radiation of the Sun (even 6000 K).
With respect to the total balance the second law is obeyed indeed."
Obviously, the authors are confusing energy with heat. Furthermore, the system in question
here is the atmospheric system of the Earth including the Earth's ground. Since this system is
assumed to be in radiative balance with its environment, and any other forms of energy
and mass exchange with its environment are strictly prohibited, it defines a system in the
sense of thermodynamics for which the second law holds strictly, even if it is considered as a
subsystem of a larger embedding system.
The difference between heat, energy and work is crucial for the understanding of thermo-
dynamics. The second law is a statement about this difference.
3.9.4
Possible resolution of the paradox
It may be due to the following approximation that something is possible in climate models,
which contradicts the second law of thermodynamics. In the field theoretical description of
irreversible thermodynamics, the second law is found in the statement, that the heat flow
density and the gradient of the temperature point into opposite directions
q = - · grad T
(121)
In this formula, the heat conduction necessarily is a positive definite tensor. In climate models
it is customary to neglect the thermal conductivity of the atmosphere, which means to set it
to zero [181].
= 0
(122)
This could explain, why the numerical simulations could produce small effects in contradiction
to the second law of thermodynamics. To set the heat conduction to zero would not be a
real violation of the second law of thermodynamics as it corresponds to an approximation
of an ideal system: In spite of the temperature differences no heat flow could move from a
warmer area to a colder one. It would be in accordance to the second law, if there were no
temperature rise. In the past, the "predictions" of the climate models were pointing sometimes
in this direction, as was shown in detail in Section 3.6.2.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
79
4
Physical Foundations of Climate Science
4.1
Introduction
A fundamental theory of the weather and its local averages, the climates, must be founded
on a reasonable physical theory. Under the premise that such a theory has already been
formulated there are still two basic problems left unresolved, namely
· the embedding of the purely physical theory in a much more wider framework including
the chemical and biological interactions within the geophysical realm,
· the correct physical account of a possible non-trivial radiative effect, which must go
far beyond the famous black body approach, which is suggestive but does not apply to
gases.
A review of the issues of chemistry and biology such as the carbon cycle lies outside the
perspective of this paper, but it must not be neglected. In his criticism of global warming
studies by means of computer models the eminent theoretical physicist Freeman J. Dyson
stated [182]:
"The models solve the equations of fluid dynamics, and they do a very good job
of describing the fluid motions of the atmosphere and the oceans. They do a very
poor job of describing the clouds, the dust, the chemistry and the biology of fields
and farms and forests. They do not begin to describe the real world that we live
in. The real world is muddy and messy and full of things that we do not yet
understand. It is much easier for a scientist to sit in an air-conditioned building
and run computer models, than to put on winter clothes and measure what is
really happening outside in the swamps and the clouds. That is why the climate
model experts end up believing in their own models."
However, it can be shown that even within the borders of theoretical physics with or without
radiation things are extremely complex so that one very quickly arrives at a point where
verifiable predictions no longer can be made. Making such predictions nevertheless may be
interpreted as an escape out of the department of sciences, not to say as a scientific fraud.
In the following the conservation laws of magnetohydrodynamics are reviewed. It is gen-
erally accepted that a Navier-Stokes-type approach or a simplified magnetohydrodynamics
provides the backbone to climatological computer simulations [156, 183, 184]. In these frame-
works neither the radiative budget equations can be derived, nor is it possible to integrate
radiative interactions in a consistent way. Therefore it would conceptually be necessary to
go into the microscopic regime, which is described by non-equilibrium multi-species quantum
electrodynamics of particles incorporating bound states with internal degrees of freedom,

80
Gerhard Gerlich and Ralf D. Tscheuschner
whereby the rich structure and coexistence of phases have to be taken into account in the
discussion of natural situations. From these only formally sketchable microscopic ab initio
approaches there is no path known that leads to a family of more realistic phenomenological
climate models [185].
4.2
The conservation laws of magnetohydrodynamics
4.2.1
Overview
The core of a climate model must be a set of equations describing the equations of fluid flow,
namely the Navier-Stokes equations [183, 184]. The Navier-Stokes equations are nonlinear
partial differential equations, which, in general, are impossible to solve analytically. In very
special cases numerical methods lead to useful results, but there is no systematics for the
general case. In addition, the Navier-Stokes approach has to be extended to multi-component
problems, which does not simplify the analysis.
Climate modelers often do not accept that "climate models are too complex and uncertain
to provide useful projections of climate change" [186]. Rather, they claim that "current models
enable [them] to attribute the causes of past climate change and predict the main features
of the future climate with a high degree of confidence" [186]. Evidently, this claim (not
specifying the observables subject to the prediction) contradicts to what is well-known from
theoretical meteorology, namely that the predictability of the weather forecast models is (and
must be) rather limited (i.e. limited to a few days) [187].
The non-solvability of Navier-Stokes-type equations is related (but not restricted) to the
chaotic character of turbulence. But this is not the only reason why the climate modeling can-
not be built on a solid ground. Equally importantly, even the full set of equations providing a
proper model of the atmospheric system (not to say atmospheric-oceanographic system) are
not known (and never will) to a full extent. All models used for "simulation" are (and have
to be) oversimplified. However, in general a set of oversimplified nonlinear partial differential
equations exhibits a totally different behavior than a more realistic, more complex system.
Because there exist no strategy for a stepwise refinement within the spirit of the renormaliza-
tion (semi-)group, one cannot make any useful predictions. The real world is too complex to
be represented properly by a feasable system of equations ready for processing [185]. The only
safe statement that can be made is that the dynamics of the weather is probably governed by
a generalized Navier-Stokes-type dynamics.
Evidently, the electromagnetic interactions have to be included, leading straightly to the
discipline of Magnetohydrodynamics (MHD) [188­191]. This may be regarded as a set of
equations expressing all the essential physics of a fluid, gas and/or plasma.
In the following these essential equations are reviewed. The purpose is twofold:

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
81
· Firstly, it should be made a survey of what budget relations really exist in the case of
atmospheric physical systems.
· Secondly, the question should be discussed at what point the supposed greenhouse mech-
anism does enter the equations and where the carbon dioxide concentration appears.
Unfortunately, the latter aspect seems to be obfuscated in the mainstream approaches of
climatology.
4.2.2
Electric charge conservation
As usual, electric charge conservation is described by the continuity equation
e + · j = 0
(123)
t
where
e is the electrical (excess) charge density and j is the electrical (external) current
density.
4.2.3
Mass conservation
The conservation of mass is described by another sort of continuity equation
+ · ( v) = 0
(124)
t
where
is the mass density and
v is the density of the mass current.
4.2.4
Maxwell's equations
The electromagnetic fields are described by Maxwell's field equations that read
· D =
e
(125)
B
× E = -
(126)
t
(127)
· B = 0
(128)
D
× H = j +
(129)
t
where the standard notation is used. They have to be supplemented by the material equations
D = 0 E
(130)
B = µ µ0 H
(131)
where and µ are assumed to be constant in space and time, an assumption that was already
made by Maxwell.

82
Gerhard Gerlich and Ralf D. Tscheuschner
4.2.5
Ohm's law for moving media
Electric transport is described by Ohm's law for moving media
j - ev = (E + v × B)
(132)
with being the conductivity tensor. Expressed in terms of the resistivity tensor this
reads
(j - ev) = E + v × B
(133)
4.2.6
Momentum balance equation
Conservation of momentum is described by a momentum balance equation, also known as
Navier-Stokes equation,
( v) + · ( v v) = - p -
+ eE + j × B +
· R + Fext
(134)
t
where v is the velocity vector field, p the pressure field, the gravitational potential, R the
friction tensor, and Fext are the external force densities, which could describe the Coriolis and
centrifugal accelerations.
4.2.7
Total energy balance equation
The conservation of energy is described by

1
1
|v|2 +
H · B +
E · D +
+
u +
t
2
2
2
+
·
|v|2 v + E × H + v + u v + p v - v · R + ·
T
=
2

=
+ Fext · v + Q
(135)
t
where u is the density of the internal energy, T is the temperature field, and the thermal
conductivity tensor, respectively. Furthermore a term Q has been added which could describe
a heat density source or sink distribution.
4.2.8
Poynting's theorem
From Maxwell's equation with space-time independent and µ one obtains the relation

1
1
H · B +
E · D +
· (E × H) = - j · E
(136)
t
2
2
This relation is a balance equation. The Pointing vector field E × H may be interpreted as
an energy current density of the electromagnetic field.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
83
4.2.9
Consequences of the conservation laws
Multiplying Ohm's law for moving media (Equation 133) with (j - e v) one gets
(j - ev) (j - ev) = j · E + j · (v × B) - e v · E
= j · E - v · (j × B) - e v · E
(137)
which may be rewritten as
j · E = (j - ev) (j - ev) + v · (j × B) + e v · E
(138)
Inserting this into Poynting's theorem (Equation 136) one obtains

1
1
H · B +
E · D +
· (E × H) =
t
2
2
= - (j - ev) (j - ev) - v · ( e E + j × B)
(139)
On the other hand, if one applies the scalar product with v on the momentum balance
equation Equation (134) one gets

|v|2 +
·
|v|2 v =
t
2
2
= -v ·
p -
v ·
+ v · ( eE + j × B) + v · (
· R) + v · Fext
(140)
Replacing v · ( eE + j × B) with Equation (139) and doing some elementary manipulations
one finally obtains

1
1
|v|2 +
H · B +
E · D +
+
t
2
2
2
+
·
|v|2v + E × H - v · R + p v + v =
2

= p
· v +
- Tr((
v) · R) - (j - ev) (j - ev) + Fext · v
(141)
t
Hence, this relation is a consequence of the fundamental equations of magnetohydrodynamics.
The heat density source term Q, the internal energy density u, and the divergence of the heat
current density q are missing here.
4.2.10
General heat equation
With
p
du =
d + T ds
(142)
2
for reversible processes one can substitute the density of the internal energy u by the density
of the entropy s.

84
Gerhard Gerlich and Ralf D. Tscheuschner
With the aid of Equations (135) and (136) one derives a differential equation for the
entropy density s:
( s) + · ( s v) =
t
1
1
=
Tr((
v) · R) +
(j - ev) (j - ev)
T
T
1
Q
-
· ( ·
T ) +
(143)
T
T
This is the generalized form of the heat equation.
Only with artificial heat densities Q in Equation (143) one can incorporate a hypothetical
warming by radiation. There is no term that depends on the carbon dioxide concentration.
4.2.11
Discussion
The equations discussed above comprise a system of one-fluid equations only. One can (and
must) write down many-fluid equations and, in addition, the averaged equations describing
the turbulence. To get a realistic model of the real world, the above equations must be
generalized to take into account
· the dependency of all relevant coefficients on space and time;
· the presence and coexistence of various species of fluids and gases;
· the inhomogenities of the media, the mixture and separation of phases.
In principle such a generalization will be feasable, if one cuts the domains of definition into
pieces and treats the equations by a method of patches. Thus the final degree of complexity
may be much larger than originally expected arriving at a system of thousands of phenomeno-
logical equations defining non-linear three-dimensional dynamics and heat transfer [192­194].
It cannot be overemphasized that even if these equations are simplified considerably, one
cannot determine numerical solutions, even for small space regions and even for small time
intervals. This situation will not change in the next 1000 years regardless of progress made in
computer hardware. Therefore, global climatologists may continue to write updated research
grant proposals demanding next-generation supercomputers ad infinitum. As the extremely
simplified one-fluid equations are unsolvable, the many-fluid equations would be more unsolv-
able, the equations that include the averaged equations describing the turbulence would be
still more unsolvable, if "unsolvable" had a comparative.
Regardless of the chosen level of complexity, these equations are supposed to be the back-
bone of climate simulations, or, in other words, the foundation of models of nature. But
even this is not true: In computer simulations heat conduction and friction are completely
neglected, since they are mathematically described by second order partial derivatives that

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
85
cannot be represented on grids with wide meshes. Hence, the computer simulations of global
climatology are not based on physical laws.
The same holds for the speculations about the influence of carbon dioxide:
· Although the electromagnetic field is included in the MHD-type global climatologic
equations, there are no terms that correspond to the absorption of electromagnetic
radiation.
· It is hard if not impossible to find the point in the MHD-type global climatologic equa-
tions, where the concentration of carbon dioxide enters the game.
· It is impossible to include the radiative transfer equation (59) into the MHD-type cli-
matologic equations.
· Apparently, there is no reference in the literature, where the carbon dioxide concentra-
tion is implemented in the MHD-type climatologic equations.
Hence, one is left with the possibility to include a hypothetical warming by radiation by hand
in terms of artificial heat densities Q in Equation (143). But this would be equivalent to
imposing the "political correctly" requested anthropogenic rise of the temperature even from
the beginning just saving an additional trivial calculation.
In case of partial differential equations more than the equations themselves the boundary
conditions determine the solutions. There are so many different transfer phenomena, radiative
transfer, heat transfer, momentum transfer, mass transfer, energy transfer, etc. and many
types of interfaces, static or moving, between solids, fluids, gases, plasmas, etc. for which
there does not exist an applicable theory, such that one even cannot write down the boundary
conditions [176, 177].
In the "approximated" discretized equations artificial unphysical boundary conditions are
introduced, in order to prevent running the system into unphysical states. Such a "calcula-
tion", which yields an arbitrary result, is no calculation in the sense of physics, and hence,
in the sense of science. There is no reason to believe that global climatologists do not know
these fundamental scientific facts. Nevertheless, in their summaries for policymakers, global
climatologists claim that they can compute the influence of carbon dioxide of the climates.
4.3
Science and Global Climate Modelling
4.3.1
Science and the Problem of Demarcation
Science refers to any system of objective knowledge, in particular knowledge based on the
scientific method as well as an organized body of knowledge gained through research [195,196].
There are essentially three categories of sciences, namely

86
Gerhard Gerlich and Ralf D. Tscheuschner
· formal sciences (mathematics),
· natural sciences (physics, chemistry, biology)
· social sciences
In natural sciences one has to distinguish between
· a theory: a logically self-consistent framework for describing the behavior of certain
natural phenomena based on fundamental principles;
· a model: a similar but weaker concept than a theory, describing only certain aspects of
natural phenomena typically based on some simplified working hypothesis;
· a law of nature: a scientific generalization based on a sufficiently large number of em-
pirical observations that it is taken as fully verified;
· a hypothesis: a contention that has been neither proved nor yet ruled out by experiment
or falsified by contradiction to established laws of nature.
A consensus, exactly speaking a consensus about a hypothesis is a notion which lies outside
natural science, since it is completely irrelevant for objective truth of a physical law:
Scientific consens(us) is scientific nonsense.
The problem of demarcation is how and where to draw lines around science, i.e. to distin-
guish science from religion, from pseudoscience, i.e. fraudulent systems that are dressed up
as science, and non-science in general [195, 197].
In the philosophy of science several approaches to the definition of science are discussed
[195, 196]:
· empirism24 (Vienna Circle): only statements of empirical observations are meaningful,
i.e. if a theory is verifiable, then it will be scientific;
· falsificationism (Popper): if a theory is falsifiable, then it will be scientific;
· paradigm shift (Kuhn): within the process of normal science anomalies are created
which lead eventually to a crisis finally creating a new paradigm; the acceptance of a
new paradigm by the scientific community indicates a new demarcation between science
and pseudoscience;
· democratic and anarchist approach to science (Feyerabend): science is not an autonomous
form of reasoning but inseparable from the larger body of human thought and inquiry:
"Anything goes".
24also logical positivism or verificationism

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
87
Superficially, the last point provides a nice argument for computer modelers in the framework of global climatology. However, it is highly questionable whether this fits into the frame of physics. Svozil remarked that Feyerabend's understanding of physics was superficial [198].
Svozil emphasizes:
"Quite generally, partly due to the complexity of the formalism and the new challenges of their findings, which left philosophy proper at a loss, physicists have attempted to developed their own meaning of their subject."
Physics provides a fundament for engineering and, hence, for production and modern economics. Thus the citizen is left with the alternative (in the sense of a choice between two options)
(a) either to accept the derivation of political and economical decisions from an anarchic standpoint that eventually claims that there is a connection to experiment and observation, and, hence, the real world, when there is no such connection;
(b) or to call in the derivation of political and economical decisions from verifiable research results within the frame of physics, where there is a connection to experiment and observation, and hence, the real world.
Evidently, the option (b) defines a pragmatic approach to science, defining a minimum of common features, such that engineers, managers and policymakers have something to rely on:
Within the frame of exact sciences a theory should
(a) be logically consistent;
(b) be consistent with observations;
(c) have a grounding in empirical evidence;
(d) be economical in the number of assumptions;
(e) explain the phenomena;
(f) be able to make predictions;
(g) be falsifiable and testable;
(h) be reproducible, at least for the colleagues;
(i) be correctable;
(j) be refinable;

88
Gerhard Gerlich and Ralf D. Tscheuschner
(k) be tentative;
(l) be understandable by other scientists.
Can these criteria ever be met by a computer model approach of global climatology?
4.3.2
Evaluation of Climatology and Climate Modelling
In contrast to meteorology climatology studies the averaged behavior of the local weather There are several branches, such as paleoclimatology, historical climatology, and climatology involving statistical methods which more or less fit into the realm of sciences. The problem is, what climate modelling is about, especially if it does refer to chaotic dynamics on the one hand, and the greenhouse hypothesis on the other.
The equations discussed in Section 4.2 may give an idea what the final defining equations of the atmospheric and/or oceanic system may look like. It has been emphasized that in a more realistic albeit phenomenological description of nature the system of the relevant equations may be huge.
But even by simplifying the structure of equations one cannot determine solutions numerically, and this will not change, if one does restrict oneself on small spacetime domains.
There are serious solvability questions in the theory of non-linear partial differential equations and the shortage of numerical recipes leading to sufficient accurate results will remain in the nearer or farer future - for fundamental mathematical reasons. The Navier-Stokes equations are something like the holy grail of theoretical physics, and a brute force discretization with the aid of lattices with very wide meshes leads to models, which have nothing to do with the original puzzle and thus have no predictability value.
In problems involving partial differential equations the boundary condition determine the solutions much more than the differential equations themselves. The introduction of a discretization is equivalent to an introduction of artificial boundary conditions, a procedure, that is characterized in von Storch's statement "The discretization is the model" [199]. In this context a correct statement of a mathematical or theoretical physicist would be: "A discretization is a model with unphysical boundary conditions." Discretizations of continua
problems will be allowed if there is a strategy to compute stepwise refinements. Without such a renormalization group analysis a finite approximation does not lead to a physical conclusion. However, in Ref. [199] von Storch emphasized that this is by no means the strategy he follows, rather he takes the finite difference equations are as they are.
Evidently, this would be a grotesque standpoint, if one considered the heat conduction equation, being of utmost relevance to the problem and being a second order partial differential equation, that cannot be replaced by a finite difference model with a lattice constant in the range of kilometers.
Generally, it is impossible to derive differential equations for averaged functions and, hence, an averaged non-linear dynamics.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
89
Thus there is simply no physical foundation of global climate computer models, for which still the chaos paradigma holds: Even in the case of a well-known deterministic dynamics nothing is predictable [200]. That discretization has neither a physical nor a mathematical basis in non-linear systems is a lesson that has been taught in the discussion of the logistic differential equation, whose continuum solutions differ fundamentally from the discrete ones [201, 202].
Modern global climatology has confused and continues to confuse fact with fantasy by introducing the concept of a scenario replacing the concept of a model. In Ref. [29] a clear definition of what scenarios are is given:
Future greenhouse gas (GHG) emissions are the product of very complex dynamics systems, determined by driving forces such as demographic development, socioeconomic development, and technological change. Their future evolution is highly uncertain, Scenarios are alternative images of how the future might unfold and are an appropriate tool with which to analyze how driving forces may influence future emission outcomes and to access the associated uncertainties. They assist in climate change analysis, including climate modeling and the assessment of impacts, adaptation and mitigation. The possibility that any single emissions path will occur as described in scenarios is highly uncertain.
Evidently, this is a description of a pseudo-scientific (i.e. non-scientific) method by the experts at the IPCC. The next meta-plane beyond physics would be a questionnaire among scientists already performed by von Storch [203] or, finally, a democratic vote about the validity of a physical law. Exact science is going to be replaced by a sociological methodology involving a statistical field analysis and by "democratic" rules of order. This is in harmony with the definition of science advocated by the "scientific" website RealClimate.org that has integrated inflammatory statements, personal attacks and offenses against authors as a part of their "scientific" workflow.
4.3.3
Conclusion
A statistical analysis, no matter how sophisticated it is, heavily relies on underlying models and if the latter are plainly wrong then the analysis leads to nothing. One cannot detect and attribute something that does not exist for reason of principle like the CO2 greenhouse effect. There are so many unsolved and unsolvable problems in non-linearity and the climatologists believe to beat them all by working with crude approximations leading to unphysical results that have been corrected afterwards by mystic methods, flux control in the past, obscure ensemble averages over different climate institutes today, by excluding accidental global cooling results by hand [154], continuing the greenhouse inspired global climatologic tradition

90
Gerhard Gerlich and Ralf D. Tscheuschner
of physically meaningless averages and physically meaningless applications of mathematical statistics.
In conclusion, the derivation of statements on the CO2 induced anthropogenic global warming out of the computer simulations lies outside any science.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
91
5
Physicist's Summary
A thorough discussion of the planetary heat transfer problem in the framework of theoretical physics and engineering thermodynamics leads to the following results:
1. There are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effect, which explains the relevant physical phenomena. The terms "greenhouse effect" and "greenhouse gases" are deliberate misnomers.
2. There are no calculations to determinate an average surface temperature of a planet
· with or without atmosphere,
· with or without rotation,
· with or without infrared light absorbing gases.
The frequently mentioned difference of 33 C for the fictitious greenhouse effect of theatmosphere is therefore a meaningless number.
3. Any radiation balance for the average radiant flux is completely irrelevant for the determination of the ground level air temperatures and thus for the average value as well.
4. Average temperature values cannot be identified with the fourth root of average values of the absolute temperature's fourth power.
5. Radiation and heat flows do not determine the temperature distributions and their average values.
6. Re-emission is not reflection and can in no way heat up the ground-level air against the actual heat flow without mechanical work.
7. The temperature rises in the climate model computations are made plausible by a perpetuum mobile of the second kind. This is possible by setting the heat conductivity in the atmospheric models to zero, an unphysical assumption. It would be no longer a perpetuum mobile of the second kind, if the "average" fictitious radiation balance, which has no physical justification anyway, was given up.
8. After Schack 1972 water vapor is responsible for most of the absorption of the infrared radiation in the Earth's atmosphere. The wavelength of the part of radiation, which is absorbed by carbon dioxide is only a small part of the full infrared spectrum and does not change considerably by raising its partial pressure.

92
Gerhard Gerlich and Ralf D. Tscheuschner
9. Infrared absorption does not imply "backwarming". Rather it may lead to a drop of the temperature of the illuminated surface.
10. In radiation transport models with the assumption of local thermal equilibrium, it is assumed that the absorbed radiation is transformed into the thermal movement of all gas molecules. There is no increased selective re-emission of infrared radiation at the low temperatures of the Earth's atmosphere.
11. In climate models, planetary or astrophysical mechanisms are not accounted for properly. The time dependency of the gravity acceleration by the Moon and the Sun (hightide and low tide) and the local geographic situation, which is important for the local climate, cannot be taken into account.
12. Detection and attribution studies, predictions from computer models in chaotic systems, and the concept of scenario analysis lie outside the framework of exact sciences, in particular theoretical physics.
13. The choice of an appropriate discretization method and the definition of appropriate dynamical constraints (flux control) having become a part of computer modelling is nothing but another form of data curve fitting. The mathematical physicist v. Neumann once said to his young collaborators: "If you allow me four free parameters I can build a mathematical model that describes exactly everything that an elephant can do. If you allow me a fifth free parameter, the model I build will forecast that the elephant will fly." (cf. Ref. [185].)
14. Higher derivative operators (e.g. the Laplacian) can never be represented on grids with wide meshes. Therefore a description of heat conduction in global computer models is impossible. The heat conduction equation is not and cannot properly be represented on grids with wide meshes.
15. Computer models of higher dimensional chaotic systems, best described by non-linear partial differential equations (i.e. Navier-Stokes equations), fundamental differ from cal- culations where perturbation theory is applicable and successive improvements of the predictions - by raising the computing power - are possible. At best, these computer models may be regarded as a heuristic game.
16. Climatology misinterprets unpredictability of chaos known as butterfly phenomenon as< another threat to the health of the Earth. In other words: Already the natural greenhouse effect is a myth albeit any physical reality. The CO2-greenhouse effect, however is a "mirage" [204]. The horror visions of a risen sea
level, melting pole caps and developing deserts in North America and in Europe are fictitious

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
93
consequences of fictitious physical mechanisms as they cannot be seen even in the climate model computations. The emergence of hurricanes and tornados cannot be predicted by climate models, because all of these deviations are ruled out. The main strategy of modern CO2-greenhouse gas defenders seems to hide themselves behind more and more pseudo-explanations, which are not part of the academic education or even of the physics training. A good example are the radiation transport calculations, which are probably not known by many. Another example are the so-called feedback mechanisms, which are introduced to amplify an effect which is not marginal but does not exist at all. Evidently, the defenders of the CO2-greenhouse thesis refuse to accept any reproducible calculation as an explanation and have resorted to unreproducible ones. A theoretical physicist must complain about a lack of transparency here, and he also has to complain about the style of the scientific discussion, where advocators of the greenhouse thesis claim that the discussion is closed, and others are discrediting justified arguments as a discussion of "questions of yesterday and the day before yesterday"25. In exact sciences, in particular in theoretical physics, the discussion is never closed and is to be continued ad infinitum, even if there are proofs of theorems available. Regardless of the specific field of studies a minimal basic rule should be fulfilled in natural science, though, even if the scientific fields are methodically as far apart as physics and meteorology: At least among experts, the results and conclusions should be understandable or reproducible. And it should be strictly distinguished between a theory and a model on the one hand, and between a model and a scenario on the other hand, as clarified in the philosophy of science.
That means that if conclusions out of computer simulations are to be more than simple speculations, then in addition to the examination of the numerical stability and the estimation of the effects of the many vague input parameters, at least the simplifications of the physical original equations should be critically exposed. Not the critics have to estimate the effects of the approximation, but the scientists who do the computer simulation.
"Global warming is good . . . The net effect of a modest global warming is positive."
(Singer).26 In any case, it is extremely interesting to understand the dynamics and causes of the long-term fluctuations of the climates. However, it was not the purpose of this paper to get into all aspects of the climate variability debate. The point discussed here was to answer the question, whether the supposed atmospheric effect has a physical basis.
This is not the case.
In summary, there is no atmospheric greenhouse effect, in particular CO2-greenhouse effect, in theoretical physics and engineering
thermodynamics. Thus it is illegitimate to deduce predictions which provide a consulting solution for economics and intergovernmental policy. 25a phrase used by von Storch in Ref. [1]
26cf. Singer's summary at the Stockholm 2006 conference [1].

94
Gerhard Gerlich and Ralf D. Tscheuschner
Acknowledgement
This work is dedicated (a) to the late Professor S. Chandrasekhar, whom R.D.T. met in
Chicago in 1991, (b) to the late Professor C. F. v. Weizs¨
acker, a respected discussion partner
of both authors, and (c) the late investigative science journalist H. Heuseler, whom G.G. owes
valuable information on the topic.
Both authors would like to thank many people for discussions, email exchanges, and
support at various stages of this work, in particular StD Dipl.-Biol. Ernst-Georg Beck, H.
J. Labohm, Professor B. Peiser, H. Thieme, Dr. phil. Wolfgang Th¨
une, and Professor A.
Zichichi for sending them the manuscript of his talk presented at the Vatican conference.
Mrs. S. Feldhusen's first translation of Ref. [104] is greatly appreciated.
Gerhard Gerlich would like to express his gratitude to all those who contributed to this
study either directly or indirectly: Students, Staff Members, Research and Teaching Assis-
tants, even collegues, who listened to his lectures and talks, who read his texts critically, who
did some successful literature search. In particular, he is indebted to the Diploma Physicists
(Diplomphysiker) Dr. V. Blahnik, Dr. T. Dietert, Dr. M. Guthmann, Dr. G. Linke, Dr. K.
Pahlke, Dr. U. Schom¨
acker, H. Bade, M. Behrens, C. Bollmann, R. Fl¨
ogel, StR D. Harms, J.
Hauschildt, F. Hoffmann, C. Mangelsdorf, D. Osten, M. Schmelzer, A. S¨
ohn, and G. T¨
or¨
o,
the architects P. Bossart and Dipl.-Ing. K. Fischer. Gerhard Gerlich extends his special grat-
itude to Dr. G.-R. Weber for very early bringing his attention to the outstanding DOE 1985
report [91] to which almost no German author contributed. Finally, he is pleased about the
interest of the many scientific laymen who enjoyed his talks, his letters, and his comments.
Ralf D. Tscheuschner thanks all his students who formulated and collected a bunch of
questions about climate physics, in particular Elvir Donl´ic. He also thanks Professor A.
Bunde for email correspondence. Finally he is indebted to Dr. Dinter, C. Kloeß, M. K¨
ock,
R. Schulz for interesting discussions, and Professor H. Grassl for an enlightening discussion
after his talk on Feb. 2, 2007 at Planetarium Hamburg. A critical reading by M. Mross and
Dr. Dinter and a translation of Fourier's 1824 paper in part by M. Willer's team and by Dr.
M. Dinter are especially acknowledged.
The authors express their hope that in the schools around the world the fundamentals of
physics will be taught correctly and not by using award-winning "Al Gore" movies shocking
every straight physicist by confusing absorption/emission with reflection, by confusing the
tropopause with the ionosphere, and by confusing microwaves with shortwaves.

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
95
List of Figures
1
The geometry of classical radiation: A radiating infinitesimal area dF1 and an
illuminated infinitesimal area dF2 at distance r. . . . . . . . . . . . . . . . . .
17
2
Two parallel areas with distance a. . . . . . . . . . . . . . . . . . . . . . . . .
18
3
The geometry of classical radiation: Two surfaces radiating against each other.
20
4
Black body radiation compared to the radiation of a sample coloured body.
The non-universal constant is normalized in such a way that both curves
coincide at T = 290 K. The Stefan-Boltzmann T 4 law does no longer hold in
the latter case, where only two bands are integrated over, namely that of visible
light and of infrared radiation from 3 µm to 5 µm, giving rise to a steeper curve. 21
5
The spectrum of the sunlight assuming the sun is a black body at T = 5780 K.
22
6
The unfiltered spectral distribution of the sunshine on Earth under the as-
sumption that the Sun is a black body with temperature T = 5780 K (left: in
wave length space, right: in frequency space).
. . . . . . . . . . . . . . . . . .
24
7
The exact location of the zero of the partial derivatives of the radiation inten-
sities of the sunshine on Earth (left: in wave length space, right: in frequency
space). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
8
The unfiltered spectral distribution of the radiation of the ground under the
assumption that the earth is a black body with temperature T = 290 K (left:
in wave length space, right: in frequency space). . . . . . . . . . . . . . . . . .
25
9
The radiation intensity of the ground and its partial derivative as a function
of the wave length (left column) and of the frequency (right column). . . .
26
10
Three versions of radiation curve families of the radiation of the ground (as
a function of the wave number k, of the frequency , of the wave length ,
respectively), assuming that the Earth is a black radiator.
. . . . . . . . . . .
26
11
The unfiltered spectral distribution of the sunshine on Earth under the as-
sumption that the Sun is a black body with temperature T = 5780 K and the
unfiltered spectral distribution of the radiation of the ground under the as-
sumption that the Earth is a black body with temperature T = 290 K, both
in one diagram (left: normal, right: super elevated by a factor of 10 for the
radiation of the ground). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27

96
Gerhard Gerlich and Ralf D. Tscheuschner
12
The unfiltered spectral distribution of the sunshine on Earth under the as-
sumption that the Sun is a black body with temperature T = 5780 K and the
unfiltered spectral distribution of the radiation of the ground under the as-
sumption that the Earth is a black body with temperature T = 290 K, both in
one semi-logarithmic diagram (left: normalized in such a way that equal areas
correspond to equal intensities, right: super elevated by a factor of 10 for the
radiation of the ground). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
13
The unfiltered spectral distribution of the sunshine on Earth under the as-
sumption that the Sun is a black body with temperature T = 5780 K and the
unfiltered spectral distribution of the radiation of the ground under the as-
sumption that the Earth is a black body with temperature T = 290 K, both
in one semi-logarithmic diagram (left: normalized in such a way that equal
areas correspond to equal intensities with an additional re-scaling of the sun-
shine curve by a factor of 1/3.5, right: super elevated by a factor of 68 for the
radiation of the ground). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
14
A solid parallelepiped of thickness d and cross section F subject to solar radiation 30
15
An excerpt from page 28 of the DOE report (1985). . . . . . . . . . . . . . . .
45
16
A very popular physical error illustrated in the movie "An Inconvenient truth"
by Davis Guggenheim featuring Al Gore (2006). . . . . . . . . . . . . . . . . .
46
17
A cavity realizing a perfect black body. . . . . . . . . . . . . . . . . . . . . . .
48
18
The front page of Fourier's 1824 paper. . . . . . . . . . . . . . . . . . . . . . .
52
19
The front page of Arrhenius' 1896 paper. . . . . . . . . . . . . . . . . . . . . .
53
20
Excerpt (a) of Arrhenius' 1906 paper. . . . . . . . . . . . . . . . . . . . . . . .
54
21
Excerpt (b) of Arrhenius' 1906 paper. . . . . . . . . . . . . . . . . . . . . . . .
55
22
Excerpt (c) of Arrhenius' 1906 paper. . . . . . . . . . . . . . . . . . . . . . . .
56
23
A schematic diagram supposed to describe the global average components of
the Earth's energy balance. Diagrams of this kind contradict to physics. . .
59
24
A radiation exposed static globe.
. . . . . . . . . . . . . . . . . . . . . . . . .
62
25
The rotating globe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
26
An obliquely rotating globe
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
27
The cooling curve for a radiating standard cube . . . . . . . . . . . . . . . . .
70
28
A simple heat transport problem. . . . . . . . . . . . . . . . . . . . . . . . . .
72
29
A steam engine works transforming heat into mechanical energy. . . . . . . . .
75
30
A heat pump (e.g. a refrigerator) works, because an external work is applied. .
76
31
Any machine which transfers heat from a low temperature reservoir to a high
temperature reservoir without external work applied cannot exist: A perpetuum
mobile of the second kind is impossible. . . . . . . . . . . . . . . . . . . . . . .
76

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
97
32
A machine which transfers heat from a low temperature reservoir (e.g. strato-
sphere) to a high temperature reservoir (e.g. atmosphere) without external
work applied, cannot exist - even if it is radiatively coupled to an environment,
to which it is radiatively balanced. A modern climate model is supposed to be
such a variant of a perpetuum mobile of the second kind. . . . . . . . . . . . .
77

98
Gerhard Gerlich and Ralf D. Tscheuschner
List of Tables
1
Atmospheric concentration of carbon dioxide in volume parts per million (1958
- 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
2
Three versions of an idealized Earth's atmosphere and the associated gas vol-
ume concentrations, including the working hypothesis chosen for this paper . .
7
3
Mass densities of gases at normal atmospheric pressure (101.325 kPa) and
standard temperature (298 K) . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
4
Volume percent versus mass percent: The volume concentration xv and the
mass concentration xm of the gaseous components of an idealized Earth's at-
mosphere
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
5
Thermal conductivities of the gaseous components of the Earth's atmosphere
at normal pressure (101.325 kPa)
. . . . . . . . . . . . . . . . . . . . . . . . .
9
6
Isobaric heat capacities cp, relative molar masses Mr, isochoric heat capac-
ities cv cp - R/Mr with universal gas constant R = 8.314472 J/mol K,
mass densities , thermal conductivities , and isochoric thermal diffusivities
av of the gaseous components of the Earth's atmosphere at normal pressure
(101.325 kPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
7
The calculation of the isochoric thermal diffusivity av = /( · cv) of the air
and its gaseous components for the current CO2 concentration (0.06 Mass %)
and for a fictitiously doubled CO2 concentration (0.12 Mass %) at normal
pressure (101.325 kPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
8
The proportional portion of the ultraviolet, visible, and infrared sunlight, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
9
Measured temperatures inside and outside a car on a hot summer day. . . . . .
29
10
Effective temperatures Tground in dependence of the emissivity parameter . . .
61
11
Effective "average" temperatures Tground in dependence of the parameter . . .
61
12
Two kinds of "average" temperatures Teff and Tphys in dependence of the emis-
sivity parameter
compared. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
64
13
An example for a measured temperature distribution from which its associated
effective radiation temperature is computed. The latter one corresponds to the
fourth root of the fourth power mean.
. . . . . . . . . . . . . . . . . . . . . .
66

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
99
References
[1] P. Stilbs, Organizing chairman, Global Warming - Scientific Controversies in Cli-
mate Variability, International seminar meeting at The Royal Institute of Technology
(KTH), Stockholm, Sweden, September 11-12th, 2006, http://gamma.physchem.kth.
se/climate/
[2] R. Alley et al., Climate Change 2007: The Physical Science Basis - Summary for Pol-
icymakers (Intergovernmental Panel of Climate Change 2007), http://www.ipcc.ch/
SPM2feb07.pdf
[3] H. Svensmark and E. Friis-Christensen, "Variation of Cosmic Ray Flux and Global
Cloud Coverage: A Missing Link in Solar-Climate Relationships", Journal of Atmo-
spheric and Solar-Terrestrial Physics 59, 1225-1232 (1997)
[4] K. P. Heiss, "Globale Erw¨
armung - Globaler Winter: was sagen die Daten? [Global
Warming - Global Winter: What does the data tell us?]", mailto:Klaus-p-heiss@
msn.com
[5] M. E. Mann and P. D. Jones, "Global surface temperatures over the past two millenia",
Geophysical Research Letters 30, 5-1 ­ 5-4 (2003)
[6] W. Soon and S. Baliunas, "Lessons & Limits of Climate History: Was the 20th Century
Climate Unusual?" The George C. Marshall Institute, Washington D.C., 2003
[7] S. R. Weart, The Discovery of Global Warming (Harvard University Press, Cambridge,
Massachusetts, 2004), http://www.aip.org/history/climate/
[8] J. P. Hardy, Climate Change. Causes, Effects, and Solutions (John Wiley & Sons Ltd.,
West Sussex, England, 2003).
[9] D. T. Avery and S. F. Singer, Unstoppable Global Warming - Every 1500 Years (Pub-
lisher: Rowman & Littlefield Publishers, Inc., Lanham MD, 2006)
[10] L. F. Khilyuk and G. V. Chilingar, "On global forces of nature driving the Earths
climate. Are humans involved?", Environ. Geol. 50, 899-910 (2006)
[11] E. J. Wegman et al., "Ad Hoc Committee Report on the `Hockey Stick' Gobal Cli-
mate Reonstruction" (1996), http://republicans.energycommerce.house.gov/108/
home/07142006 Wegman Report.pdf
[12] Z. Jaworowski, "CO2: The Greatest Scientific Scandal of Our Time", EIR Science
March 16, 38-53 2007

100
Gerhard Gerlich and Ralf D. Tscheuschner
[13] Pontifical Council for Justice and Peace, Climate Change and Development. Inter-
national Conference. The Vatican, 26-27 April 2007, http://www.justpax.it/eng/
home eng.html
[14] D. R. Lide, CRC Handbook of Chemistry and Physics, 83th Edition (CRC Press LLC,
Boca Raton, 2002)
[15] T. J. Blasing and K. Smith, "Recent Greenhouse Gas Concentrations", http://cdiac.
esd.ornl.gov/pns/current ghg.html
[16] Anonymous, "The Engineering Toolbox", http://www.engineeringtoolbox.com/
air-properties-d 156.html
[17] E.-G. Beck, "180 Years of atmospheric CO2 Gas Analysis by Chemical Methods", Energy
& Environment 18, 259-282 (2007)
[18] E.-G. Beck, "180 Years of atmospheric CO2 Gas Analysis by Chemical Methods", Er-
ratum, http://www.biokurs.de/treibhaus/180CO2/erratum.doc
[19] H. B. Callen, Thermodynamics and an Introduction to Thermostatics. Second edition
(John Wiley & Sons, New York 1985)
[20] K. Huang, Statistical Mechanics (John Wiley & Sons, New York 1987)
[21] E. V. Evans and C. N. Kenney, "A Flow Method for Determining the Thermal Con-
ductivity of Gas Mixtures", Nature 203, 184-185 (1964)
[22] AAAS, "AAAS Board Statement on Climate Change", American Association for the
Advancement of Sciences, 9 December 2006, http://www.aaas.org/climate
[23] J.T. Houghton et al., Climate Change 1990: The IPPC Scientific Assessment - Report
Prepared for IPCC by Working Group I (University Press, Cambridge, 1990)
[24] J.T. Houghton et al., Scientific Assessment of Climate Change - The Policymakers'
Summary of the Report of Working Group I of the Intergovernmental Panel of Climate
Change (WHO, IPCC, UNEP, 1990)
[25] J.T. Houghton et al., Climate Change 1992: The Supplementary Report to the IPPC
Scientific Assessment - Report Prepared for IPCC by Working Group I (University
Press, Cambridge, 1992)
[26] J.T. Houghton et al., Climate Change 1994: Radiative Forcing of Climate Change and
An Evaluation of the IS92 Emission Scenarios - Report of Working Groups I and III of
the IPCC (University Press, Cambridge, 1990)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
101
[27] J.T. Houghton et al., Radiative Forcing of Climate Change: The 1994 Report of the
Scientific Assessment Working Group of IPCC - Summary for Policymakers (WHO,
IPCC, UNEP, 1994)
[28] J.T. Houghton et al., Climate Change 1995: The Science of Climate Change - Contribu-
tion of Working Group I to the Second Assessment Report (University Press, Cambridge,
1996)
[29] N. Naki´
cenovi´
c et al., Emission Scenarios - A Special Report of Working Group III of
the IPCC (University Press, Cambridge, 2000)
[30] J.T. Houghton et al., Climate Change 2001: The Scientific Basis - Contribution of
Working Group I to the Third Assessment Report (University Press, Cambridge, 2001)
[31] J. Stefan, " ¨
Uber die Beziehung zwischen der W¨
armestrahlung und der Temper-
atur [On the relation between heat radiation and temperature]", Sitzungsberichte
der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wis-
senschaften 79, 391-428 (Wien 1879)
[32] L. Boltzmann, "Ableitung des Stefan'schen Gesetzes, betreffend die Abh¨
angigkeit der

armestrahlung von der Temperatur aus der electromagnetischen Lichttheorie [Deriva-
tion of Stefan's law with respect to the dependence of heat radiation on temperature
from the electromagnetic theory of light]", Annalen der Physik und Chemie 22, 291-294
(1884)
[33] M. Planck, "Ueber das Gesetz der Energieverteilung im Normalspectrum [On the law of
distribution of energy in the normal spectrum]", Verhandlungen Deutsche Physikalische
Gesellschaft 2, 202-204 and 237-239 (1900)
[34] M. Planck, "Ueber das Gesetz der Energieverteilung im Normalspectrum [On the law of
distribution of energy in the normal spectrum]", Annalen der Physik 4, 553-563 (1901)
[35] G.B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics (John Wiley &
Sons, New York, 1979)
[36] S. E. Virgo, "Loschmidt's Number", Science Progress 27, 634-649 (1933)
[37] J. Fourier, "M´
emoire sur les temp´
eratures du globe terrestre et des espaces plan´
etaires",

emoires de l'Academie Royale des Sciences 7, 569-604 (1824)
[38] J. Fourier, "Remarques g´
en´
erales sur les temp´
eratures du globe terrestre et des espaces
plan´
etaires", Annales de Chemie et de Physique 27, 136-167 (1824)

102
Gerhard Gerlich and Ralf D. Tscheuschner
[39] J. Tyndall, "On the Absorption and Radiation of Heat by Gases and Vapours . . .",
Philosophical Magazine ser. 4 22 169-194 (1861)
[40] J. Tyndall, "On Radiation through the Earth's Atmosphere", Philosophical Magazine
ser. 4 25, 200-206 (1863)
[41] J. Tyndall, "On the Relation of Radiant Heat to Aqueous Vapor", Philosophical Mag-
azine ser. 4 26, 30-54 (1863)
[42] J. Tyndall, Contributions to Molecular Physics in the Domain of Radiant Heat (Apple-
ton, New York, 1873)
[43] J. Tyndall, "Further Researches on the Absorption and Radiation of Heat by Gaseous
Matter (1862)" in Contributions to Molecular Physics in the Domain of Radiant Heat
(Appleton, New York, 1873), pp. 69-121.
[44] S. Arrhenius, "On the Influence of Carbonic Acid in the Air Upon the Temperature of
the Ground", Philosophical Magazine 41, 237-276 (1896)
[45] S. Arrhenius, " ¨
Uber Die W¨
armeabsorption Durch Kohlens¨
aure Und Ihren Einfluss Auf
Die Temperatur Der Erdoberfl¨
ache [On heat absorption of carbonic acid and its influence
on the temperature of Earth's surface]", F¨
orhandlingar Svenska Vetenskapsakademiens
58, 25-58 (1901)
[46] S. Arrhenius, "Die vermutliche Ursache der Klimaschwankungen" [The possible cause
for climate variability], Meddelanden fr°
an K. Vetenskapsakademiens Nobelinstitut Band
1, No. 2 (1906)
[47] G. S. Callendar, "The Artificial Production of Carbon Dioxide and Its Influence on
Climate", Quarterly J. Royal Meteorological Society 64, 223-240 (1938)
[48] G. S. Callendar, "The Composition of the Atmosphere through the Ages", Meteorolog-
ical Magazine 74, 33-39 (1939)
[49] G. S. Callendar, "Variations in the Amount of Carbon Dioxide in Different Air Cur-
rents", Quarterly J. Royal Meteorological Society 66, 395-400 (1940)
[50] G. S. Callendar, "Infra-Red Absorption by Carbon Dioxide, with Special Reference to
Atmospheric Radiation", Quarterly J. Royal Meteorological Society 67, 263-275 (1941)
[51] G. S. Callendar, "Can Carbon Dioxide Influence Climate?" Weather 4, 310-314 (1949)
[52] G. S. Callendar, "On the Amount of Carbon Dioxide in the Atmosphere", Tellus 10,
243-248 (1958)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
103
[53] G. S. Callendar, "Temperature Fluctuations and Trends over the Earth", Quarterly J.
Royal Meteorological Society 87, 1-12 (1961)
[54] C. D. Keeling, "The Concentration and Isotopic Abundances of Carbon Dioxide in the
Atmosphere", Tellus 12, 200-2003 (1960)
[55] C. D. Keeling, "The Carbon Dioxide Cycle: Reservoir Models to Depict the Exchange
of Atmospheric Carbon Dioxide with the Ocean and Land Plants" in Chemistry of the
Lower Atmosphere, edited by S. I. Rasool, pp. 251-329 (Plenum, New York, 1973)
[56] C. D. Keeling et al., "Atmospheric Carbon Dioxide Variations at Mauna Loa Observa-
tory", Tellus 28, 538-551 (1976)
[57] C. D. Keeling, "The Influence of Mauna Loa Observatory on the Development of At-
mospheric CO2 Research" in In Mauna Loa Observatory. A 20th Anniversary Report.
(National Oceanic and Atmospheric Administration Special Report, September 1978),
edited by John Miller, pp. 36-54 (NOAA Environmental Research Laboratories, Boul-
der, CO, 1978)
[58] C. D. Keeling et al., "A Three-Dimensional Model of Atmospheric CO2 Transport Based
on Observed Winds" in Aspects of Climate Variability in the Pacific and the Western
Americas (AGU Monograph 55), edited by David H. Peterson, pp. 165-363 (American
Geophysical Union, Washington DC, 1989)
[59] C. D. Keeling et al.,, "Increased Activity of Northern Vegetation Inferred from Atmo-
spheric CO2 Measurements", Nature 382, 146-149 (1996)
[60] C. D. Keeling, "Rewards and Penalties of Monitoring the Earth", Annual Review of
Energy and the Environment 23, 25-8225 (1998)
[61] F. Albrecht, "Strahlungsumsatz in Wolken [Radiative Transfer in Clouds]", Meteorolo-
gische Zeitschrift 50, 478-486 (1988)
[62] F. Albrecht, "Untersuchungen ¨
uber die spektrale Verteilung der Himmelsstrahlung und
die Strahlungsbilanz der Atmosph¨
are [Investigation on the spectral distribution of the
radiation of the sky and the radiative balance of the atmosphere]", Meteorologische
Zeitschrift 52, 454-452 (1935)
[63] F. Albrecht, "Intensit¨
at und Spektralverteilung der Globalstrahlung bei klarem Himmel
[Intensity and spectral distribution of the global radiation in case of a clear sky]", Archiv

ur Meteorologie, Geophysik und Bioklima B3, 220-243 (1951)

104
Gerhard Gerlich and Ralf D. Tscheuschner
[64] E.F. Barker and A. Adel, "Resolution of the Two Difference Bands of CO2 Near 10 µ",
Phys. Rev. 44, 185-187 (1933)
[65] F. Baur and H. Philips, "Der W¨
armehaushalt der Lufth¨
ulle der Nordhalbkugel im
Januar und Juli und zur Zeit der ¨
Aquinoktien und Solstitien. 1. Mitteilung: Die Ein-
strahlung bei normaler Solarkonstante [The heat budget of the atmosphere of the north-
ern hemisphere in January and July and during Equinoctes and Solstices. First Com-
munication: The Irradiation in case of a normal solar constant]", (Gerlands) Beitr¨
age
zur Geophysik 42, 159-207 (1934)
[66] F. Baur and H. Philips, "Der W¨
armehaushalt der Lufth¨
ulle der Nordhalbkugel im Jan-
uar und Juli und zur Zeit der ¨
Aquinoktien und Solstitien. 2. Mitteilung: Ausstrahlung,
Gegenstrahlung und meridonaler W¨
armetransport bei normaler Solarkonstante [The
heat budget of the atmosphere of the northern hemisphere in January and July and
during Equinoctes and Solstices. Second Communication: Eradiation, backradiation
and medidonal heat transport in case of a normal solar constant]", (Gerlands) Beitr¨
age
zur Geophysik 45, 81-132 (1935)
[67] R. D. Cess, "Intercomparison and Interpretation of Climate Feedback Processes in 19
Atmospheric General Circulation Models", J. Geophysical Research 95, 16601-16615
(1990)
[68] A.R. Curtis and R.M. Goody, "Thermal Radiation in the upper atmosphere", Proc.
Roy. Soc. London A236, 193-206 (1956)
[69] E. de Bary, K. Bullrich, and F. M¨
oller, "Beitr¨
age zur Erkl¨
arung von Himmelsfarbe und
Helligkeit [Contributions to the explanation of the color and brightness of the sky]",
Zeitschrift f¨
ur Meteorologie 8, 303-309 (1954)
[70] E. Gold, "The Isothermal Layer of the Atmosphere and Atmospheric Radiation", Proc.
Roy. Soc. London A82, 43-70 (1909)
[71] J. Gribbin (Ed.), Climatic Change (University Press, Cambridge, 1978)
[72] G. Hofmann, "Zur Darstellung der spektralen Verteilung der Strahlungsenergie [On the
representation of the spectral distribution of radiation energy]", Archiv f¨
ur Meteorologie,
Geophysik und Bioklima B6, 274-279 (1955)
[73] S. Manabe and R.F. Strickler, "Thermal Equilibrium of the Atmosphere with Convective
Adjustment", J. Atmosph. Sciences 21, 361-385 (1964)
[74] S. Manabe and R.T. Wetherald, "Thermal Equilibrium of the Atmosphere with a Given
Distribution of Relative Humidity", J. Atmosph. Sciences 24, 241-259 (1967)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
105
[75] S. Manabe, "Climate and the Ocean Circulation: I. The Atmospheric Circulation and
the Hydrology of the Earth's Surface", Monthly Weather Review 97, 739-774 (1969)
[76] S. Manabe, "Climate and the Ocean Circulation: II. The Atmospheric Circulation and
the Effect of Heat Transfer by Ocean Currents", Monthly Weather Review 97, 775-805
(1969)
[77] S. Manabe and R.T. Wetherald, "On the Distribution of Climate Change Resulting
from an Increase in CO2 Content of the Atmosphere", J. Atmosph. Sciences 37, 99-118
(1980)
[78] P.E. Martin and E.F. Barker, "The Infrared Absorption Spectrum of Carbon Dioxide",
Phys. Rev. 37, 291-303 (1932)
[79] R. Mecke, " ¨
Uber Zerstreuung und Beugung des Lichtes durch Nebel und Wolken [On
the diffusion and refraction of the light by fog and clouds]", Ann. d. Physik 65, 257-273
(1921)
[80] F. M¨
oller and R. M¨
ugge, "Gesamte und zonale n¨
achtliche Gegenstrahlung als Mittel
zur Gewinnung aerologischer Aufschl¨
usse [Total and zonal backradiation by night as a
means to acquire aerological knowledge]", Beitr¨
age zur Physik der (freien) Atmosph¨
are
20, 220-233 (1933)
[81] F. M¨
oller, "Labilisierung von Schichtwolken durch Strahlung [Labilization of status
clouds by radiation]", Meteorologische Zeitschrift 60, 212-213 (1948)
[82] F. M¨
oller, "Zur Erkl¨
arung der Stratosph¨
arentemperatur [On the explanation of the
temperature of the stratosphere]", Die Naturwissenschaften 31, 148 (1943)
[83] F. M¨
oller, "Ein Kurzverfahren zur Bestimmung der langwelligen Ausstrahlung dicker
Atmosph¨
arenschichten [A brief procedure for determination of the longwave eradiation
thick atmospheric layers]", Archiv f¨
ur Meteorologie, Geophysik und Bioklima A7, 158-
169 (1954)
[84] F. M¨
oller, "Strahlung der unteren Atmosph¨
are [Radiation of the lower atmosphere]",
Handbuch der Physik 48, 155-253 (1959)
[85] F. M¨
oller and S. Mannabe, " ¨
Uber das Strahlungsgleichgewicht der Atmosph¨
are [On the
radiative balance of the atmosphere]", Z. f. Meteorologie 15, 3-8 (1961)
[86] R. M¨
ugge and F. M¨
oller, "Zur Berechnung von Strahlungsstr¨
omen und Temper-
atur¨
anderungen in Atmosph¨
aren von beliebigem Aufbau [On the calculation of the
radiation currents and temperature changes in atmospheres with arbitrary structure]",
Zeitschrift f¨
ur Geophysik 8, 53-64 (1932)

106
Gerhard Gerlich and Ralf D. Tscheuschner
[87] C. Schaefer and B. Philipps, "Das Absorptionsspektrum der Kohlens¨
aure und die
Gestalt der CO2-Molekel [The absorption spectrum of carbonic acid and the structure
of the CO2 molecules]", Z. f¨
ur Physik 36, 641-656 (1926)
[88] M. Wimmer, " ¨
Uber die Beeinflussung der ultraroten Kohlens¨
aureabsorptionsbande bei
4, 27 µ durch fremde Gase und ihre Anwendung zur Gasanalyse [On the influence of the
ultrared carbonic acid absorption band at 4, 27 µ by strange gases and their application
to gas analysis]" Annalen der Physik 81, 1091-1112 (1926)
[89] F. M¨
oller, Einf¨
uhrung in die Meteorologie: Physik der Atmosph¨
are I [Introduction to Me-
teorology: Physics of the Atmosphere I] (Bibliographisches Institut, Mannheim, 1973)
[90] F. M¨
oller, Einf¨
uhrung in die Meteorologie: Physik der Atmosph¨
are II [Introduction
to Meteorology: Physics of the Atmosphere II] (Bibliographisches Institut, Mannheim,
1973)
[91] M. C. MacCracken and F. M. Luther (Ed.), "Projecting the Climatic Effects of In-
creasing Carbon Dioxide", United States Department of Energy, DOE/ER 0237, Dec.
1985
[92] C. Kittel, Thermal Physics (W.H. Freeman and Company, New York, 1980, 21st Print-
ing 2000)
[93] S. Chandrasekhar, Radiative Transfer (Dover Publications, Inc., New York, 1960)
[94] H. Albert, Treatise on Critical Reason (Princeton University Press, Princeton 1985)
[95] A. Schack, Der industrielle W¨
arme¨
ubergang [The industrial heat transfer] (Verlag
Stahleisen m.b.H., D¨
usseldorf, 1. Auflage 1929, 8. Auflage 1983).
[96] F. Kreith, R. F. Boehm, et. al., "Heat and Mass Transfer", in Mechanical Engineering
Handbook , ed. Frank Kreith, (CRC Press LLC, Boca Raton, 1999)
[97] C. E. Baukal, Jr., Heat Transfer in Industrial Combustion (CRC Press LLC, Boca
Raton, 1999)
[98] A. Schack, Der Einfluß des Kohlendioxid-Gehaltes der Luft auf das Klima der Welt ,
[The influence of the carbon dioxide content of the air on the climate of the world]
Physikalische Bl¨
atter 28, 26-28 (1972)
[99] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1962)
[100] Anonymous, "Efficient Windows Collaborative - Your Gateway to Information on How
to choose Energy-Efficient Windows", http://www.efficientwindows.org

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
107
[101] W. Weizel, Lehrbuch der Theoretischen Physik [Textbook on Theoretical Physics]
(Springer, Berlin, 1963)
[102] S. Bakan and E. Raschke, "Der nat¨
urliche Treibhauseffekt [The natural greenhouse
effect]" Promet (Deutscher Wetterdienst) 28, Heft 3/4, 85-94 (2002)
[103] F. M. Luther and R. G. Ellingson, "Carbon Dioxide and the Radiation Budget" in
Projecting the Climatic Effects of Increasing Carbon Dioxide, pp. 25­55, United States
Department of Energy, DOE/ER 0237, Dec. 1985
[104] G. Gerlich, "Physical foundations of the greenhouse effect and fictitious greenhouse ef-
fects", Talk (In German), Herbstkongress der Europ¨
aischen Akademie f¨
ur Umweltfragen:
Die Treibhaus-Kontroverse, Leipzig, 9. - 10. 11. 1995
[105] G. Gerlich, "Physical and mathematical laws in global climatology", Talk (In German),
Klimawandel - menschlich bedingt oder aufgebauscht? Friedrich Naumann Stiftung und
Rudolf von Bennigsen Stiftung, G¨
ottingen, 15. 5. 2004
[106] G. Gerlich, "On the physics and mathematics of global climate models", Talk (In Ger-
man), Kyoto - Klimaprognosen - Aussagekraft der Modelle und Handlungsstrategien,
Theodor-Heuss-Akademie, Gummersbach, 20. 2. 2005
[107] G. Gerlich, "Climate, Energy and Catastrophies", Talk (In German), MIT Mittelstands-
und Wirtschaftsvereinigung der CDU, Stadtverband Erkrath, Erkrath 19. 10. 2005
[108] G. Gerlich, "On the Physics and Mathematics of global climate models", Talk (In
German), German Chemical Society (GDCh) Colloquium, M¨
unster 21. 05. 2007
[109] R. W. Wood, "Note on the Theory of the Greenhouse", Philosophical magazine 17
319-320 (1909)
[110] M. D. H. Jones and A. Henderson-Sellers, "History of the greenhouse effect", Progress
in physical geography 14 (1), 1-18 (1990)
[111] J. Schloerer, "Climate change:
some basics", http://www.faqs.org/faqs/sci/
climate-change/basics/
[112] W. M. Connolley, "Science (related to climate change)", http://www.wmconnolley.
org.uk/sci/wood rw.1909.html
[113] H. Graßl, "Zwischen Eiszeit und globaler Erw¨
armung [Between iceage and global warm-
ing]", Talk, Planetarium Hamburg, 02. Feb. 2007

108
Gerhard Gerlich and Ralf D. Tscheuschner
[114] Anonymous, "The greenhouse conspiracy", SBS Television Australia (also shown on
Channel4, UK) 1990
[115] H. W. Elsaesser, "The Climate Effect of CO2: A Different View", Atmos. Env. 18,
431-434 (1984)
[116] W. Th¨
une, The Greenhouse Swindle (In German, Edition Steinherz, Discovery Press,
Saarbr¨
ucken, 1998)
[117] W. Th¨
une, Aquittal for CO 2 (In German, Edition Steinherz, Discovery Press,
Saarbr¨
ucken, 2002)
[118] H. Hug, Die Angsttrompeter [Those who play the trumpet of fear] (Signum Verlag,

unchen, 2006)
[119] Anonymous, "The great global warming swindle", Channel4, UK, Channel 4, Thursday
8 March, 9pm, 2007
[120] Anonymous,
"Mojib Latif",
http://www.mopo.de/info/suche/web/index.html?
keyword=Mojib%20Latif
[121] R. Lee, "The `greenhouse' effect" J. Appl. Meteor. 12, 556-557 (1973)
[122] J. A. Businger, "The glasshouse (greenhouse) climate" in Physics of Plant Environment ,
W. R. Van Wijk, Ed. (North Holland Publishing Co., Amsterdam, 1963)
[123] R. G. Fleagle and J. A. Businger, An Introduction to Atmospheric Physics (Academic
Press, New York, 1963)
[124] R. E. Munn, Descriptive Micrometeorology (Academic Press, New York, 1966)
[125] B. Lee, "Effects of tent-type enclosures on the microclimate and vaporization of plant
cover", Oecologica Plantarum 1, 301-326 (1966)
[126] A. Miller, Meteorology (Merrill Books, Ohio, Columbus, 1966)
[127] S. Pettersen, Introduction to Meteorology (McGraw-Hill, New York, 1958)
[128] W. D. Sellers, Physical Climatology (The University of Chicago Press, Chicago, 1965)
[129] J.-H. Chang, Climate and Agriculture (Aldine Puhl, Chicago, 1968)
[130] F.-W. Cole, Introduction to Meteorology (Wiley, New York, 1970)
[131] E. X. Berry, "Comment on `greenhouse' effect", J. Appl. Meteor. 13, 603-604 (1974)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
109
[132] Anonymous, Meyer's Enzyklop¨
adisches Lexikon Bd. 10 (Bibliographisches Institut,
Mannheim, 1974)
[133] C.-D. Sch¨
onwiese and B. Diekmann, Der Treibhauseffekt [The Greenhouse Effect]
(Deutsche Verlags-Anstalt, Stuttgart, 1987)
[134] P.C. Stichel, Letter to Westfahlenblatt, 1995 (unpublished)
[135] Anonymous, "Stellungnahme der Deutschen Meteorologischen Gesellschaft zu den
Grundlagen des Treibhauseffektes [Statement of the German Meteorological Soci-
ety on the foundation of the Greenhouse Effect]" (1995), http://www.dmg-ev.de/
gesellschaft/aktivitaeten/pdf/treibhauseffekt.pdf
[136] H. Graßl, " `Treibhausgase' haben deutlichen Einfluss [`Greenhouse gases' have a signif-
icant influence]", Handelsblatt , 3.1.1996
[137] C.D. Ahrens, Essentials of Meteorology: In Invitation to the Atmosphere. 3rd Edition
(Thomson Books / Cole, Belmont, CA, 2001)
[138] D. Basu, Dictionary of Geophysics, Astrophysics, and Astronomy (CRC Press, Boca
Raton, 2001)
[139] P. Murdin (Ed.), Encyclopaedia of Astronomy and Astrophysics (Nature Publishing
Group, New York, 2001)
[140] Anonymous, "The Greenhouse Effect", in Encyclopaedia Britannica Online, http://
www.britannica.com/eb/article-9037976/greenhouse-effect
[141] S. Rahmstorf, "Responses to Readers' Letters" (In German, 23.03.2007), http://www.
pik-potsdam.de/stefan/leser antworten.html
[142] M. C. Mac Cracken, "Carbon Dioxide and Climate Change: Background and Overview"
in Projecting the Climatic Effects of Increasing Carbon Dioxide, pp. 25­55, United
States Department of Energy, DOE/ER 0237, Dec. 1985
[143] Journal of Irreproducible Results, http://www.jir.com/
[144] Al Gore, An Inconvenient Truth: The Planetary Emergency of Global Warming and
What We Can Do About It (Melcher Media/Rodale Publishing, New York, 2006)
[145] D. Guggenheim, An Inconvenient Truth, http://www.climatecrisis.net
[146] M. Lewis, A Skeptic's Guide to An Inconvenient Truth (Competitive Enterprise Insti-
tute, Washington, 2006), http://www.cei.org/pages/ait response.cfm

110
Gerhard Gerlich and Ralf D. Tscheuschner
[147] K. G. Budden, Radio Waves in the Ionosphere (Cambridge University Press, 1966)
[148] W. O. Schumann, " ¨
Uber die strahlungslosen Eigenschwingungen einer leitenden Kugel,
die von einer Luftschicht und einer Ionosph¨
arenh¨
ulle umgeben ist [On the radiation-
less selfoscillations of a conduction sphere, that is surrounded by an air layer and an
ionosphere]", Zeitschrift und Naturforschung 7a, 149-154 (1952)
[149] M. Fullekrug, "Atmospheric electromagnetics and climate change" in C. Boutron (Ed.),
ERCA 7: From Regional Climate Modelling to the Exploration of Venus. Grenoble,
France, 2 November 2006. J. Phys. IV France (Proceedings), 139 157-166157 (2006)
[150] D. Atlas (Ed.), "Radar in Meteorology" in AMS Battan Memorial Volume, American
Meteorological Society (1990)
[151] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light. 6th Edition (Cambridge University Press, Cam-
bridge, UK, 1997)
[152] S.H. Schneider, "On the Carbon Dioxide Climate Confusion", J. Atmospheric Sciences
32, 2060-2066 (1975)
[153] W. Heuseler, Private Communication (1996)
[154] D.A. Stainforth et al., "Uncertainty in predictions of the climate responses to rising
levels of greenhouse gases", Nature 433, 403-406 (2005)
[155] U. Cubasch, B.D. Sauter, and G.C. Hegel, "Klimamodelle - Wo stehen wir? [Climate
Models - where do we stand?]", Phys. Bl¨
atter 4, 269-276 (1995)
[156] K. McGuffie and A. Henderson-Sellers, A Climate Modelling Primer (John Wiley &
Sons, West Sussex, England, 2006)
[157] Anonymous, "Climate Change Experiment Results", http://www.bbc.co.uk/sn/
climateexperiment/
[158] C R. Paul, Fundamentals of Electric Circuit Analysis (John Wiley & Sons Canada Ltd.,
Mississauga, Ontario, 2001)
[159] C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill Education, New
York, 1980)
[160] Anonymous, "SysML - Open Source Specification Project", http://www.sysml.org/
[161] A. P. Balachandran and E. Ercolessi, "Statistics on Networks", Int. J. Mod. Phys. A7,
4633-4654 (1992)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
111
[162] R. D. Tscheuschner, S. Hoch, E. Leschinsky, C. Meier, S. Theis, and A. D. Wieck,
"Robustness of the quantum Hall effect, sample size versus sample topology, and quality
control management of III-V molecular beam epitaxy", Int. J. Mod. Phys. B12, 1147-
1170 (1998)
[163] C. G. Montgomery, R. H. Dicke, E. M. Purcell, Principles of Microwave Engineering
(McGraw-Hill, New York, 1948)
[164] N. Marcuvitz, Waveguide Handbook (Peter Peregrinus Ltd, London, 1986)
[165] O. H¨
older, " ¨
Uber einen Mittelwertsatz [On a mean value theorem]", Nachr. Ges. Wiss.

ottingen, 38-47 (1889)
[166] G. H. Hardy, J. E. Littlewood, G. P´
olya, Inequalities (Cambridge University Press,
Cambridge, UK, 1934)
[167] E. F. Beckenbach and R. Bellman, Inequalities (Springer, Berlin, 1983)
[168] L.P. Kuptsov, "H¨
older inequality" in SpringerLink Encyclopaedia of Mathematics (2001)
http://eom.springer.de/H/h047514.htm
[169] C. Essex, R. McKitrick, B. Andresen, "Does a Global Temperature Exist?" J. Non-
Equil. Thermod. 32, 1-27 (2007)
[170] H. Bauer, Wahrscheinlichkeitstheorie und Grundz¨
uge der Maßtheorie [Measure and In-
tegration Theory] (Walter De Gruyter, Berlin, 1964)
[171] H. Bauer and R. B. Buckel, Measure and Integration Theory, Studies in Mathematics 26
(Walter De Gruyter, Berlin, 2002)
[172] K. Rudzinski, "Kein Treibhauseffekt durch Kohlens¨
aure [No Greenhouse Effect through
Carbonic Acid]", Frankfurter Allgemeine Zeitung, 15.09.1976 (1976)
[173] H. Oeschger, "Treibhauseffekt durch Kohlens¨
aure - Ja oder Nein? [Greenhouse effect
through carbonic acid - Yes or No?]", Neue Z¨
uricher Zeitung, 9.11.1976, 28 (1976)
[174] A. Uns¨
old, Physik der Sternenatmosph¨
aren [Physics of the star atmospheres] (Springer-
Verlag, Berlin - G¨
ottingen - Heidelberg, 1955)
[175] K. Weise, Differentialgleichungen (Vandenhoeck & Ruprecht, G¨
ottingen, 1966)
[176] H. Bouali, "Combined radiative and convective heat transfer in a divided channel", Int.
J. Numerical Methods Heat & Fluid Flow 16, 84-106 (2006)

112
Gerhard Gerlich and Ralf D. Tscheuschner
[177] S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes
(Addison-Wesley, Reading, Massachusetts, 1994)
[178] R. Clausius, Die Mechanische W¨
armetheorie [Mechanical Theory of Heat] (Vieweg, 3.
Auflage, 1887)
[179] R. Clausius, Mechanical Theory of Heat (1887), http://www.humanthermodynamics.
com/Clausius.html
[180] Anonymous,
"The Greenhouse Effect" (In German,
23.03.2007),
http://de.
wikipedia.org/wiki/Treibhauseffekt
[181] J. Hansen et al., "Efficient Three-Dimensional Global Models for Climate Studies: Mod-
els I and II", Monthly Weather Review 111, 609-662 (1983)
[182] F. Dyson, "University of Michigan 2005: Winter Commencement Address", http://
www.umich.edu/news/index.html?DysonWinCom05
[183] A. Scaife, C. Folland, J. Mitchell, "A model approach to climate change", Physics World
2 (2007), http://physicsweb.org/articles/world/20/2/3/1
[184] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics
(Springer, New York, Third Edition, 1993)
[185] A. Zichichi, "Meteorology and Climate: Problems and Expectations" in Climate Change
and Development. International Conference, Pointifical Council for Justice and Peace,
The Vatican, 26-27 April 2007, http://www.justpax.it/eng/home eng.html
[186] J. Mitchell, "Climate Change Myths", http://www.metoffice.gov.uk/corporate/
pressoffice/myths/index.html
[187] Z. Zdunkowski and A. Bott, Dynamics of the Atmosphere: A course in theoretical
Meteorology (Cambridge University Press, 2003)
[188] P. A. Davidson, An Introduction to Magnetohydrodynamics (Cambridge University
Press, 2003)
[189] G. Gerlich, "Tensor Potentials in Magnetohydrodynamcs and the Dynamo Problem",
Thesis, In German, TU Braunschweig (1970)
[190] F. H. Shu, The Physics of Astrophysics. Volume I: Radiation (University Science Books,
Mill Valley, California, 1991)
[191] F. H. Shu, The Physics of Astrophysics. Volume II: Gas Dynamics (University Science
Books, Mill Valley, California, 1992)

Falsification Of The Atmospheric CO2 Greenhouse Effects . . .
113
[192] G. Gerlich, "Eine Verallgemeinerung des Stratonovich-Verfahrens f¨
ur Anwendungen in
der statistischen Mechanik [A generalization of the Stratonovich procedure to applica-
tions in statistical mechanics]", Physica 82A, 477-499 (1976)
[193] G. Gerlich and H. Kagermann, "Herleitung kinetischer Gleichungen mit dem verallge-
meinerten Stratonovich-Verfahren [Derivations of kinetic equations with the aid of the
generalized Stratonovich procedure]", Physica 88A, 283-304 (1977)
[194] A. Emmerich, G. Gerlich, H. Kagermann, "Particle motion in stochastic force fields",
Physica 92A, 262-378 (1978)
[195] E. Craig (Ed.), Routledge Encyclopedia of Philosophy (Routledge/Taylor & Francis,
New York, 2007), http://www.rep.routledge.com
[196] Anonymous, "Science", Wikipedia, 2007, http://en.wikipedia.org/wiki/Science
[197] Anonymous, "Demarcation Problem", Wikipedia, 2007, http://en.wikipedia.org/
wiki/Demarcation problem
[198] Karl Svozil, "Feyerabend and physics". Presented at the International Symposium Paul
Feyerabend 1924-1994. A philosopher from Vienna, University of Vienna, June 18-19,
2004 , http://arxiv.org/abs/physics/0406079
[199] H. von Storch, "Die Diskretisierung ist das Modell" [The discretization is the model],
Discussion contribution in H. Hagedorn, K.-E. Rehfues, H. R¨
ock (Eds.), Klimawandel im
20. und 21. Jahrhundert: Welche Rolle spielen Kohlendioxid Wasser und Treibhausgase
wirklich? Rundgespr¨
ache der Kommission f¨
ur ¨
Okologie 28 (Verlag Dr. Friedrich Pfeil,

unchen, 2005)
[200] E. N. Lorenz, "Deterministic Nonperiodic Flow", J. Atmospheric Sciences 20, 130-141
(1963)
[201] N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, Hoboken, New Jersey,
1998)
[202] J. C. Sprott, Chaos and Time-Series Analysis (Oxford University Press, 2003)
[203] D. Bray and H. von Storch, "Climate Scientists: Perceptions of Climate Change Science"
GKSS Forschungszentrum Geesthacht GmbH, Geesthacht, 2007, http://w3g.gkss.
de/staff/storch/pdf/070511.bray.GKSS.pdf
[204] H. Thieme, "On the Phenomenon of Atmospheric Backradiation", http://www.
geocities.com/atmosco2/backrad.htm

Document Outline